
 International Journal of scientific research and management (IJSRM)
 ||Volume||3||Issue||5||Pages|| 2903-2909||2015|| \
 Website: www.ijsrm.in ISSN (e): 2321-3418

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2903

Managing Inconsistencies In Software Design Model
1Sadia Sahar, 2Tasleem Mustafa, 3Farnaz Usman, 4Farnaz Usman, 5Aasma Khalid, 6Sidra Hafiz, 7Nadia

Aslam

1,2,3,4,5,6,7Dept. of Computer Science
University of Agriculture

Faisalabad,
Pakistan

sadiasahar@ymail.com
tasleemustafa@hotmail.com
Shusman123go@yahoo.com
Aasmakhalid89@yahoo.com
pinkdreamflower@gmail.com

Nadiaaslam_7@yahoo.com

Abstract—Design is becoming the important phase of software development because of the demand of quality and complexity of

software. One of the greatest challenges to the software engineers and researchers is to identify and resolve the inconsistencies; they meet

during a system’s design. If inconsistencies are detected earlier the design phase, mostly problems that might occur during the last stage

of software development, can be avoided. Inconsistency is the violation of the rules of software development, the rules must be clearly

defined so that one can easily detect the inconsistency and adopt a better solution to resolve it. This research gives a four step inconsistency

resolving strategy i.e., to know what the model is? ; To give proper consistency rules in the model?; to explore how the inconsistency

happens? and to proposed an effective solution to remove these inconsistencies. The first and second steps include formation of consistency

rules using. The rules are applied in the design phase and then classified different violation of these consistency rules by knowing how

they can happen. A frame based Inconsistency Management System (FIMS) has been developed that analyse different inconsistencies in

the class and the sequence diagram of UML. It also gives a proper solution to handle these inconsistencies.

Keywords-component; software design; consistency;

inconsistency; UML

I. INTRODUCTION

Software system is gaining hold on greater part of our socio-

economical activities. It is enhancing the functioning of all

aspects of our society; May it be a grocery store, building

designing architecture, vehicle manufacturing,

communication technology, online commerce and banking,

local administration and defence even in all aspects of

society. The software systems become critical to all of them.

Day to day increasing demands for software system to ease

working of every field of life is giving growth to growth to

many functional requirements as shortage of time to market

the stuff, friendly user interface, seamless operating

environment and so on. This is leading to increase the

complexity of software development (Olsan and Grundy,

2001). To master this complexity software engineer build and

employed well defined development process such as waterfall

model and spiral model (Boehm, 1988). The developers

tackle software problems in four main phases. These are

typically identified as Requirement elicitation and analysis,

Architectural and detail design, Implementation and Testing

(Ibrahim et al., 2011). But in development process a large

number of different descriptions are used by software

engineers. These descriptions include different analysis

modes, design, specification, program codes, user guides,

style guides, test plans, change requests, schedules and

process models (Jackson, 1995).

Design is becoming the important phase of software

development process due to demand of quality and

complexity of software (Zaretska et al, 2012). The industries

are trying to search out the techniques which automatically

produce software and can also improve quality with reduction

of cost and time-to-market. These techniques include

component technology, visual programming, patterns and

frameworks. The increase in demands of software and its

quality lead the complexity of software further enhance the

scope of project and hence the time. Organizations also

inquire about techniques to manage the complexity of

systems. They also need to solve physical allocation,

concurrency, duplication, safety problem, load balancing and

fault tolerance. The Unified Modelling Language (UML) is

the best design based solution to counter these needs

(Larman, 2004).

UML is de facto standard for modelling languages used

for software design (Zaretska et al., 2012). Most of the

software design consists of thousands UML models so a

greater chance of inconsistency between software design is

present. As Inconsistency is the violation of rules or

relationship that must be obeyed by different description in

software development process (Nuseibeh et al., 2001), the

rules must be clearly defined so that one can easily detect the

inconsistencies in his software design and can propose a

better solution to resolve them. In this paper emphasis is made

on the types of inconsistency and the consistency rules.

II. RELATED WORK

mailto:sadiasahar@ymail.com
mailto:tasleemustafa@hotmail.com
mailto:Shusman123go@yahoo.com
mailto:Aasmakhalid89@yahoo.com
mailto:pinkdreamflower@gmail.com
mailto:Nadiaaslam_7@yahoo.com

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2904

(Nuseibeh et al., 2001) also proposed a model for inconsistency

management. He just suggested the model that is analyse

inconsistency, classify them, detect them and then resolve these

detected inconsistencies.

(Liu et al.,2002)proposed a rule based expert system that

detects inconsistency between UML diagrams. In a rule-based

expert system, the inference engine links the rules contained in the

knowledge base with data given in the database. When the goal is

set up, the inference engine searches the knowledge base to find a

rule that has the goal in its consequent. If such a rule is found and

its IF part matches data in the database, the rule is fired and the

specified object, the goal, obtains its value. If no rules are found

that can derive a value for the goal, the system queries the user to

supply that value. Rules are overlap so difficult to add or remove

rules in rule based schema. If two or more rules are active at the

same time then it is difficult to decide which one to execute next?

In FIMS Frames represent here a major source of knowledge, and

both methods and demons are used to add actions to the frames.

 (Kotb and Katayama, 2005) worked on inconsistency

detection between UML diagrams by using XML language. This

approach does not give the way to represent information about

UML model in XML. It also does not describe how to check the

xml file. FIMS covers both of these deficiencies.

(Alanazi and Gustafson, 2008) also made a research on

inconsistency management in UML diagram. His work is based on

just state diagram while the proposed work analyse the

inconsistencies between all two UML diagrams class and sequence

diagrams and also gives a list of common insistencies that can be

present in all diagrams of UML language.

(Ibrahim et al. 2011) also analysed inconsistencies between

UML diagrams. He used activity diagram and Use Case diagram

for this purpose. He used Object constraint Language that to

describe consistency rules that has less expressive power than

Alloy language. Moreover He built three rules between these two

diagrams while this work detects eleven consistency rules based on

all two important diagrams i.e., class and sequence diagrams.

Another work is done by (Streaten and Brussel, 2011) on

defining consistency rules between all these UML representations.

But they just define the rules not suggested the solution to resolve

them. In contrast this research not just describes different rules but

also proposed the solution to manage inconsistencies.

(Peter and Zaidman, 2012) worked on the design

inconsistencies that effects on code. He developed a tool to assess

these inconsistencies but his tool just accepts java code.

III. MATERIALS AND METHODS

Most of the software design consists of thousands design

model so a greater chance of inconsistency between software

design is present. For a trustworthy software system it is very

important to handle these inconsistencies present in different

design model. So our goal is to build up an environment to

handle inconsistencies in UML model that are for design

phase of software development. I have proposed four steps to

handle inconsistencies in any model used in design phase of

software development. These steps are:

Step 1: Know what the model is?

Step 2: Know what are consistency rules in that model?

Step 3: Know how inconsistency happens?

Step 4: Proposed an effective solution to overcome these

inconsistencies.

 By following these steps we can find out inconsistencies

present in any modelling language. I used Unified Modelling

Language (UML) for this purpose.

3.1 Step 1: Know what the model is?

In the first we must know about the model in which we

want to remove inconsistencies. We must know; what is that

model; what are different principals to build up these models

and what are different notations etc. Here I used UML model.

3.2 Step 2: Know what are consistency rules in that

model?

We must know about the consistency rules that can be

applied on the selected model. Some of consistencies rules

present in UML model are as follows:

Use case diagram is not used in design phase of software

development (Jacobson, 1994) so I did not include it into my

research work. Each rule is defined in Alloy format.

Rule 1: Operations and attribute present in class must

have data type (Liu et al., 2002).

Rule 2: Abstract class used in class diagram must have at-

least one concrete class that must have implementation of it

(Streaten and Brussel, 2011).

Rule 3: Object diagram has same classes as mentioned in

the class diagram

Rule 4: A method in a class cannot have more than one

return attribute (Streaten and Brussel, 2011).

Rule 5: Class uses in sequence diagram must be present

in class diagram (Liu, 2002).

Some other rules are defined by (Sahar et al., 2014).

3.3 Step 3: Know how inconsistency happens?

When the above rules are violated it will be an

inconsistency. Inconsistency can be intra-inconsistency,

within a single UML model, or ultra-inconsistency, between

two or more UML models. Inconsistencies can be classified

as

1. Dualistic Inconsistency

2. Type Inconsistency

3. Navigational Inconsistency

4. Relational Inconsistency

5. Domain inconsistency

6. Missing object

Detail of all these types is explained by (Sahar et

al., 2014).

4: Proposed an effective solution to overcome these

inconsistencies

Nuseibeh proposed a framework for inconsistency

management which is widely used for handling

inconsistencies. Main activities of this framework are as

follows:

1. Measure the inconsistencies by locating,

identifying and classifying them.

2. Analyze the impact of inconsistencies on

the software process

3. Resolution of detecting inconsistencies

4. Monitor the consequence of handling

action

All researches are based on these three steps involved in

model consistency management (Ibrahim, 2011). Some are

for measuring inconsistencies; some are for analysing the

impact of those inconsistencies. I have proposed a model that

is based on detecting and resolving inconsistencies at real

time.

3.4.1 FIMS: Frame-based Inconsistency Management

System

For detecting and resolving inconsistencies I proposed a

Frame based model called FIMS. This model contains four

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2905

parts i.e. UML Editor, FBE, FIMS detector and FIMS

Resolver.

 Following figure explains the whole scenario of the

proposed model. At first step the user draws UML models in

UML editor. The models enter the Frame based environment

where they are separated into different frames. These frames

then pass through FIMS detector that detects inconsistencies

by using information provided by frames. These detected

inconsistencies are resolved by the last part of the proposed

model, i.e., FIMS Resolver.

Fig 3.1: Frame based Inconsistency management system

3.4.1.1 UML Editor

UML Editor is the first part of FIMS. The user can

communicate through this part to the whole system. It

provides the interface for user to draw UML diagrams.

3.4.1.2 FBE (Frame Based Environment):

The second part of the FIMS model is FBE (Frame Based

Environment). When a model is drawn in the FIMS it goes to

FBE. Basic job of this component is to process UML model

and keep information about different models in different

frames. Each frame can be presented by a table, class, xml or

any other format. For example when a user enters a class

diagram in FIMS, the FBE puts class information in one place

and information about their association in other place.

This information is now sent to the second part of FIMS

that is FIMS Detector. This part is based on different

conditions to detect different type of inconsistencies.

3.4.1.2 FIMS Detector:

Here I defined some daemons (patterns or conditions) to

detect inconsistencies. These conditions have been written as:

IF Condition THEN show message

“Condition” is actually the pattern which is used to detect

inconsistencies and the “show message” shows

inconsistencies present in the model. If the pattern gets

matched or condition becomes true then an inconsistency is

present in the observed model and an appropriate message is

shown to inform the user about the inconsistency.

Example 1: if two classes have the same name in a class

diagram, it can be detected as

If class1.name =class2.name

 Then

 Show inconsistency present in particular

model

End If

In this rule name inconsistency is detected. When the

name of two different classes is matched then it will be an

inconsistency.

Example 2: In this example FIMS detects missing object

inconsistency in sequence diagram as:

If Seq_class.name present in class frame

 Then no inconsistency

Else missing object inconsistency

3.4.1.3 FIMS Resolver:

The last phase of the framework is to resolve

inconsistencies by using two methods

1. When changed method

2. When needed method

“When changed” method is applied when the relevant

value of slot is changed and “When needed” method is used

when a particular information is needed

Example:

In sequence diagram, if user draws a message directed

from class1 to class2 the “when needed” method is applied

to populate combo-box with methods of class1.

3.5 Implementation

For implementing this model I developed a tool named

“FIMS” by using CSharp.net. It covers all of the four parts of

the proposed model i.e.,

1. Provide UML Editor

2. FBE

3. Inconsistency Detector

4. Inconsistency Resolver

In UML Editor User can draw two types of diagrams that

is class and sequence diagrams. XML language is used in

frame based environment to keep information about UML

models in different frames. Inconsistency detectors and

resolver are developed in CSharp.net framework. FIMS can

detect different inconsistencies in class and sequence

diagrams.

IV. RESULTS

The objective of my work is the detection and resolution of

inconsistencies in different UML design models. In this I have

suggested four steps to overcome inconsistencies in design models.

This thesis explores what actually the model is. It thoroughly

describes each step to build up different models in Unified

Modelling Language (UML).

The work also explains almost all consistency rules that

must be hold in different UML representations. Alloy

language is used to express these consistency rules. It is easy

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2906

to read and understandable for both experts and non-experts.

It also has very strong expressive power to explain different

situation.

Proposed solution also presents different classification of

inconsistencies. Inconsistencies also categorized according to

their nature. I categorized these inconsistencies into six

different types that are dualistic, type, missing object, rapport,

navigational and domain with examples.

Frame Based Inconsistency management system (FIMS)

deals with different types of inconsistencies. According to

this technique each UML diagram will be converted into

different frames. Different daemons and methods are applied

on these frames to detect and resolve different inconsistencies

present in UML diagrams.

To implement the framework, I have developed a tool in

C#.Net. This tool covers all of the four parts of proposed

model discussed in chapter number three. These parts are as

follows:

1. UML Editor

2. FBE

3. FIMS Detector

4. FIMS Resolver

4.1.1 UML Editor

This provides an interface for real time drawing of UML

diagrams. It covers two types of diagrams i.e., class diagram

and sequence diagram. It provides a main page by which user

can draw diagrams very easily. It offers very friendly user

interface. To draw class diagram user must select class

diagram option showing in left panel of main page or

sequence diagram option for drawing sequence diagram. The

following is the picture of the page where a user can start.

Fig 4.1: Main Form of FIMS Editor

4.1.2 FBE (Frame-Based Environment)

 Basic job of this component is to process UML model

and keep information about different models in the form of frames.

For frame based environment I used extensible mark-up language

(XML). All diagrams are converted into XML files. Each frames

keeps different information about different UML diagrams. For

example if one frame has information about classes, their methods

and attribute then the other frame has information about association

between classes present in class diagram. For example if user draw

a class it create a frame like

<Class>

<name> class_name</name>

<attribute 1>attribute_value</attribute1>

: : :

<attribute

n>attribute_value</attribute n>

<operation 1> operation

_name</ operation 1>

: : :

< operation n> operation

_name</ operation n>

</class>

4.1.3 FIMS Detector

 This part of the tool detects inconsistencies

by applying demons and methods on the frames

created by FBE. Demons used IF-THEN

structure. For example if we want to check cyclic

inheritance between class1 and class2 in the class

diagram Demon can be

“IF class1 is descendent of class2 THEN

show cyclic inheritance inconsistency”

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2907

Fig 4.2: Detecting Cyclic Inheritance

If user gives same name to different classes in a class

diagram then following condition will be applied

“IF class name is present in class frame

THEN name inconsistency is present”

Fig 4.3: inconsistency detection

In the above diagram user gave same name to the two

different classes but the tools did not give the permission to do

this. This part is capable of detecting eleven inconsistencies

between class and sequence diagram. These inconsistencies

are as follows:

 Operations must have return type.

 Two classes in a class diagram cannot hold same

name

 Parameter of method in a class must has a type

 attribute present in class must have data type

 Class uses in sequence diagram must be present in

class diagram

 Operation used as message must be present in

relevant class diagram

 Two attributes in a class diagram cannot hold same

name

 Two operations in a class diagram cannot hold same

name

 Parameter of operation in sequence

diagram must be matched with operation

used in class diagram

 Navigation direction between classes must

be correct

 Cyclic inheritance in class diagram is not

allowed

4.1.3 FIMS Resolver

FIMS Editor also resolves some inconsistencies that

can be present in UML models. Two methods are used

for this purpose

◦ When changed method is applied when the

relevant value of slot is changed

◦ When needed method is used when a

particular information is needed

For example in sequence diagram, if user draw a

message directed from class1 to class2 then “WHEN

NEEDED” method is applied to populate combo-box

with methods of class1

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2908

Fig 4.4: resolving inconsistency in sequence diagram

Diagram 4.5shows that a user wants to create cyclic inheritance between two classes but the tools did allow to do so.

Fig 4.5: resolving inconsistency in class diagram

V. CONCLUSION

Design phase of software development contains different

models ranges from twenty to thousand models. When these

models integrate they become inconsistent. The goal of this

research was to make a framework that not only detect

inconsistencies in all UML diagrams but also resolve them. After

conducting the whole study it is concluded that

 It is four step solution to overcome inconsistencies

 Describes whole model step by step with its

expression.

 It covers two UML diagrams

 Explains more than seventy consistency rule

of all twelve diagram of Unified Modeling

Language.

 Classifies all inconsistencies into six

categories

 It not only detects inconsistencies but also

resolves them

 In FIMS rule are fired according to frame.

 In resolver appropriate action is fired

according to classification of inconsistency.

 It is very flexible as new rules and scenarios can be

added according to need.

 Limitations and Future Work

Nothing is perfect in the world. Everything has some faults or

some space to improve it. Hence the proposed research also

contains some flaw in it which can be further removed in the future.

 More rules will be applied

 More diagrams will be covered

 To enhance performance

 Add more functionalities

 Design phase contain design patterns which are not

included at present can be added in future

 Other phases rather design phase can be added to

remove inconsistencies

REFERENCES

Alanazi M.N. and D.A. Gustafson. 2008.

Inconsistency Discovery in Multiple State

Diagrams. World Academy of Science. Engineering

and Technology; 28(1) : 54-62

Boehm. B. W. 1988. A Spiral Model of Software

Development and Enhancement. IEEE Computer ;

21(5): 61-72

Ibrahim N., R. Ibrahim, M.Z. Saringat, D.

Mansor and T. Herawan. 2011. Consistency Rules

between UML Use Case and Activity Diagrams

Using Logical Approach. International Journal of

Software Engineering and Its Applications; 5(3) :

119-134

Jackson M., 1995. Software Requirements &

Specifications: a lexicon of practice, principles and

prejudices, Addison-Wesley publication Co; pp:15

Kotb Y., T.Katayama. 2005. Consistency

Checking of UML Model Diagrams Using the X.ML

Semantics Approach. Proceeding WWW '05 Special

interest tracks and posters of the 14th international

conference on World Wide Web; pp: 982-983

Larman C. 2004. Applying UML and Patterns 3rd

edition. Prentice Hall Press ; pp: 123-579

Liu W., S. Easterbrook and J. Mylopoulos. 2002.

Rule-Based Detection Of Inconsistency In Uml

Models. Proceeding UML Workshop on

Consistency Problems in UML-based Software

Development ; pp: 106-123

Nuseibeh B., S.Easterbrook and A.Russo. 2001.

Making Inconsistency respectable in Software

1Sadia Sahar, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2909

Development. The journal of Systems and Software;

58(2): 171-180.

Olsan T. and J. Grundy. 2002. Supporting

Traceability and Inconsistency Management

between Software Artifacts. Proceeding conference

on (374) Software Engineering and Application ; pp:

133-135

Peter R. and A. Zaidman. 2012. Evaluating the

Lifespan of Code Smells using Software Repository

Mining. Proceedings of the 16th European

Conference on Software Maintenance and

Reengineering published in IEEE Computer Society

; pp:411-416

Zaretska I., O. Kulankhina, H. Mykhailenko and

R. Kovalenko. 2012. Checking Inconsistencies in

UML Design. Proceeding ICTERI: International

Conference on ICT in Education, Research, and

Industrial Applications ; pp: 33-43

Sahar S., T. Mustafa, F. Usman, A. Khalid, N.

Aslam and S.Hafeez. 2014. Description of

Consistency Rules in Software Design Models.

Journal of Emerging Trends in Computing and

Information Sciences ; 5(5): 428-432

Straeten R. V. D. and V. U. Brussel. 2011.

Description of UML Model Inconsistencies. Vrije

Universiteit Brussel, Department of Computer

Science, SOFT-TR; pp: 1-14

