
 International Journal of scientific research and management (IJSRM)
 ||Volume||3||Issue||5||Pages|| 2893-2899||2015|| \
 Website: www.ijsrm.in ISSN (e): 2321-3418

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2893

Secure Overlay Cloud Storage with File Assured Deletion

Dayananda RB1 , Prof. Dr. G.Manoj Someswar2 ,T.P. Suryachandra Rao3

1. Associate Professor, Department of CSE, RRIT, Bangalore–90, Karnataka, India

2. Principal & Professor, Department of CSE, Anwar-ul-uloom College of Engineering & Technology

(Affiliated to JNTU, Hyderabad), Vikarabad – 501101, RR District, Telangana, India

3. Principal, IMS PG Centre, Uppariguda (V), Ibrahimpatnam Mandal, R. R. District, Telangana, India

Abstract: In our research paper, we present policy-based file assured deletion, the major design building block of our

FADE architecture. Our main focus is to deal with the cryptographic key operations that enable file assured deletion. We

first review time-based file assured deletion. We then explain how it can be extended to policy-based file assured deletion.

Keywords: Policy-Based File Assured Deletion, Time-Based File Assured Deletion, Data Key, Data Owner, Key Manager,

Conjunctive Policies, Disjunctive Policies, File Metadata, Policy Metadata

INTRODUCTION

Time-based file assured deletion, which is first

introduced in, means that files can be securely deleted and

remain permanently inaccessible after a predefined duration.

The main idea is that a file is encrypted with a data key, and

this data key is further encrypted with a control key that is

maintained by a separate key manager service (known as

Ephemerizer). In, the control key is time-based, meaning

that it will be completely removed by the key manager when

an expiration time is reached, where the expiration time is

specified when the file is first declared. Without the control

key, the data key and hence the data file remain encrypted

and are deemed to be inaccessible. Thus, the main security

property of file assured deletion is that even if a cloud

provider does not remove expired file copies from its

storage, those files remain encrypted and unrecoverable.[1]

Time-based file assured deletion is later prototyped

in Vanish. Vanish divides a data key into multiple key

shares, which are then stored in different nodes of a peer-to-

peer network. Nodes remove the key shares that reside in

their caches for 8 hours. If a file needs to remain accessible

after 8 hours, then the file owner needs to update the key

shares in node caches.

However, both and target only the assured deletion

upon time expiration, and do not consider a more fine-

grained control of assured deletion with respect to different

file access policies.

Policy-based Deletion

We associate each file with a single atomic file

access policy (or policy for short), or more generally, a

Boolean combination of atomic policies. Each (atomic)

policy is associated with a control key, and all the control

keys are maintained by the key manager. Similar to time-

based deletion, the file content is encrypted with a data key,

and the data key is further encrypted with the control keys

corresponding to the policy combination. When a policy is

revoked, the corresponding control key will be removed

from the key manager.[2] Thus, when the policy

combination associated with a file is revoked and no longer

holds, the data key and hence the encrypted content of the

file cannot be recovered with the control keys of the

policies. In this case, we say the file is deleted. The main

idea of policy-based deletion is to delete files that are

associated with revoked policies.

The definitions of policies vary depending on

applications. Time-based deletion is a special case under our

framework, and policies with other access rights can be

defined. To motivate the use of policy-based deletion, let us

consider a scenario where a company outsources its data to

the cloud. We consider four practical cases where policy-

based deletion will be useful:

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2894

 Storing files for tenured employees. For each

employee (e.g., Alice), we can define a user-based policy

“P: Alice is an employee”, and associate this policy with all

files of Alice. If Alice quits her job, then the key manager

will expunge the control key of policy P. Thus, nobody

including Alice can access the files associated with P on the

cloud, and those files are said to be deleted.[3]

 Storing files for contract-based employees. An

employee may be affiliated with the company for only a

fixed length of time. Then we can form a combination of the

user-based and time-based policies for employees’ files. For

example, for a contract-based employee Bob whose contract

expires on 2010- 01-01, we have two policies “P1: Bob is an

employee” and “P2: valid before 2010-01-01”. Then all files

of Bob are associated with the policy combination P1  P2.

If either P1 or P2 is revoked, then Bob’s files are deleted.

 Storing files for a team of employees. The

company may have different teams, each of which has more

than one employee. As in above, we can assign each

employee i a policy combination , where Pi1 and

Pi2 denote the user-based and time-based policies,

respectively. We then associate the team’s files with the

disjunctive combination

 for employees

1, 2,..., N. Thus, the team’s files can be accessed by any one

of the employees, and will be deleted when the policies of

all employees of the team are revoked.[4]

 Switching a cloud provider. The company can

define a customer-based policy “P: a customer of cloud

provider X”, and all files that are stored on cloud X are tied

with policy P. If the company switches to a new cloud

provider, then it can revoke policy P. Thus, all files on cloud

X will be deleted.

Policy-based deletion follows the similar notion of

attribute-based encryption (ABE) in which data can be

accessed only if a subset of attributes (policies) are satisfied.

[5]However, our work is different from ABE in two aspects.

First, we focus on how to delete data, while ABE focuses on

how to access data based on attributes. Second, because of

the different design objectives, ABE gives users the

decryption keys of the associated attributes, so that they can

access files that satisfy the attributes. On the other hand, in

policy-based deletion, we do not share with users any

decryption keys of policies, which instead are all maintained

in the key manager. Our focus is to appropriately remove

keys in the key manager so as to guarantee file assured

deletion, which is an important security property when we

outsource data storage to the cloud. This guides us into a

different design space in contrast with existing ABE

approaches.

DESIGN AND IMPLEMENTATION

Our system is composed of three participants: the

data owner, the key manager, and the storage cloud. They

are described as follows.

Data owner. The data owner is the entity that

originates file data to be stored on the cloud. It may be a file

system of a PC, a user-level program, a mobile device, or

even in the form of a plug-in of a client application.

Key manager. The key manager maintains the

policy-based control keys that are used to encrypt data keys.

It responds to the data owner’s requests by performing

encryption, decryption, renewal, and revocation to the

control keys.

Storage cloud. The storage cloud is maintained by

a third-party cloud provider (e.g., Amazon S3) and keeps the

data on behalf of the data owner. We emphasize that we do

not require any protocol and implementation changes on the

storage cloud to support our system. Even a naive storage

service that merely provides file upload/download

operations will be suitable.

Threat Models and Assumptions

Our main design goal is to provide assured deletion

of files produced by the data owner. A file is deleted (or

permanently inaccessible) if its policy is revoked and

becomes obsolete. Here, we assume that the control key

associated with a revoked policy is reliably removed by the

key manager.[6] Thus, by assured deletion of files, we mean

that any existing file copy that are associated with revoked

policies will remain permanently encrypted and

unrecoverable.

The key manager can be deployed as a minimally

trusted third-party service. By minimally trusted, we mean

that the key manager reliably removes the control keys of

revoked policies. However, it is possible that the key

manager can be compromised. In this case, an attacker can

recover the files that are associated with existing active

policies. On the other hand, files that are associated with

revoked policies still remain inaccessible, as the control

keys are removed. Hence, file assured deletion is achieved.

It is still important to improve the robustness of the

key manager service to minimize its chance of being

compromised. To achieve this, we can use a quorum of key

managers, in which we create n key shares for a key, such

that any k < n of the key shares can be used to recover the

key. While the quorum scheme increases the storage

overhead of keys, this is justified as keys are of much

smaller size than data files.

Before accessing the active keys in the key

manager, the data owner needs to present authentication

credentials (e.g., based on public key infrastructure

certificates) to the key manager to show that it satisfies the

proper policies associated with the files. We assume that the

data owner does not disclose any successfully decrypted file

to unauthorized parties.

The Basics - File Upload/Download

We now introduce the basics of

uploading/downloading files to/from the cloud storage. We

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2895

first assume that each file is associated with a single policy,

and then explain how a file is associated with multiple

policies.

Our design is based on blinded RSA in which the

data owner requests the key manager to decrypt a blinded

version of the encrypted data key. If the associated policy is

satisfied, then the key manager will decrypt and return the

blinded version of the original data key. The data owner can

then recover the data key. In this way, the actual content of

the data key remains confidential to the key manager as well

as to any attacker that sniffs the communication between the

data owner and the key manager.

We first summarize the major notation used

throughout the paper. For each policy i, the key manager

generates two secret large RSA prime numbers pi and qi and

computes the product ni = piqi1. The key manager then

randomly chooses the RSA public-private control key pair

(ei, di). The parameters (ni, ei) will be publicized, while di is

securely stored in the key manager.[7] On the other hand,

when the data owner encrypts a file F, it randomly generates

a data key K, and a secret key Si that corresponds to policy

Pi. We let {m}k denote a message m encrypted with key k

using symmetric-key encryption (e.g., AES). We let R be the

blinded component when we use blinded RSA for the

exchanges of cryptographic keys.

Suppose that F is associated with policy Pi. Our

goal here is to ensure that K, and hence F, are accessible

only when policy Pi is satisfied. Note that we only present

the operations on cryptographic keys, while the

implementation subtleties, such as metadata, will be

discussed in Section 3. Also, when we raise some number to

exponents ei or di, it must be done over modulo ni. For

brevity, we drop “mod ni” in our discussion.

File upload. Figure 1 shows the file upload

operation. The data owner first requests the public key (ni,

ei) of policy Pi from the key manager, and caches (ni, ei) for

subsequent uses if the same policy Pi is associated with

other files. Then the data owner generates two random keys

K and Si, and sends {K}Si, 5?% and {F}K to the cloud2. Then

the data owner can discard K and Si.

File download. Figure 2 shows the file download

operation. The data owner fetches , and {F}K

from the storage cloud. Then the data owner generates a

secret random number R, computes Rei, and sends
 to the key manager to request for

decryption. The key manager then computes and returns

 to the data owner. The data owner

can now remove R and obtain Si, and decrypt {K}Si and

hence {F}K.

Integrity. To protect the integrity of a file, the data

owner needs to compute an HMAC on every encrypted file

and stores the HMAC, together with the encrypted file, in

the cloud storage. When a file is downloaded, the data

owner will check whether the HMAC is valid before

decrypting the file. We assume that the data owner has a

long-term private secret for the HMAC computation.

Policy Revocation for File Assured Deletion

If a policy Pi is revoked, then the key manager

completely removes the private key di and the secret prime

numbers pi and qi. Thus, we cannot recover Si from ,

and hence cannot recover K and the file F. We say that the

file F, which is tied to policy Pi, is assuredly deleted. Note

that the policy revocation operations do not involve

interactions with the storage cloud.[8]

Multiple Policies

In addition to one policy per file, FADE supports a

Boolean combination of multiple policies. We mainly focus

on two kinds of logical connectives: (i) the conjunction

(AND), which means the data is accessible only when every

policy is satisfied; and (ii) the disjunction (OR), which

means if any policy is satisfied, then the data is accessible.

- Conjunctive Policies. Suppose that F is

associated with conjunctive policies .

To upload F to the storage cloud, the data owner first

randomly generates a data key K, and secret keys S1,

S2,...,Sm. It then sends the following to the storage cloud:

 and {F}K. On the

other hand, to recover F, the data owner generates a random

number R and sends to

the key manager, which then returns S1R, S2R,..., SmR. The

data owner can then recover S1, S2,..., Sm, and hence K and

F.

Disjunctive Policies. Suppose that F is associated

with disjunctive policies . To upload

F to the cloud, the data owner will send the following:

,

Smem, and {F}K. Therefore, the data owner needs to

compute m different encrypted copies of K. On the other

hand, to recover F, we can use any one of the policies to

decrypt the file, as in the above operations.[9]

To delete a file associated with conjunctive

policies, we simply revoke any of the policies (say, Pj).

Thus, we cannot recover Sj and hence the data key K and file

F. On the other hand, to delete a file associated with

disjunctive policies, we need to revoke all policies, so that

 cannot be recovered for all j. Note that for any Boolean

combination of policies, we can express it in canonical form,

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2896

e.g., in the disjunction (OR) of conjunctive (AND)

policies.[10]

Policy Renewal

We conclude this section with the discussion of

policy renewal. Policy renewal means to associate a file

with a new policy (or combination of policies). For example,

if a user wants to extend the expiration time of a file, then

the user can update the old policy that specifies an earlier

expiration time to the new policy that specifies a later

expiration time. However, to guarantee file assured deletion,

policy renewal can be performed only when the following

condition holds: the old policy will always be revoked first

before the new policy is revoked. The reason is that after

policy renewal, there will be two versions of a file: one is

protected with the old policy, and one is protected with the

new policy. If the new policy is revoked first, then the file

version that is protected with the old policy may still be

accessible when the control keys of the old policy are

compromised, meaning that the file is not assuredly deleted.

It is important to note that it is a non-trivial task to

enforce the condition of policy renewal, as the old policy

may be associated with other existing files. In this research

paper, we do not consider this issue and we pose it as future

work.

Suppose that we have enforced the condition of

policy renewal. A straightforward approach of implementing

policy renewal is to combine the file upload and download

operations, but without retrieving the encrypted file from the

cloud.[11] The procedures can be summarized as follows: (i)

download all encrypted keys from the storage cloud, (ii)

send them to the key manager for decryption, (iii) recover

the data key, (iv) re-encrypt the data key with the control

keys of the new policies, and finally (v) send the newly

encrypted keys back to the cloud.

In some special cases, optimization can be made so

as to save the operations of decrypting and re-encrypting the

data key. Suppose that the Boolean combination structure of

policies remain unchanged, but one of the atomic policies Pi

is changed . For example, when we extend the contract

date of Bob (see Section 2.2), we may need to update the

particular time-based policy of Bob without changing other

policies. In this case, the data owner simply sends the

blinded version to the key manager, which then

returns SiR. The data owner then recovers Si. Now, the data

owner re-encrypts Si into (mod), where

 is the public key of policy , and sends it to

the cloud. Note that the encrypted data key K remains intact.

Figure 3 illustrates this special case of policy renewal.

 Figure 3: Policy renewal

THE FADE ARCHITECTURE

We implement a working prototype of FADE using

C++ on Linux, and we use the OpenSSL library for the

cryptographic operations. In addition, we use Amazon S3 as

our storage cloud. This section is to address the

implementation issues of our FADE architecture, based on

our experience in prototyping FADE. Our goal is to show

the practicality of FADE when it is deployed with today’s

cloud storage services.

Figure 4 shows the FADE architecture. In the

following, we define the metadata of FADE attached to

individual files. We then describe how we implement the

data owner and the key manager, and how the data owner

interacts with the storage cloud.

Representation of Metadata

For each file protected by FADE, we include the

metadata that describes the policies associated with the file

as well as a set of encrypted keys. In FADE, there are two

types of metadata: file metadata and policy metadata.

File metadata. The file metadata mainly contains

two pieces of information: file size and HMAC. We hash the

encrypted file with HMAC-SHA1 for integrity checking.

The file metadata is of fixed size (with 8 bytes of file size

and 20 bytes of HMAC) and attached at the beginning of the

encrypted file. Both the file metadata and the encrypted data

file will then be treated as a single file to be uploaded to the

storage cloud.

Figure 4: The FADE architecture

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2897

Policy metadata. The policy metadata includes the

specification of the Boolean combination of policies and the

corresponding encrypted cryptographic keys. Here, we

assume that each single policy is specified by a unique 4-

byte integer identifier. To represent a Boolean combination

of policies, we express it in disjunctive canonical form, i.e.,

the disjunction (OR) of conjunctive policies, and use the

characters ‘*’ and ‘+’ to denote the AND and OR

operators. Then we upload the policy metadata as a separate

file to the storage cloud. This enables us to renew policies

directly on the policy metadata without retrieving the entire

file from the storage cloud.

In our implementation, individual files have their

own policy metadata, although we allow multiple files to be

associated with the same policy (which is the expected

behavior of FADE). In other words, for two data files that

are under the same policy, they will have different policy

metadata files that specify different data keys, and the data

keys are protected by the control key of the same policy. In

this research paper, we discuss how we may associate the

same policy metadata file with multiple data files so as to

reduce the metadata overhead.

Data Owner and Storage Cloud

Our implementation of the data owner uses the

following four function calls to enable end users to interact

with the storage cloud:

- Upload (file, policy). The data owner encrypts

the input file using the specified policy (or a Boolean

combination of policies). It then sends the encrypted file and

the metadata onto the cloud. [12] In our implementation, the

file is encrypted using the 128-bit AES algorithm with the

cipher block chaining (CBC) mode, yet we can adopt a

different symmetric-key encryption algorithm depending on

applications.

- Download(file). The data owner retrieves the

file and the policy metadata from the cloud, checks the

integrity of the file, and decrypts the file.

- Delete (policy). The data owner tells the key

manager to permanently revoke the specified policy. All

files associated with the policy will be assuredly deleted.

- Renew (file, new policy). The data owner first

fetches the policy metadata for the given file from the cloud.

It then updates the policy metadata with the new policy.

Finally, it sends the policy metadata back to the cloud.

The above function calls can be exported as library

APIs that can be embedded into different implementations

of the data owner. In our current prototype, we implement

the data owner as a user-level program that can access files

under a working directory of a desktop PC.

The above exported interfaces wrap the third-party

APIs for interacting with the storage cloud. As an example,

we use LibAWS++, a C++ library for interfacing with

Amazon S3. We note that the LibAWS++ library uses

HTTP to communicate with the cloud, and it does not

provide any security protection on the data being

transferred. To interact with different cloud storage services,

we can use different third-party APIs, provided that the

APIs support the basic file upload/download operations.

Key Manager

We implement the key manager that supports the

following four basic functions.

- Creating a policy. The key manager creates a

new policy and returns the corresponding public control key.

- Retrieving the public control key of a policy. If

the policy is accessible, then the key manager returns the

public control key. Otherwise, it returns an error.[13]

- Decrypting a key with respect to a policy. If the

policy is accessible, then the key manager decrypts the

(blinded) key. Otherwise, it returns an error.

- Revoking a policy. The key manager revokes the

policy and removes the corresponding keys.

We implement the basic functionalities of the key

manager so that it can perform the required operations on

the cryptographic keys. In particular, all the policy control

keys are built upon 1024-bit blinded RSA. To make the key

manager more robust, we can extend the key manager to a

quorum of key managers as stated in and implement a PKI-

based certification system for policy checking.

Evaluation

We implement a prototype of FADE atop Amazon

S3, and we now evaluate the empirical performance of

FADE. It is crucial that FADE does not introduce

substantial performance overhead that will lead to a big

increase in data management costs. In addition, the

cryptographic operations of FADE should only bring

insignificant computational overhead. Therefore, our

experiments aim to answer the following issue: What is the

performance overhead of FADE, and is it feasible to use

FADE to provide file assured deletion for cloud storage?

Our experiments use Amazon S3, residing in the

United States, as the storage cloud. Also, we deploy the data

owner and the key manager within an organization’s

network that resides in an Asian country. In the experiments,

we evaluate FADE when it operates on an individual file of

different sizes: 1KB, 10KB, 100KB, 1MB, and 10MB.

EXPERIMENTAL RESULTS & CONCLUSION

ON TIME PERFORMANCE OF FADE

We now measure the time performance of FADE

using our prototype. In order to identify the time overhead

of FADE, we divide the running time of each measurement

into three components:

- data transmission time, the data uploading/

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2898

downloading time between the data owner and the storage

cloud. We further divide it into two components: the file

component, which measures the transmission time for the

file body and the file metadata, and the policy component,

which measures the transmission time for the policy

metadata. We upload/download these two components as

two separate copies to/from the storage cloud.

- AES and HMAC time, the total computational

time used for performing AES and HMAC on the file.

- Key management time, the time for the data

owner to coordinate with the key manager on operating the

cryptographic keys. For the file upload operation, we require

the data owner to obtain the public control key for the

corresponding policy; for the download operation, the data

owner works with the key manager to obtain the data key.

We average each of our measurement results over

10 different trials.

Experiment 1 (Performance of file upload/download

operations)

First, we measure the running time of the file

upload and download operations for different file sizes.

Table 1 shows the results. We find that the transmission

time is the dominant factor (over 99%). The AES and

HMAC time increases linearly with the file size. However,

the key management time stays constant on the order of

milliseconds, regardless of the file size. In other words,

compared with the basic encryption and integrity check

provided by AES and HMAC, FADE only involves a small

time overhead in key management.

We note that when the file size is small, the

transmission time for the policy metadata is comparable

with the transmission time for the file. To understand this,

we capture and analyze the data traffic, and find that the

round-trip time between our network (in Asia) and Amazon

S3 (in the United States) is 200-300 milliseconds. Because

the file and the policy metadata are stored on the cloud as

two separate copies, they are transferred through two

different TCP connections, and a significant portion of data

transmission time is actually due to the TCP connection

setup. In this research paper, we will show that the actual

number of bytes stored for the policy metadata is in fact

much less than that for the file.

Experiment 2 (Performance of policy updates).

Table 2 shows the time used for renewing a single policy of

a file in which we update the policy metadata on the storage

cloud with the new set of cryptographic keys. Our

experiments show that the total time is generally small (less

than a second) regardless of the file size, as we operate on

the policy metadata only. Also, the key management time

only takes about 0.004s in renewing a policy, and this value

is again independent of the file size.

Table 1: Experiment 1 (Performance of

upload/download operations)

Table 2: Experiment 2 (Performance of policy

updates). We do not show the AES+HMAC time as

it is not involved in policy renewal

Experiment 3 (Performance of multiple

policies). We now evaluate the performance of FADE when

multiple policies are associated with a file. Here, we focus

on the file upload operation, and fix the file size at 1MB.

We look at two specific combinations of policies, one on the

conjunctive case and one on the disjunctive case.

Table 1 shows different components of time for

different numbers of conjunctive policies, and Table 2

shows the case for disjunctive policies. A key observation is

that the AES and HMAC and the key management time

remain very low (on the order of milliseconds) when the

number of policies increases.

Table 3: Experiment 3 (Performance of multiple

policies)

Dayananda RB1 IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2899

Table 4: Size of the policy metadata

Space Utilization of FADE

We now assess the space utilization. In our

research work, there are file metadata and policy metadata

for each file, and this metadata information is the space

overhead introduced by FADE. For the file metadata, it is

always fixed at 28 bytes. On the other hand, for the policy

metadata, its size differs with the number of policies. For

instance, we need 128 bytes for the policy-based secret key

 for some policy i. The size of an encrypted copy of K

is 16 bytes, and this size increases with the number of terms

in the case of disjunctive (OR) policies. Table 4 shows the

different sizes of the policy metadata based on our

implementation prototype for a variable number of (a)

conjunctive policies , and (b)

disjunctive policies . For instance,

if the file size is 1MB and there is only one policy, then the

size of the file metadata is 28 bytes and the policy metadata

is 149 bytes, and hence the space overhead is 0.017%.

References

[1] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

“Enabling public verifiabil-ity and data dynamics

for storage security in cloud computing,” in Proc. of

ESORICS ‘09, 2009.

[2] L. Youseff, M. Butrico, and D. D. Silva, “Toward a

unified ontology of cloud computing,” in Proc. of

GCE’08, 2008.

[3] A. Yun, C. Shi, and Y. Kim. On Protecting Integrity

and Confidentiality of Cryp tographic File System

for Outsourced Storage. In A CM Cloud Computing

Security Workshop (CCSW), Nov 2009

[4] W. Wang, Z. Li, R. Owens, and B. Bhargava.

Secure and Efficient Access to Outsourced Data. In

ACM Cloud Computing Security Workshop

(CCSW), Nov 2009.

[5] M. Vrable, S. Savage, and G. M. Voelker. Cumulus:

Filesystem backup to the cloud. ACM Trans. on

Storage (ToS), 5(4), Dec 2009.

[6] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-

preserving public auditing for storage security in

cloud computing. In Proc. of IEEE INFOCOM, Mar

2010.

[7] S. Kamara and K. Lauter. Cryptographic Cloud

Storage. In Proc. of Financial Cryptography:

Workshop on Real-Life Cryptographic Protocols

and Standardiza tion, 2010.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia. Above the

Clouds: A Berkeley View of Cloud Computing.

Technical Report UCB/EECS-2009-28, EECS

Department, University of California, Berkeley, Feb

2009.

[9] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and

M. Lindner, A Break in the Clouds: Towards a

Cloud Definition, Proc. ACM SIGCOMM

Computer Communication Review, 39(1), Jan

2009, pp. 50-55.

[10] S. Kamara, and K. Lauter, “Cryptographic Cloud

Storage,” in Proc. Of Financial Cryptography:

Workshop on real life cryptographic protocolsand

standardization, 2010, fromhttp://research.

microsoft.com/pubs/112576/cry pto-cloud.pdf

[11] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving

Secure, Scalable,and Fine-grained Data Access

Control in Cloud Computing,” in Proc.of IEEE

INFOCOM 2010, 2010.

[12] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving

secure, scalable, and fine-grained data access

control in cloud computing. In Proceedings of the

IEEE International Conference on Computer

Communications (IN-FOCOM), pages 534-542,

2010.

[13] G. Wang, Q. Liu, and J. Wu. Achieving fine-

grained access control for secure data sharing on

cloud servers. Concurrency and Computation:

Practice and Experience, 23(12):1443-1464, 2011.

