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Abstract 

Safety in the transportation sector has been of particular concern to policymakers, industry participants, and 

the scholarly community. The continued steady progress in scientific knowledge and technological progress 

has resulted in a decrease in fatal accidents. The ever-decreasing cost of computing power has created the 

preconditions for a new round of innovative solutions that use AI-driven technologies to enhance automotive 

safety. In this study, we provide a scientific-technical survey of AI-driven innovations in vehicle safety, 

underscore potential barriers to large-scale implementation, and provide policy recommendations. The results 

are intended to assist policymakers, researchers, and practitioners in a wide range of domains in 

understanding the potential effects of AI-driven technologies on vehicle safety. 

Keywords: AI-Driven Innovations in Automotive Safety, Industry 4.0, Internet of Things (IoT), Artificial 

Intelligence (AI), Machine Learning (ML), Smart Manufacturing (SM),Computer Science, Data 

Science,Vehicle, Vehicle Reliability 

 

1. Introduction 

Artificial intelligence (AI) and autonomous systems 

are driving innovation and enhancing the efficiency 

of an extensive array of industries. However, AI has 

also transformed the risk landscape as it is 

vulnerable to attacks. Moreover, AI-driven 

autonomous systems are highly sensitive, have a 

weak regulatory framework, and are nearly 

impossible to insure. In the realm of automobiles, 

AI-driven autonomous systems have paved the way 

for several favorable developments, particularly for 

vehicle safety. It has the potential to save billions of 

dollars and hundreds of thousands of lives. Despite 

these merits, AI-driven autonomous vehicle systems 

are not without their demerits and deficiencies. This 

manuscript elaborates on the merits and demerits of 

AI-driven innovations in vehicle safety and assesses 

the concerned regulatory frameworks, followed by 

presenting some conclusive discussions. 

1.1. Background of AI in the Automotive 

Industry 

The automotive industry is the "new internet" where 

connectivity, autonomous driving, and smart 

mobility concepts are continuously shifting the 

industry landscape. The convergence of physical 

and cyber worlds creates myriad untapped data 

treasure chests spread across vehicular, 

infrastructure, and client-specific origins. AI 

technologies, such as machine learning (ML) and 

deep learning (DL), are part of a select group 

capable of unraveling vehicular data with 

transformative socioeconomic, scientific, and 

human safety ripple effects. These technologies also 

embed countless inherent technical, operational, and 

performance challenges that have, thus far, hindered 

AI's widespread adoption. Carefully designed 

experiments and computational simulations help 

mitigate the risks of AI technologies before they are 

inserted into critical missions and/or human-in-the-
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loop environments that are routinely encountered in 

the automotive sector. While the progress of AI 

technologies is unprecedented, there is a paucity of 

in-depth foundational reviews that unravel, 

document, and categorize the myriad enabling 

elements, AI-based methods, and their academics' 

desiderata within the automotive domain, as our 

manuscript aims to achieve. 

The Edge Computing and Internet of Things (IoT) 

design paradigms capitalize on extending the cloud 

conservation of resources notion to the far edge of 

the IoT, thereby minimizing the data boomerang 

effect of raw data source IoT end-point to cloud 

server processing architectural choices, and 

improving various performance aspects including 

latency, reliability, security, data communication 

costs, and scalability. To that end, the hybrid 

LSTM-based model for edge computing reduces the 

video surveillance system monitoring latency; 

likewise, AI-powered IoT at the network edge 

enhances the training scenarios and the performance 

of the vehicle-dynamic and power-health models 

while minimizing the impact of migrating these 

computationally complex AI models to the cloud. 

The cornerstone of these innovative AI-driven 

projects rests on improving the quality, speed, and 

efficacy of the considered decision-making 

applications operating near the edge, where sensor-

rich databases trigger the deployment of cost-

effective predictive and insights models with real-

time monitoring, tracking, prediction, and anomaly 

detection roles. Moreover, the simultaneous 

embrace of edge computing and AI is made possible 

by task allocation expansion LSTM models that 

engage AI models for demand prediction and 

energy forecasting, thereby lowering the operational 

cost and energy consumption, and bolstering grid 

resiliency by dynamically optimizing edge AI-load 

sharing across IoT, edge computing, and cloud 

computing resources. 

1.2. Significance of Automotive Safety 

Innovations 

The automotive industry has long been a leader in 

technological innovation. As technologies of 

artificial intelligence mature, innovative vehicles 

are being developed, making the automotive 

industry a driving force in AI development 

alongside major tech innovation companies. AI 

technologies have already been widely applied in 

various aspects related to transport industries, 

including vehicle intelligent driving, smart 

monitoring and regulation, smart system design for 

traffic control in intelligent expressway systems, 

and airport intelligent stereo garage dispatch 

systems. Among them, intelligent vehicle safety-

assisted transportation is improving automotive 

safety. The development of AI technologies is 

changing the manufacturing model of smarter, more 

adaptive, and more personalized vehicles, and 

promoting the transition from "passive" automobile 

safety features to "active" automobile safety 

designs. 

In terms of technical thinking, AI-driven 

innovations in the automotive industry can change 

the traditional means of safety testing and 

verification of vehicles. Differing from the existing 

research on AI-driven innovations in R&D 

automotive technologies, we focus on technological 

innovations in "automotive safety" and their 

influence on industry development. In particular, it 

is the continuous updating of the safety assurance 

system, which includes the safety system design, 

safety testing, and verification. When an 

Automotive Safety Critical Event (SCE) happens, 

the car is trying to drive itself safely, which is 

considered the core function of a self-driving car. 

The AI design that helps the car handle this event is 

the AI function concerned with autonomy. 

Although such a categorization is generally 

accepted in the academic world, the boundaries 

between these three levels of automation are not 

well defined, and the presence of AI technologies in 

vehicles used for point-to-point commercial car-

hailing service may make these boundaries even 

less perceivable by customers. 
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Fig 1: The proposed DRL-based autonomous 

braking systems. 

 

2. AI Applications in Automotive Safety 

Artificial Intelligence (AI) encompasses a group of 

technologies that can perform tasks that would 

normally require human perception, cognition, 

decision-making, and manipulation. In this chapter, 

the innovations driven by AI in automotive safety 

are analyzed. AI offers a mechanism to process 

various vehicle systems data captured around the 

vehicles and provides or assists recognition of 

potential risks caused by future unintended events, 

errors, or malfunctions in such systems. The current 

vehicle generation contains hundreds of different 

sensors and infrastructure capabilities. At the same 

time, AI can make very fast and accurate localized 

decisions. This is an ideal environment where AI 

systems are well-suited to improve automotive 

safety. This chapter discusses only advanced driver 

assistance systems (ADAS) and autonomous 

vehicles (AV). 

A new generation of AI-powered safety systems is 

increasingly used in advanced driver-assistance 

systems to prevent collisions with objects, vehicles, 

and unprotected road users. The timing for AI usage 

in safety-critical areas in AV was good because 

there is so much sensor data around AVs and 

infrastructure that can be employed to identify 

potential risks. This chapter covers the most popular 

AI architectures and methods and AI applications in 

AV from SAE levels 1-5 which are complex enough 

to bring safety to cars in many private and 

professional use cases. The possible ways to 

develop, test, verify, validate, and operate the most 

popular safety features will be clarified as it is seen 

by the industry. Finally, the chapter gives the most 

widespread ways for accident reconstruction using 

AI technologies in the field of automotive safety. 

2.1. Advanced Driver Assistance Systems 

(ADAS) 

Current and near-future vehicle global standard 

features will be Advanced Driver Assistance 

Systems (ADAS). We can divide them into three 

bigger groups according to their benefits. The first 

and most important one is the safety features – like 

Halogen, Xenon, or LED lighting, Adaptive front 

lighting systems, emergency braking systems, Anti-

lock brakes, Traction control, Electronic stability 

control, Adaptive cruise control (ACC), Blind spot 

detection, lane departure warning, Traffic sign 

recognition, Head-up display (HUD), Wildlife and 

pedestrian detection, Automatic parking, and others. 

Second important, but mainly for comfort usually 

also are Night vision, Collision Avoidance Systems, 

Object and Vision Recognition, Intelligent Speed 

Adaptation, Alcohol detection, and Traffic 

Congestion Assistance. The third group of 

entertainment or infotainment features includes 

Touch Screen Media, DVD, MP3 player or 

smartphone integration, GPS Navigation, Sound 

System, Wi-Fi, Bluetooth, Satellite Radio, Internet 

access, Games, and Telematics Services. Thanks to 

these innovations and connected vehicle 

technology, not only the human body, but the 

vehicle itself gets an additional barrier to crash 

avoidance. Be aware that even if ADAS is included 

in every future car, it is not a 100% guarantee for 

avoiding road accidents but can endanger traffic 

safety because of driver addiction. More complex 

systems for the prevention of accidents must be 

developed with time and the introduction of reliable 

AI technologies. Such ADAS devices could be 

implemented in globally standard car equipment 

using their implementation strategy and actions 

originating from global vehicle producers. 
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However, it is mainly the final customer, namely 

the car buyer, who can influence how advanced the 

car will be in the ADAS area. 

ADAS architecture should be flexible, open, and 

user-friendly for control, configuration, and 

operation both onboard and remotely. Producers of 

these intelligent vehicle devices should implement 

strict self-imposed rules of transparency, openness, 

integrity, and customer care. However, they should 

also remember security and privacy requirements 

for the implementation of ADAS and AI (Artificial 

Intelligence) technologies. It may be time for 

generic side node creation for vehicles able to attach 

more future advanced onboard systems, such as 

some kind of car Open Digital Platform which 

could be equipped with advanced plug-ins, with the 

possibility of new intelligent functions to be 

installed in the vehicle. We watch with interest the 

automotive projects which are mainly the results of 

automotive industrial and scientific cooperation, 

like Apollo Program, created by Chinese search 

engine Baidu with an open-plans strategy to provide 

automobiles with driverless capabilities shortly, or 

the Drive Me project by a possible global-leader in 

hybrid vehicles and also in car safety systems Volvo 

– at the same time, quite big and informative 

announcement by Tesla, USA and IBM Corporation 

probably gives the tone for future orientations of car 

developers – improvements by AI. But in 

conclusion, good, rare, and incredibly expensive 

cars must be safe even in the most difficult 

circumstances of usage. People in these cars 

demand not to be distracted by usual safe car 

operations, they want to convince themselves that 

also in rare dangerous situations, they are surely 

protected. High investments for future ADAS 

devices and AI inclusion by car developers reflect 

high quality for demanding customers. In addition, 

cars with excellent safety features are also 

communicators of one important feature of their 

owners – care of life and health of human beings. 

And safety should dominate all other car parameters 

in the future because people buy cars to move from 

one place to another. This is a basic functionality 

that demands constant safety paramount to be 

fulfilled before any other requirements. Car safety is 

designed for life. But life is also supposed to be 

happiness now and for the future. 

 

Fig 2: Enabling Technologies for Internet of 

Vehicles 

 

2.2.Autonomous Vehicles 

All the developments in automotive safety today are 

related to autonomous vehicles: fully self-driving 

vehicles. Level 5 of automation means the vehicle 

needs zero human intervention for the full duration 

of the trip, with the minimum constraint being that 

the driver does not need to drive and is therefore 

free to perform secondary activities. Vehicles that 

are not independent are not considered autonomous, 

but only "automated." At present, manufacturers 

can offer the ability to automate everything except 

that which is required to avoid accidents without 

being responsible for causing them. Moreover, the 

driver must be ready to take control and assume all 

responsibility if such a situation arises. Fully 

autonomous vehicles, on the other hand, not only 

learn all the inherent driving skills of the driver but 

also reach a higher level of intelligence. 

Today, autonomous vehicles, especially Level 5, 

represent the sum of the AI-driven innovations 

discussed in the previous section. We are not 

confronted, in this case, with one or two primary 

solutions. On the contrary, everything seen earlier 

can be applied to bring such vehicles to the 

commercial stage. From sensor systems that allow 
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the vehicle to sense its environment, derived from 

experience and perception models and tested 

specifically for safe behavior, to the constraints 

capable of monitoring it, algorithms that allow for 

decision processes that are designed to make 

decisions to counteract the events that perception 

perceives; all these elements interact in the 

autonomous vehicle development pipeline, as 

shown. Several other elements of a non-deep 

learning nature could also be used by Artificial 

Intelligence to attain higher values of performance. 

For example, as mentioned earlier, the algorithms 

that create cellular statistical models are required to 

assess the vehicles' system behavior in terms of 

recognition of images and graphics collected by the 

sensor system. 

 

Fig 3: Block Diagram of AEB with Sensor 

Fusion  

3. Challenges and Limitations 

Some of the main limitations and challenges of the 

paper presented herein regard the relatively small 

number of identified cases. Of particular note are 

the few signals referring to public policy and the 

fact that there are few sources in English about the 

Asian region. Importantly, the findings of this paper 

are based on public information, rather than on 

previously classified government data. The method 

presented here could be used to survey a further 

range of academic articles beyond the scope of this 

exploratory study. In addition, the cases were 

collected and reviewed at a specific time frame, so 

there may be new cases of interest for this study, 

that present themselves post-collection. 

Further, in the literature reviewed - although there is 

an emphasis on public health - little attention is 

given to innovations in the automobile safety 

industry that deal with a pandemic or an event of a 

comparable nature. Finally, it is important to 

emphasize that some technologies - such as 

blockchain, big data, and robotics - while having the 

ability to make a significant contribution to the 

public sector, were only recently developed. 

Consequently, there are not as many mature 

implementations that represent a meaningful part of 

public administration's current activities, needs, and 

priorities. 

3.1.Ethical and Legal Implications 

Ensuring public safety and user well-being is of the 

utmost importance for developers and policymakers 

when integrating AI-driven technologies into 

automated and self-driving cars. The two most 

important concerns relate to a possible misuse of the 

technology in car design or through its operation 

and to a possible unfair distribution of benefits. It is 

important to find the right balance between ensuring 

overall public safety and user well-being, on the one 

hand, and creating a level playing field for new 

entrants facing established, traditional car 

manufacturers, on the other hand. The mechanisms 

for safety assurance clamor for public-private 

partnerships to work effectively. Legal barriers 

encompass privacy rights, product liability, and 

consumer protection as well as questions of data 

sharing and ownership. 

These concerns must be addressed at multiple 

junctions: (a) public encouragement to mitigate 

externalities and to exploit promised positive 

transformational impacts by, for example, adapting 

the road infrastructure to self-driving cars; (b) strict 

safety conformity regulations to promote early 

improvements and innovative technologies; (c) 

institutional rules to shield against opportunistic 

behavior, in particular at the testing stage of the 

technology use; (d) broad data access and usage 

rights to reap the social benefits from novel 

technologies developed through data analysis; and 

(e) other rules and regulations pertinent to the socio-

technical challenges of AI-driven self-driving cars. 
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Establishing a desirable level of government 

intervention responds to the following questions: 

what are the associated objectives? Who should 

distribute and allocate those benefits? Who should 

operate under the regulatory envelope? What is the 

optimal regulatory envelope itself? And, should 

regulations, penalties, and other elements of the 

political economy incentivize external agents to 

behave in socially acceptable ways? 

3.2. Technological Constraints 

Active safety features, such as ADAS systems in 

cars today, continuously monitor the surroundings 

and kick in if any anomaly is detected. Most of the 

perception is now done by cameras, and any bad 

weather condition would massively impact the 

performance of the whole ADAS system. Also, 

sources of noise present in both the raw sensory 

data and all the potential feature extraction steps 

may have a significant impact on the operational 

performance of ADAS systems because of false 

detections by the inferencing operation. Engineers 

today have to report high false-negative detection 

rates to ensure autonomous vehicles are very 

cautious and do not cause any accidents, while this 

also negatively affects the comfort and adoption of 

the technology. However, increasing the safety 

threshold for the vehicles (from 60% to 99%) would 

optimize for the correct class predictability, but the 

system performance would drop from 89% to just 

75%. 

Despite all the potential issues, autonomous driving 

will leverage ADAS to build a structural policy for 

higher-level AD driving systems. This will be done 

based on end-to-end overlapping TD and FSD 

functionalities. Indeed, the ADAS will accomplish a 

few vital facilitating functions on behalf of the 

driver in case of inadequate readiness. Thus, 

conditional acceleration towards Level 3 and 

conditional both acceleration and lateral control will 

occur later. Finally, the AC will deal with the only 

operational performance functions to manage the 

transition to L5 while ensuring the safety level of 

these vehicles. 

Currently, HD maps are fundamental to bridge the 

gap towards end-to-end functioning, integrating 

users and road providers as part of the automated 

mobility ecosystem. This is because the outstanding 

denominator aspects (the properties of Powered 

Road Infrastructure) are valuable complements to 

DNN-based image classification methods, 

especially in the inference operation. Indeed, for 

Level-3+ AC, accurate structural delineation is 

pivotal for understanding two key denominators: 

lane boundaries and traffic signal locations. 

Currently, at the core of most FSD DNN methods, 

there are only enhanced perception pathfinders 

capable of recognizing traffic signs, traffic signals, 

lanes, vehicles, or pedestrians (e.g., boosted CNNs). 

The latter devices, however, are major contributors 

to the uncertainty challenge in the performance of 

these driving systems because a minimal change or 

perturbation during the driving task could hinder the 

abilities of the car and the safety of its passengers. 

This scenario can be further aggravated if, as likely 

to happen, the availability of the supporting device 

changes during the pattern of inference. 

4. Case Studies 

4.1. Enforcement and Vigilance: A Safety System 

for Autonomous Vehicles We propose a controller 

capable of enforcing any velocity and safety 

constraints provided that they are feasible. The 

impact of uncertainty is twofold: speed importance 

and discretization into simple constraints. If the 

parameters are progressively defined, the 

optimization benefits all the parameters. 

Furthermore, by definition, the mismatch between 

the optimization values and the real values 

underperforms the dynamics of the system. A 

possible application of the proposed controller 

involves the autonomous car. The proposed model 

has several controllers, one for each required 

objective, used according to the characteristics of 

the external environment and the availability of the 
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vehicle actuators. It provides a set of inertial, 

elastic, virtual, and supervisory forces resolved in 

the coordinates of the cinematic path by a vehicle 

reference model and acting on the vehicle. For the 

implementation of the proposed controller, we 

present a simulation of the artificial intelligence 

model SAE control logic together with the "safety 

rules" for the California Intelligent Speed 

Adaptation system. 

4.2. Automotive Safety Applications Driven by 

Artificial Inclinations Analyzing the spatial 

orientation angles of the anterior and posterior parts 

of the vehicle using the AI methods on the roll test 

bench, a jerking effect is revealed, which, in 

emergencies, appears in a roll direction. It is 

determined by the forced reaction of the vehicle 

structure to the effect of the side wind. The revealed 

vehicle spatial orientation angle κ expresses 

readiness to control skidding and preserve vehicle 

stability. A reciprocal increase of the examined 

spatial orientation angles κ of the front and rear 

vehicle parts is proposed, defining the maximum 

safe limit in the relationship between the vehicle 

weight, height/width length, and the height of its 

object for the road. Material from computer 

experiments achieved by AI methods on the vehicle 

roll test bench is presented testifying that the 

vehicle roll stiffness increases with the enlargement 

of the side wind. Using photo informatics and the 

experimental vehicle orientation relation arrived at 

by AI methods, an experimental vehicle roll angle κ 

is determined. 

4.1. Tesla's Autopilot Syst 

Tesla's system, the Autopilot, uses detectors such as 

radar and ultrasonic sensors to transfer information 

to the vehicle's actuators by analyzing the 

environment and surroundings. In this way, this 

type of system can function as a semi-autonomous 

vehicle in nearly all types of situations. It is an 

advanced driver's assistance system designed to 

inform the driver when loss of attention could result 

in a dangerous situation. 

Although the controlled automation level has made 

significant strides in the automotive sector, it is 

known that the objective of achieving a fully 

autonomous vehicle is not an easy one. The 

TM/DSAD classification problem aims to prove the 

maturity of a system that can handle real-time 

dynamic scenarios by testing it over four vehicle 

maneuvers: maintaining lane conditions and the 

subject vehicle, as well as the defended area, 

induction of an initial move between two lanes, lane 

change maneuver between two detected lanes, and 

departure conditions observing the following 

vehicle. This fact is verified in this paper's 

discussion and analysis of the different levels of 

automation of autonomous vehicle systems. 

4.2. Waymo's Self-Driving Cars   

Waymo is an American autonomous subsidiary of 

Google's parent company, Alphabet Inc. It spent 

millions to develop autonomous systems that hold 

unrivaled expertise in driverless technologies. 

Waymo's self-driving vehicles employ AI and high-

resolution 3D maps. The acquired images are 

cleaned and annotated by specialized teams before 

the training stage. Datasets contain the removed 

moving objects to prevent models from learning the 

wrong patterns. The main challenge of relying on 

prebuilt 3D maps is the compatibility issue since the 

use of lidar depends on the environment. Waymo, in 

partnership with vehicle manufacturers, spent 

millions on developing sensors and robots, several 

iterations of LiDAR while continuing to work to 

reduce the costs and enlarge the volume of 

production for sensors and robots. 

Using lidar was proven to be important for diverse 

datasets that promote safety. The creation of labeled 

3D data that includes the removal of static objects is 

costly, since collecting and cleaning the images 

takes a substantial amount of time, and annotating 

objects is required, especially after ensuring that the 

models are not learning unwanted behavior. Also, 

there is a plethora of problems that can impact the 

perception algorithm. For example, fog, rain, dust, 
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snow, and wet pavement can impair depth 

perception, and many interesting areas like 

autonomy-in-the-understanding or estimation errors 

are still open for development. Waymo was 

denounced for partially relying on high-definition 

3D maps processed by professional teams and for 

flaws that include the fact that the vehicle's 

operation autonomy is almost exclusive by design 

to a small subset of U.S. cities. 

 
Fig 4: Different Types ADAS Sensors Used in 

Today’s Autonomous Vehicle 

 

5. Future Directions 

Prototyping the combined usage of AI-driven 

systems of both car and infrastructure could, on the 

one hand, allow us to create multifaceted safety 

layers, each more reliable on its own (vehicle-based 

and infrastructure-based). On the other hand, it 

could give rise to systems whose components and 

the whole can be executed interchangeably by smart 

transport terminals, driverless cars, and any electro-

mechanical vehicles. Since today, no high-tech 

transport terminal is represented on the automotive 

scene yet, each innovative AI transcription of the 

transport system's relevant functions, being 

promising and theoretically well-founded, still 

needs to be validated. 

Interconnected control of cars and infrastructure 

should be tactile in the first place due to the reasons 

outlined above. What device can implement tactile 

control? It must be something with kaleidoscopic 

functions in a transport system. When turned on, it 

must represent a car control component. If 

necessary, it must seamlessly take over the function 

of an intelligent transport terminal. The magic 

gadget must approach the terminal's possibilities 

while driving close to it since a distance must be 

treated as a limit of constraint. When in the 

embodiment of a transport terminal, a single device 

(or a group of devices) should project control 

signals outside (the commands for the car and, if 

necessary, for other traffic participants). When 

gaining the status of a car controller, the device 

should get its information from infrastructure (say, a 

specialized element of road marking, organized by a 

standard car maker), then process it and pass the 

command to the car's control elements. 

 

Fig 5: General Model of The Drowsy Detection 

System 

 

5.1. Emerging AI Technologies in Automotive 

Safety 

The next generation of automotive safety 

technologies will marry classical rule-based modern 

constraints to machine-learning-based perception 

algorithms and will use predictive analytics and 

context understanding to anticipate and execute 

optimal trajectories for vehicles and occupants. 

Efficient GPU-driven inference and optimization 

will make it possible to realize these innovations in 

mass-market electronics platforms, making 

automotive safety an exemplar of the rapid 

democratization of AI innovation. In contrast with 

automated driving, whose highly directional 

deployment is concentrated in much smaller areas 

of the world, safety innovations will bring the 

democratized benefits of AI to a higher percentage 

of the world's citizens. 
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Driver drowsiness causes at least 90,000 police-

reported crashes per year, many of which involve 

fatalities or serious injuries. Current drowsiness-

detection systems in mass production, including 

those developed by the authors, use vision and 

steering feedback sensors to detect the early 

warning signs or onset of drowsiness, and then 

provide visual and/or audio alerts, demand driver 

interactions, or even level-1 vehicle control to 

awaken the driver and avoid a crash. AI can 

significantly improve these capabilities by using 

state-of-the-art visual object detection, motion 

detection, sleep-state detection, and optical-flow 

models developed for ADAS and AD, and adapting 

the alerts and control strategy to minimize 

detrimental interactions. We can also use the same 

model to identify signs of drowsiness in electronic 

data collected from the actions of long-haul truck 

drivers or other operators of potentially dangerous 

equipment. This technology can use novel alerting 

and control paradigms, for example, providing 

alarms to the relevant dispatch and operations 

managers, or in the case of road infrastructure or 

traffic accidents, directly to emergency services. 

6. Conclusion  

We exploit new automotive accident datasets and 

provide empirical evidence that AI-driven 

innovations introduce substantial safety benefits. 

These innovations result in significantly lower 

realized accident rates. We also provide a 

framework to understand potential accidents 

enabled by these innovations. The estimates imply 

that AI-driven innovations do not introduce 

excessive risk. They imply that establishing a 

regime where insurance companies are made to act 

collectively as data custodians can be beneficial. 

Even without such a regime, key findings provide 

important implications for usage substitution and 

product liability litigation regulation. The insights 

are also useful for designing incentive-based 

optimal inspection mechanisms. 

AI-driven innovations and safety are not just limited 

to the air travel industry. The advent of new cars, 

especially autonomous vehicles, is expected to 

bring about substantial safety improvements. To 

give a flavor, consider the following similar 

discussions that are found in news articles and 

activist websites: "This brings us to the final and 

perhaps most important selling point of autonomous 

vehicles: the fact that they cannot be driven while 

distracted. Data models and human-machine 

interfaces may grow immeasurably smarter, 

augmenting driver performance in ways not yet 

imagined... Furthermore, the steps necessary to 

bring AVs to market may inadvertently foster the 

development of safer conventional passenger 

vehicles." Our exploratory analysis in this paper 

connects such discussions to the data and provides 

empirical evidence that AI-driven innovations in 

automobiles are substantially improving safety. 

 

6.1 Future Trends  

AI-driven innovations in automotive safety, which 

benefit from vision cameras, are extremely 

dynamic. Innovations are continuously introduced, 

creating a large momentum. Moreover, the pace of 

technological innovation is increasing. 

Commercially available ADAS on the market today 

has been developed for only a few model years. The 

rate of introduction and the development of novel 

functionality are milestones to watch. Techniques 

and methods that are state-of-the-art will continue 

to exist, and new solution approaches will play an 

increasing role in product development. 

The current level 2 technologies (Complex ADAS) 

will be developed further in terms of both additional 

functions and functionalities, as well as higher 

performance. A broad spectrum of features could be 

realized, leading from the development of specific 

ADAS fine-tuning the SAF to the improvement of 

perception algorithms. This may ultimately lead to 

increased robustness of the driving function under 

adverse conditions (e.g., fog, sun, animals in the 

road, road signs affected by snow) or motion states 

(e.g., partially blocked roads). An increasing 

number of sensors will be integrated into the vehicle 
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to enhance its perception capabilities and its 

situational awareness. The key technology trend 

will be the use of AI/ML-based methods and the 

utilization of higher bandwidth available 

communication technology. The amount of edge 

computing and onboard storage will increase to 

accommodate the growing amount of processed 

data and increasing complexity of algorithms. All 

this will increase efficiency, safety, and comfort 

delivered to the vehicle occupants. 
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