
International Journal of scientific research and management (IJSRM)
 ||Volume||2||Issue||12||Pages||1781-1784||2014||
 Website: www.ijsrm.in ISSN (e): 2321-3418

Ms. Archana Kakade, IJSRM volume: 2, issue: 12, December 2014 [www.ijsrm.in] Page 1781

HDFS with cache system – a paradigm for performance

improvement

Ms. Archana Kakade, Dr. Suhas Raut

1
 Master of Engineering student, Department of Computer science & Engineering

NK Orchid College of Engineering & Technology, Solapur

Maharashtra, India

kakadeas34@gmail.com

2
 Ph.D. Professor, Department of Computer science & Engineering

NK Orchid College of Engineering & Technology, Solapur

Maharashtra, India

suhasraut@gmail.com

Abstract: Due to online activities and use of resources related to computing, data is being generated at an enormous rate. To access and

handle such huge amount of data spread, distributed systems is an efficient mechanism. One such mechanism is a Hadoop distributed file

system (HDFS). However HDFS faces performance drawback. Hence need is felt improve upon the performance. In this paper we are

presenting a new paradigm for improving small file processing in HDFS. The paradigm shift is to use cache information. It is known that

accessing data from cache is much faster as compared to disk access. The cache memory is used to store frequently accessed data & hence

process it much more quickly. This paper describes the system architecture that aims to provide a cache system to HDFS, we can avoid

unnecessary trips HDD to fetch data and thus avoid delay.

Keywords: Hadoop, Hadoop distributed file system (HDFS), Cache system, main Memory.

I. INTRODUCTION

Apache Hadoop [1] is well known project that includes open

source implementation of a distributed file system and

MapReduce. One of the significant designed features of the

Hadoop system is high throughput which is extremely

suitable for handling large scale data analysis and processing

problems. HDFS [2] [3] is designed for write-once-read-

many access model for files. In HDFS file reading may

contain several interactions of connecting NameNode and

DataNodes, which considerably decrease the access

performance when the system is under a heavy workload.

In past decades, disk technology has evolved rapidly. Disk

technology evolved into the design of complex storage

systems that can host petabytes of data. Hadoop [1],

MapReduce [5], Dryad [10] and HPCC (High-Performance

Computing Cluster) [12] frameworks are Data-intensive and

they rely on disk based file systems to meet their exponential

storage demands. Hadoop distributed file system (HDFS) [6]

has the capability to store huge amounts of data. There are

various mechanisms to minimize disk access latencies such

as jobs are scheduled on the same node that hosts the

associated data, in addition, data is replicated to different

nodes in numerous ways to improve throughput and job

completion time.

This Paper present mechanism which stored frequently

accessed data in main memory and hence processes it much

more quickly. The processing speed is increased by making

the data needed available in main memory. By providing a

cache system to HDFS, we can avoid unnecessary trips to

hard disk to fetch data and thus avoid delay.

II. RELATED WORK

Zhang et al proposed a system named as HDCache [14]

which runs as a daemon on the host. HDCache is built on the

top of HDFS and they are loosely coupled. This system is

viewed as Client Server architecture. The third-party need to

do is to integrate with a client-side dynamic library. The

third-party applications use the cache to access data stored in

HDFS transparently. Gurmeet Singh et al proposed another

idea named as MemCached [9]. MemCached is a group of

servers and data is placed into their RAM. When a particular

node is in need of a data, it generates two requests. One is

directed to NameNode and other one is directed to

MemCached. MemCached can be used for accelerating

MapReduce tasks on a Hadoop cluster. But the drawback is

increased traffic overhead that will be generated from the

new components MemCached that have added to Hadoop.

III. THE ARCHITECTURE

Figure 1 shows the proposed architecture [5]. HDFS’s User

will make a request for file. This request goes from Cache.

When request is received by cache system it follows

following steps:

 Cache system checks whether requested file is

available in cache local memory or not.

 If requested file is available then request is fulfilled

by cache. Hence here we can avoid disk access

to fetch a file.

Ms. Archana Kakade, IJSRM volume: 2, issue: 12, December 2014 [www.ijsrm.in] Page 1782

 Else client communicates with DataNodes to check

whether requested file is present in their local

memory. If file is available then request is

fulfilled.

 Else if file is not available in cache local memory

then file is fetched from disk by using HDFS

API.

Consistency Validator is used to keep files present in cache

local memory consistence with disk.

Figure 1. The Architecture

A. Communication Module: In the proposed system client

communicates with HDFS in the same way as it

communicates with HDFS without cache system. The

communication protocols build on the TCP/IP protocol.

HDFS clients connect to a Transmission Control Protocol

(TCP) port opened on the NameNode, and then communicate

with the name node using a proprietary Remote Procedure

Call (RPC)-based protocol. Data nodes talk to the

NameNode using a proprietary block-based protocol.

DataNodes continuously loop, asking the NameNode for

instructions. Each DataNode maintains an open server socket

so that client code or other DataNodes can read or write data.

The host or port for this server socket is known by the

NameNode, which provides the information to interested

clients or other DataNodes.

B. Consistency Validator: When a client requests for data,

consistency validation is performed on request information.

Consistency Validator retrieves the day of the month and

time of last change of data. And it compares that information

with current date and time. If the current date and time is

greater than last modification time than the client is admitted

to read data. Else client is not allowed to take data.

C. File Co-ordinate Module: This module maintains a list

of files which are currently presents in local memory.

D. Local Memory: Local memory contains frequently

requested files.

E. HDFS Access Module: If requested file is not present in

local memory then the requested file will be fetch from disk.

IV. IMPLEMENTATION AND EXPERIMENTAL

SETUP

The HDFSCache system is deployed on HDFS NameNode,

DataNodes, and other application systems that can access

HDFS through network and need cache functions. The client

needs to integrate with HDFSCache in and they can access

the cache services. Figure 2 shows experimental setup

diagram.

Figure 2. Experimental Setup Diagram

We can explain our experimental setup with one example.

Consider 17 DataNodes deployed with HDFSCache Module

of DataNode. Also HDFSCache is present on the Client and

NameNode. Actually there are 8000 files deployed on the

Hadoop Cluster. Consider 3 files out of 8000 files namely

file 1 file 2 and file 3. As shown in figure these three files are

replicated on DataNode 1 DataNode 2 and DataNode 17.

File 1 is present in the main memory of DN 1 and DN 17.

File 2 is present in the main memory of DN 1 and DN 2. And

File 3 is present in the main memory of DN 2 and DN 17.

When a client requests for file 2, HDFSCache Module of

Client makes a request for a list of DataNodes on which that

file is present to NameNode. HDFSCache Module present on

NameNode response to the request with a list of DataNodes

Ms. Archana Kakade, IJSRM volume: 2, issue: 12, December 2014 [www.ijsrm.in] Page 1783

that is the IP addresses of DataNode 1, 2 and 17 because file

2 is present on DataNodes 1, 2 and 17. The HDFSCache

module of client communicates to DataNodes 1, 2 and 17.

HDFSCache Module asks these DataNodes whether file 2 is

present in their main memory or not. HDFSCache module of

DataNode first checks whether file 2 is present in main

memory or not. If file 2 is present in main memory, then the

HDFSCache Module on DataNode send a response as yes or

no to the Client. In figure DN 1 and DN 2 sends a reply as a

yes to the client. And DN 17 sends a reply as No to Client

because DN 17 doesn’t have file 2 in its main memory. Now

HDFSCache Module of Client request for file content to

DataNode 1. DN 1 sends file content to Client.

A. HDFSCache Module of DataNode: Each of the DataNode

has their dedicated HDFSCache Module who has

responsibilities of keeping track of files which are present in

main memory. Another responsibility of it is communicating

with HDFSCache Module of Client. Recently opened files

are stored into main memory. When the request for a file is

arrived which is opened is fulfilled from main memory.

Hence we can avoid disk access.

B. HDFSCache Module of NameNode: The responsibility of

this module is in response to client with a list of DataNodes

when a client asks for it.

C. HDFSCache Module of Client: This module takes a file

name from the user through the GUI. The GUI is as shown in

the screenshot. As shown in the screenshot there is a text

field to enter the file name. There are three buttons.

Screenshot 1 GUI

V. EVALUATION

HDFSCache system is implemented in Linux. We chose

64bit OS because 64bit OS is currently the mainstream in

commercial environments with the RAM of 2 GB or more, so

it can provide large memory addressing space. Taking into

account the performance, we implemented the system

with Java program language. We setup a test-bed consisting

of twenty five servers running Ubuntu 12.04 64bit OS. On

every computer Hadoop 1.1.2 (stable version) is installed

with the block size 64 MB. Twenty four of these computers

are configured to be DataNode servers and the remaining one

is configured to be NameNode server. On every DataNode,

we deploy HDFSCache system. HDFSCache system is also

deployed on both Client and NameNode. We have deployed

8000 files on the cluster. Files may be docx, text, video,

audio, java file, xml file, pptx file. Files size varies from 10

KB to 64 MB. The dataset prepared consisted of data files in

the increments of 10 from 10KB to 100KB and in increments

of 100 from 100KB to 1000KB. The dataset consist of text

files, doc files, videos, images. The data for the files was

taken from the College. Table 1 shows the time required to

complete the read operation by HDFS and HDFSCache.

From table it is seen that for the file size of 10 KB, time

required by HDFS is 7.6092 milliseconds and that for

HDFSCache is 0.0597 which shows the performance increase

of 53%. Hence the difference of time observed is 7.5494

milliseconds. Similar, performance increase is shown for the

other files size ranging from 10 KB to 1000KB. Graph 1

shows the graph of percentage against the file size.

Performance shows result of reading efficiency. The

performance declines with the increase of file size. However,

the size of the file exceeds 1MB, the performance decreases.

As per the graph it is seen that the performance increases for

the file size ranging from 10KB to 1000KB from 53% to 2%.

But once the file size exceeds 1000KB, the graph shows the

decrease in the performance. Which in turn result that

HDFSCache performance is good for the file size upto

1000KB.

Table 1 Time required executing job (In milliseconds)

File Size HDFS HDFSCache

10KB 7.609245 0.059748

20KB 6.605106 0.045906

30KB 7.550665 0.069226

40KB 7.623110 0.099467

50KB 6.663618 0.149039

60KB 7.598473 0.103903

70KB 6.622031 0.169268

80KB 6.653922 0.215506

90KB 6.622009 0.228031

100KB 6.989729 0.281367

200KB 6.699742 0.471439

300KB 7.688346 0.740193

400KB 6.644013 0.980522

500KB 6.665329 0.923059

600KB 6.675682 1.869722

700KB 7.611090 3.721735

800KB 6.709381 1.982028

900KB 6.678156 3.404119

1000KB 6.867022 2.256146

Ms. Archana Kakade, IJSRM volume: 2, issue: 12, December 2014 [www.ijsrm.in] Page 1784

Graph 1 Performance of job execution Line graph

VI. CONCLUSION

There are more and more real-time services coming forth on

the internet in the big data area. Industrial circles tend to use

mature technologies such as Hadoop. To improve the

performance of the Hadoop distributed file system, this paper

describes a novel cache system built on HDFS named

HDFSCache. HDFSCache uses the main memory of

DataNodes where currently accessed files are stored. Hence

the request for the file is fulfilled from the main memory of

DataNode. In this way we can avoid disk access. This

improvement makes most of the file operations complete in

the main memory, which brings down the frequency of access

to disk.

Presently, this work is still first step. HDFSCache shows the

performance increase for small files upto 53%. However,

there decrease in performance once the file exceeds 1MB.

Hence the future scope is to improve the cache system to

support files more than 1000KB with multiple NameNode. In

this paper cache coherence is not taken into account. So in

future cache coherence is used to improve the cache system.

REFERENCE

[1] Apache Hadoop. Available at Hadoop Apache.

[2] Apache Hadoop Distributed File System. Available at

Hadoop Distributed File System Apache.

[3] Scalability of Hadoop Distributed File System.

[4] D. Borthakur (2011) et al. "Apache Hadoop goes real-

time at Facebook", In Proceedings of the 2011 International

Conference on Management of Data (SIGMOD’11), New

York, 2011.

[5] Hadoop Distributed File System with Cache technology

by Archana Kakade and Dr. Suhas Raut, Industrial Science

Vol.1,Issue.6/Aug. 2014 ISSN : 2347-5420

[6] J. Dean and S. Ghemawat (2004), “Mapreduce:

Simplified Data Processing on Large Clusters”. In

Proceeding of the 6
th

 Conference on Symposium on operating

Systems Design and Implementation (OSDI’04), Berkeley,

CA, USA, 2004, pp.137-150.

[7] D. Borthakur. The Hadoop Distributed File System:

Architecture and Design. The Apache Software Foundation,

2007.

[8] Gurmeet Singh,Puneet Chandra, Rashid Tahir “A

Dynamic Caching Mechanism for Hadoop using

Memcached”.

[9] S. Ghemawat, H. Gobioff and S. T. Leung (2003),

“Google File System”, In Proc. of the Nineteenth ACM

Symposium on Operating Systems Principles (SOSP’03),

Lake George New York, 2003, pp.29-43.

[10] “The Case for RAMClouds: Scalable High-Performance

Storage Entirely in DRAM” Department of Computer

Science Stanford University.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.

Dryad: distributed data-parallel programs from sequential

building blocks. In EuroSys’07, pages 59–72, 2007.

[12] J. Shafer and S Rixner (2010), "The Hadoop distributed

file system: balancing portability and performance”, In 2010

IEEE International Symposium on Performance Analysis of

System and Software (ISPASS2010), White Plains, NY,

March 2010. Pp.122-133.

[13] HPCC Wikipedia HPCC.

[14] Jing Zhang, Gongqing Wu, Xuegang Hu, Xindong Wu

(2012), “A Distributed Cache for Hadoop Distributed File

System in Real-time Cloud Services”. In 2012 ACM/IEEE

13
th

 International Conference on Grid Computing.

[15] S. Zhang, J. Han, Z. Liu, K. Wang (2009), “Accelerating

MapReduce with Distributed Memory Cache”, In 15
th

International Conference on Parallel and Distributed Systems

(ICPADS09), Shenzhen, 2009, pp.472-478.

	PointTmp
	OLE_LINK3
	OLE_LINK4

