
 International Journal of scientific research and management (IJSRM)
 ||Volume||3||Issue||5||Pages|| 2880-2882||2015|| \
 Website: www.ijsrm.in ISSN (e): 2321-3418

Pradeep kumar R S1, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2880

Improving an Automation Framework by Reducing Technical Debt
Pradeep kumar R S1, Chethana R Murthy2

1R. V. College of Engineering, VTU University

Information Science and Engineering Department

Bangalore

Pradeepkumar.rs484@gmail.com

2R. V. College of Engineering, VTU University

Information Science and Engineering Department

Bangalore

chethanamurthy@rvce.edu.in

Abstract: Technical debt is an important analogy pointing to the eventual consequences of poor system design, software architecture and

software development within a code base. Technical debt is the cost of programming options and opinions that were assumed consciously to

meet a business objective, unknowingly because of lack of knowledge or experience or historically because they made feel originally but are

no further best practices today. Technical debt is an old dilemma that raises business risk and cost to the company. All development will

result in some amount of technical debt – the objection is to control it, curtail it and establish practices to keep it stabilize that does not

impact performance and availability of the critical business services. The proposed study suggests that the software product and process with

an eye towards the quantitative definition of the technical debt.

Keywords: Technical Debt, Refactoring, Deficit Programming.

1. Introduction

Technical Debt is an analogy to describe the cost of

making sub-optimal technical design and implementation

choices in software product in exchange for releasing the

software at a given time. Finding a quantitative measure

for technical debt could aid software developers and

management in deciding upon courses of action during

software development that produce improved project

outcomes. Another term for technical debt is ‘deficit

programming’. Determining that the concept is too vague

to obtain general quantitative measures would also be

useful. The objective of this paper is to identify

quantitative measurements for its definition and use.

Technical debt is a concept in programming that reflects

the extra development work that arises when code that is

easy to implement in the short run is used instead of

applying the best overall solution. Technical debt is

commonly associated with extreme programming,

especially in the context of refactoring. That is, it implies

that restructuring existing code (refactoring) is required as

part of the development process. Under this line of

thinking refactoring is not only a result of poorly written

code, but is also done based on an evolving understanding

of a problem and the best way to solve that problem.

Technical debt may also be known as design debt.

The analogy is appropriate inspector often make mindful

opinions to deliver new business functionality as early as

possible. As with financial debt, they assess the perks of

faster time-to-market and expanded yields against the

probability of sub-optimal code. Whatever the cause,

whether it is in service of cultivating a ambitious edge or

meeting conformity requirements, technical debt will arise

whenever corners have to be chop in design, coding and

testing.

2. Types of Technical Debt

Technical debt comes in a variety of form; whenever an

application is initially designed the most significant type

comes. Often, the entire outlook of a business service is

incompletely understood at design time, so while the

design might be ideal in the initial stages of

implementation, it may not fit to the many revisions

required as the application matures. In other cases, faulty

design can be the result of a misconception between the

architects, the business and the development team. Still

another cause could be stipulation made as an agile project

evolves.

Code debt forms a number of issues into one bucket. The

most apparent is clumsily written code. This happens

primarily because of coding inexperience. Highly complex

code may work very properly, but when it is complex,

updates to it without a clear understanding of the

complexity may result in problems.

Some of the abrupt areas of technical debt come from lack

of documentation, lack of process or understanding, lack

of building loosely coupled components, lack of

collaboration, parallel development, delayed refactoring,

lack of alignment to standards, lack of knowledge and lack

of testing protocols. Code filled with these kinds of

problems becomes fragile. It hardens; making changes to

older code can be difficult without the risk that it will

break.

3. PROPERTIES OF TECHNICAL DEBT

This section analyzes the definition of technical debt. The

measuring aspects of the code are not sufficient for

evaluating technical debt. Notably the programmer’s time,

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Codebase

Pradeep kumar R S1, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2881

the ‘ideal’ of quality and the value of early delivery must

all be considered. The cost of programmer time depends

on many dimensions including organization, geography,

skill level, experience level, environment, and rarity of

skills, but for a given project and organization there is

typically a small, known, range of values. Programmer

time can readily be translated to monetary cost in a given

organization.

There are new metrics that reflect how much effort is

required in order to get a perfect score on the various axes

as shown in the figure below.

Figure 1.Technical debt metrics.

uses the following formula to calculate the debt :

Debt(in man days) = (cost for fixing duplications) + (cost

for fixing violations) + (cost for comment public API) +

(cost for fixing uncovered complexity) + (cost for bringing

complexity below threshold)

Where :

Duplications = (cost for fixing on block) * (no. of

duplicate blocks)

Violations = (cost for fixing one violation) * (mandatory

violations)

Comments = (cost for commenting one API) * (public

undocumented API)

Coverage = (cost for covering one of complexity) *

(uncovered complexity by tests) (80% of coverage is the

objective)

Complexity = (cost for splitting a method) * (function

complexity distribution >= 8) + (cost for splitting a class)

* (class complexity distribution >= 60)

It appears that a key property of technical debt is the

above-mentioned ‘ideal’ to which the software must

(eventually) conform. In a practical sense this refers to the

knowledge embedded in documents such as coding

standards, organizational policies, and design and

architecture handbooks and in the knowledge of the

developers, managers, architects, and designers working

on the project. In an abstract sense, this could be viewed a

micro economic ‘production function’ applied at a more

granular level than the usual firm level.

Measures of Technical Debt

Measurement provides the foundation of data upon which

analysis, theories, and predictions can be built. In

examining the properties of technical debt several units of

measurement have been observed. This section surveys

potential units of measure for each of these properties. The

definitions here lie in the vague middle ground between

concrete examples and general axioms, but the goal is to

identify the kinds of measures suitable for each property.

 The 'value' is defined as “the economic difference between

the system as it is and the ‘ideal’ system”, it is necessary to

account for both the expense saved and the benefit gained

by not conforming the system to its ideal. Expenses and

benefits can be expressed in currency units, but they have

different sources. The expense can be measured in terms of

human effort on the part of the organization. Benefits can

also be measured on these terms, but this does not account

for the benefit obtained by the use of the software as this

use often goes beyond the bounds of the development

organization.

This paper restricts itself to measures of debt internal to

the development organization. The primary driver of

internal costs is programmer time, which can be translated

to currency units. There are many other expense

components, including hardware, licensing, and the

support structures required for developers, managers,

executives and other employees.

4. USES OF TECHNICAL DEBT

Technical debt-like measures have been applied

to refactoring decisions, scheduling of feature

development, project and product quality

assessment, development speed, effort

estimation for development and maintenance and

resource selection. All of these uses are part of

the domain of software maintenance. Software

maintenance examines the factors involved in

making changes to software systems over time.

If metrics measure the value of technical debt,

software maintenance speaks to its impact, and

repayment.

 The ISO standard for software maintenance

characterizes maintenance as ‘corrective’,

‘preventative’, ‘adaptive’, or ‘perfective’.

Corrective maintenance is the modification of

software to correct a discovered problem after its

release. Preventative maintenance is the

modification of software after its release to

prevent a problem from occurring. Adaptive

maintenance is the modification of software to

allow it to conform to changes in its hardware or

software environment. Perfective maintenance is

the modification of software to correct latent

faults, whether they affect program behavior,

documentation or maintainability.

This framework calls for the creation of a

“technical debt item” record for each discovered

piece of technical debt. Each item is assigned a

description, a date recorded, a person

responsible, a component location, and a type,

which reflects the project phase the debt, is

incurred in. Each item has attributes of principal,

interest amount and interest probability assigned

an ordinal value of ‘low’, ‘medium’, and ‘high’

to reflect a coarse-grained notion of the item’s

debt impact. These estimated values are then

refined through the use of historical data from

the organization and the project as it proceeds.

The goal of the framework is to support project-

level decision-making, to provide reference data

for future projects, and to validate the proposed

framework.

Pradeep kumar R S1, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2882

5. LIMITATIONS

The papers examined are a tiny proportion of the

papers published on the topics of software

quality, maintenance, cost estimation, and

software metrics. Even within the span of the

papers surveyed there is too wide arrange of

dimensions, metrics, and values across too wide

a span of concerns to be hopeful of being

precise. While the aim of the paper is to serve as

an introduction to the literature around technical

debt, this cannot hope to be a thorough survey of

the field, given the wide range of topics

addressed.

6. Conclusion

During the course of this paper, we discussed

that the part of continuous service and process

improvement, it can be crucial to organize peer

review of code as well as enforcing a

development mentor program to assure carry on

knowledge transfer. Review for ways to

document code either allowing it to the

responsibility of the developer or by

accomplished using software tools. And

positively, appreciate that the small boost in time

required for a quality software project will be in

addition to pay for itself in reduced technical

debt, both principle and interest.
.

References

[1] W. Cunningham. The WyCash portfolio management

system. Addendum to the Proc. on Object-Oriented

Programming systems, languages, and applications. Pp 29-30.

1992.

[2] N. Brown et al. Managing Technical Debt in Software-

Reliant Systems, FSE Workshop on Future of Software

Engineering Research. Pp 47-52. 2011.

[3] B. W. Boehm. Software engineering economics. IEEE

Trans. Software Eng. SE-10(1), pp. 4-21. 1984.

[4] B. Kitchenham, What’s up with software metrics? – A

preliminary mapping study, Journal of Systems and Software

83(1). 2010.

[5] A. Meneely, B. Smith, and L. Williams, "Software Metrics

Validation Criteria: A Systematic Literature Review.", Trans.

on Software Engineering and Methodology, to appear

[6] A. Israeli and D. G. Feitelson. The linux kernel as a case

study in software evolution. J. Syst. Software 83(3), pp. 485-

501. 2010.

[7] M. Agrawal and K. Chari. Software effort, quality, and cycle

time a study of CMM level 5 projects. IEEE Trans. Software

Eng. 33(3), pp. 145-56. 2007.

Author Profile

Pradeep kumar R S currently pursuing M.tech in Information

Technology in R.V.College of Engineering, Bangalore.

