
 International Journal of scientific research and management (IJSRM)
 ||Volume||3||Issue||5||Pages|| 2786-2789||2015|| \
 Website: www.ijsrm.in ISSN (e): 2321-3418

Surya Pratap Singh1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2786

Proactive Mechanism of Protection against SQL Injection Attack

Surya Pratap Singh1, Avinash Singh2, Upendra Nath Tripath3, Manish Mishra4

1Department of Computer Science

Deen Dayal Upadhyay Gorakhpur University , Gorakhpur -273001

spsingh8161@hotmail.,com

2Department of Computer Science

Deen Dayal Upadhyay Gorakhpur University , Gorakhpur -273001

avinashnero2007@gmail.com

3Department of Computer Science

Deen Dayal Upadhyay Gorakhpur University , Gorakhpur -273001

untripathi@gmail.com

4Department of Electronics

Deen Dayal Upadhyay Gorakhpur University , Gorakhpur -273001

mamnishm@yahoo.in

Abstract: In this fast growing environment most of the organizations are now computerized and those are not seeking computerization. As

the use of computer increases the need of the database is also increasing and hence the database security is very important aspect. Various

types of attackers and database hackers are trying everything to break the security of the database and to spoof the information contained in

the database. The SQL Injection Attack is a very big security threat in the modern databases. An attacker tries to exploit faulty application

code by causing maliciously crafted database queries. The attackers are allowed to obtain unauthorized access to the backend database by

submitting the malicious SQL query segment to change the intended application. Various database researchers and practitioners provide

different approaches to prevent from SQLIA but none of the approach is fully capable to. In this paper we propose some methods of

protection against SQL injection attack.

Keywords: SQL Injection attack, Weak Authentication, Malicious query, SQL Query Monitor.

1. Introduction

SQL injection vulnerabilities are one of the most serious threats

for the Web based applications. Web based applications that

are vulnerable to SQL injection may allow an attacker to gain

complete access to their database, just because these databases

often contain sensitive information.[1][2] The resulting security

violations can include identity theft, fraud and loss of

confidential information .In some cases, attackers can use an

SQL injection to take control of and corrupt the system that

host the Web application too.

 SQL injection refers to a class of code injection attack

in which data provided by the user is included in an SQL query

in such a way that part of the user’s input is treated as SQL

code.[4]

 SQL Injection Attacks (SQLIA’s) are one of the most

severe threats to web application security. They are frequently

employed by malicious users for a variety of reasons like

financial fraud, theft of confidential data, website defacement,

sabotage, etc. The number of SQLIA’s reported in the past few

years has been showing a steadily increasing trend and so is the

scale of the attacks.[5]

 For preventing the SQLIA, defensive coding has been

can give a solution but is very difficult to implement, not only

developers try to put some controls in their program code but

also attackers continue to bring some innovative way to

bypass these controls. Hence it is very difficult to keep

ourselves updated according to the last and the best defensive

coding solutions. These problems motivated the need for a

solution to the SQL injection problems.[6]

2. Definition of SQLIA

SQL injection is a type of attack which the attacker adds

Structured Query Language code to input box of a web form to

gain access or make changes to data. SQL injection

vulnerability allows an attacker to flow commands directly to a

web application's underlying database and destroy functionality

or confidentiality. [7][9]

 Any procedure that constructs SQL statements should be

reviewed for injection vulnerabilities because SQL Server will

execute all syntactically valid queries that it receives. Even

parameterized data can be manipulated by a skilled and

determined attacker.

3. Process of SQL injection
The SQL injection consist of direct insertion of code into user-

input variables that are connected with SQL commands and

executed. A less direct attack injects malicious code into string

that are designed for storage in a table as a metadata. When the

stored string are concatenated into dynamic SQL command ,

the malicious code is executed .[8]

The injection process works by prematurely terminating a

text string and appending a new command. Because the

inserted command may have additional strings appended to it

before it is executed, the malefactor terminates the injected

string with a comment mark "--". Subsequent text is ignored at

execution time.[10]

mailto:spsingh8161@hotmail.,com
mailto:avinashnero2007@gmail.com
mailto:untripathi@gmail.com
mailto:mamnishm@yahoo.in

Surya Pratap Singh1IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2787

The following script shows a simple SQL injection. The

script builds an SQL query by concatenating hard-coded strings

together with a string entered by the user:[11][12]

varShipproduct;

Shipproduct = Request.form ("Shipproduct");

varsql = "select * from OrdersTable where Shipproduct = '" +

Shipproduct + "'";

The user is prompted to enter the name of a city. If she enters

Redmond, the query assembled by the script looks similar to

the following:

SELECT * FROM OrdersTable WHERE Shipproduct =

'Redmond'

However, assume that the user enters the following:

Redmond'; drop table OrdersTable—

In this case, the following query is assembled by the script:

SELECT * FROM OrdersTable WHERE Shipproduct =

'Redmond';drop table OrdersTable--'

4. Review of Literature

The techniques which are currently available can cover a subset

of the vulnerabilities of the SQL Injections, some work of the

researchers are listed in the following section-
Huang and colleagues [1] propose WAVES, a blackbox

technique for testing web applications for SQL injection

vulnerabilities. The tool identify all points a web application

that can be used to inject SQLIAs. It builds attacks that target

these points and monitors the application how response to the

attacks by utilize machine learning.

Swaddler [2], analyzes the internal state of a web application. It

works based on both single and multiple variables and shows

an impressive way against complex attacks to web applications.

First the approach describes the normal values for the

application’s state variables in critical points of the

application’s components. Then, during the detection phase, it

monitors the application’s execution to identify abnormal

states.

Roichman and Gudes’s Scheme – [3] suggests using a fine-

grained access control to web databases. The authors develop a

new method based on fine-grained access control mechanism.

The access to the database is supervised and monitored by the

built-in database access control. This is a solution to the

vulnerability of the SQL session traceability.

WebSSARI [4] use static analysis to check taint flows against

preconditions for sensitive functions. It works based on

sanitized input that has passed through a predefined set of

filters. The limitation of approach is adequate preconditions for

sensitive functions cannot be accurately expressed so some

filters may be omitted.
Shaukat Ali et al.’s Scheme – [5] adopts the Hash value

approach to further improve the user authentication

mechanism. They use the user name and password Hash values

SQLIPA (SQL Injection Protector for Authentication)

prototype was developed in order to test the framework. The

user name and password Hash values are created and calculated

at runtime for the first time the particular user account is

created

5. Problems in Existing Systems

The SQLIA is the major security threat to the database

applications in web environment. There are various approaches

to overcome from these problems but the existing SQLIA

prevention methodologies have some major problems which

are discussed bellow –

a) SQLIA is a hacking technique which the attacker includes

SQL statements through web application’s input fields or

by means of hidden parameters to access the resources

which they do not have access to. The lack of proper input

validation causes the attacker to be able to intrude in the

database system by unfair ways .

The process of SQLIA is explained by the following

example –

Assume a web application receives a HTTP request from a

client as input and generates a SQL statement as output for

the database server. For instance the database

administrator will be authenticated by empid = 123 and

password = administrator. Fig 1 describes a login by an

intruder by exploiting SQL injection vulnerability.

i) An attacker sends the malicious HTTP request to the

web application .

ii) Creates the SQL statement

iii) Submits the SQL statement to the backend of the

database

Fig1. SQL Injection Process

The above SQL statement is always true because of the

Boolean tautology we appended (OR 1=1) so, we will access

to the web application as an administrator without knowing

the right password.

b) The attacker might attempts to modify the present SQL

statement by adding elements to the where clause. For

example by a simple search application. This application

takes the roll number of student as input and provides the

search result as output. In this case the web application

may run the following query

Select * from student where roll_number =’ <input from

the user>’

Surya Pratap Singh1IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2788

Fig 2. Taking input from the user

Select * from student where roll_number =’1’ = 1 or ‘ ‘

Fig 3. Result of the Malicious Input

The WHERE clause becomes true for every row and as a result

it fetches all entries of the database, in this way the attacker

gains access to the application.

6. Proposed Methodology

To overcome from the problems of SQLIA we propose the

following techniques. These are the proactive methods of

prevention of SQL Injection attack.

a) By use of SQL Query Monitor – we propose the use of

SQL query monitor as a tool to analyses all the queries

passed to the database server by HTTP request. The SQL

Query Monitor Works as bridge between the User

application and Database Server. It uses the statistical

database log to validate the request generated by HTTP

request and allows only if the SQL statements are non

malicious. This architecture is explained in the figure 4.

Fig 4. Architecture of prevention from SQLIA by using

SQM

In this method when a user generates a HTTP request using

web application program it is passed to the SQL Query

monitor. The SQL Query monitor then analyses the input query

by the use of statistical Query log which contain the statistical

data about the allowable values. if the input query is matches to

that stored in the Query log then the SQL query monitor grant

the permission otherwise it denies the log in process as invalid

assess. This process is explained by the uses of following flow

chart.

Fig 5. Flow chart of prevention from SQLIA by using SQM

b) Taking user input from predefined choices – in this

method we create the application program which enables

the user to choose only predefined input choices which is

available to them, in this way the user cannot pass the

malicious inputs. to implement this approach the search

page of the student mark list of the fig2. Can be modified

as shown in the fig 6.

Fig 6. Taking Input from the user using predefined choices

In this way the user now only pass the values which are predefined

andd can not pass the malicious inputs

Surya Pratap Singh1IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2789

7. Conclusion
The SQLIA is the most vulnerable security threat in the

web based database environment in recent years because

every attacker or hacker tries to break the database security

using such types of attacks. So the proactive mechanism of

protection from SQLIA is more acute. Various solutions

are given by different researcher but none of the solutions

is fully able to prevent the database from these attacks.

 So this paper explains the nature an injection process

of SQLIA. it also explains the possible cases in which the

SQLIA can be done. To protect the system from these

attack this paper proposes the use of SQM (SQL Query

Monitor) as the validation mechanism by which we can

only allowed the predefined inputs. There are various other

ways to attack on the database using SQLIA that need to

be covered so there is a much scope in this area of

research.

References

[1] Y. Huang, S. Huang, T. Lin, and C. Tsai. A Testing

Framework for Web Application Security Assessment.

Journal of Computer Networks, Volume: 48 Issue: 5,

Pp:739-761, 2005.

[2] Marco Cova, Davide Balzarotti. Swaddler: An Approach

for the Anomaly-based Detection of State Violations in

Web Applications. Recent Advances in Intrusion

Detection, Proceedings, Volume: 4637 Pages: 63-86

Published: 2007.

[3] Roichman, A., Gudes, E.: Fine-grained Access Control

toWeb Databases. In: Proc. of 12th SACMAT

Symposium, France (2007)

[4] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S.

Y. Kuo. Securing Web Application Code by Static

Analysis and Runtime Protection. In Proceedings of the

12th International World Wide Web Conference (WWW

04), May 2004.

[5] Shaukat Ali, Azhar Rauf, and Huma Javed ―SQLIPA:An

authentication mechanism Against SQL Injection

[6] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey

of SQLinjection defence mechanisms," Proc. Of ICITST

2009, vol., no., pp.1-8, 9-12 Nov. 2009

[7] Advanced SQL Injection in SQL Server Applications An

NGSSoftware Insight Security Research (NISR)

Publication ©2002 Next Generation Security Software

Ltd

[8] W. G. Halfond and A. Orso. Combining Static Analysis

and RuntimeMonitoring to Counter SQL-Injection

Attacks.2005

[9] Vulnerability Management in Web Applications R.

Thenmozhi, M. Priyadharshini, V. VidhyaLakshmi, K.

Abirami

http://www.ciitresearch.org/dl/index.php/dmke/article/vie

w/DMKE042013007

[10] David Litchfield: Web Application Disassembly with

ODBC Error Messages .

[11] Martin, B. Livshits, and M. S. Lam. Finding Application

Errorsand Security Flaws Using PQL: A Program Query

Language.

[12] S. McDonald. SQL Injection: Modes of Attack, Defence,

and Why It Matters

Author Profiles

Surya Pratap Singh is MCA and UGC-NET qualified and pursuing

Ph.D. In the department of Computer Science DDU Gorakhpur

University, Gorakhpur (U.P. India) under the supervision of Dr. U.N.

Tripathi. The area of research interest is Database Security,

Networking. Mr. Surya Pratap Singh has published 11 papers in

different national and international conferences/ Journals.

Avinash Singh is M.Sc. Computer Science, M.Tech and M. Phil and

pursuing Ph.D. in the department of Computer Science DDU

Gorakhpur University, Gorakhpur (U.P. India) under the supervision

of Dr. U.N. Tripathi. The area of research interest is Database

Security, Networking. Mr. Avinash Singh has published 21 papers in

different national and international conferences/ Journals.

Dr. Upendra Nath Tripathi is Assistant professor in Department of

computer science DDU Gorakhpur University, Gorakhpur (U.P.

India). He has 13 years of teaching and research experience. He has

published 45 papers in various National and International

Journals/conferences. His area of research interest is database

systems, networking.

Dr. Manish Mishra is Assistant professor in Department of

Electronics DDU Gorakhpur University, Gorakhpur (U.P. India). He

has 13 years of teaching and research experience. He has published 50

papers in various National and International Journals/conferences. His

area of research interest is Computer Technology, fast processor

design.

