Some Properties of Quasi-normal operators

K. Vidhyapraba ${ }^{1}$, A. Sivasathya ${ }^{2}$ and V. Vimala ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, Dr.N.G.P Arts and Science College, Coimbatore - 641048, Tamilnadu, India E-mail: vidhyaprabamaths@ gmail.com. E-mail: sivasathyamaths@gmail.com E-mail: vimalaida@gmail.com

Abstract

In this article we will give some properties of quasi-normal operators in Hilbert spaces. Theobject of this paper isto study some properties of quasi-normal operators. If T_{1} and T_{2} are quasinormaloperators, we shall obtain conditions under which their sum and product are quasinormal.

Keywords: Hilbert space, Quasinormal operators.

1. Introduction

Let us denote by H the complex Hilbert space and with $\mathrm{B}(\mathrm{H})$ the space of all bounded linear operators defined in Hilbert space H. Let T be an operator in $\mathrm{B}(\mathrm{H})$. The operator T is called qusinormal if $\mathrm{T}(\mathrm{T} * \mathrm{~T})=(\mathrm{T} * \mathrm{~T}) \mathrm{T}$. Let $\mathrm{T} \in \mathrm{B}(\mathrm{H}), \mathrm{T}$ $=\mathrm{U}+\mathrm{iV}$ where $\mathrm{U}=\operatorname{Re} \mathrm{T}=\frac{T+T^{*}}{2}$ and $\mathrm{V}=\operatorname{Im} \mathrm{T}=$ $\frac{T-T^{*}}{2 i}$ are the real and imaginary parts of T . We shall write $\mathrm{B}^{2}=\mathrm{TT}^{*}$ and $\mathrm{C}^{2}=\mathrm{T} * \mathrm{~T}$ where B and C are non-negative definite.

In this paper we will study some properties of quasinormal operators. Exactly we will give conditions under which an operator T is quasinormal. Also, we shall that of T_{1} and T_{2} are qusinormal operators, we shall obtain conditions under which their sum and product are quasinormal.

2. Quasi-normal operators

In this section we will show some
properties of quasinormal operators in Hilbert space.

Theorem: 2.1

If $T \in B(H)$ is an invertible quasinormal operator, then

$$
\text { 1. } \mathrm{T}^{*}\left(\mathrm{~T}^{*} \mathrm{~T}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{*},
$$

$$
\begin{aligned}
& \text { 2. } \mathrm{T}\left(\mathrm{~T}^{*} \mathrm{~T}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}, \\
& \text { 3. } \mathrm{T}^{-1}\left(\mathrm{~T}^{*} \mathrm{~T}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}^{-1} .
\end{aligned}
$$

Theorem: 2.2

If T is quasinormal operator, then the equality $\left(\mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}\right)\right)^{\mathrm{n}}=\mathrm{T}^{\mathrm{n}}\left(\mathrm{T}^{*} \mathrm{~T}\right)^{\mathrm{n}}$ holds true for all $\mathrm{n} \in \mathrm{N}$.

Proof:

Observe that,
$\left(\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}\right)^{2}=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}=\mathrm{T}^{2}\left(\mathrm{~T}^{*} \mathrm{~T}\right)^{2}$
$\left(\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}\right)^{3}=\left(\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}\right)^{2}\left(\mathrm{~T}^{*} \mathrm{~T}\right) \mathrm{T}$
$=\mathrm{T}^{2}\left(\mathrm{~T}^{*} \mathrm{~T}\right)^{2}\left(\mathrm{~T}^{*} \mathrm{~T}\right) \mathrm{T}$ $=\mathrm{T}^{3}\left(\mathrm{~T}^{*} \mathrm{~T}\right)^{3}$
By inductive argument it is obvious that, $\left(\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}\right)^{\mathrm{n}}=\mathrm{T}^{\mathrm{n}}\left(\mathrm{T}^{*} \mathrm{~T}\right)^{\mathrm{n}}$.

Theorem: $\mathbf{2 . 3}$

If T is an operator such that
(i) B commutes with U and V .
(ii) $\mathrm{TB}^{2}=\left(\mathrm{C}^{2} \mathrm{~T}\right)$.

Then T is quasinormal operator.
Proof:
Since $B U=U B, B V=V B$ we have $B^{2} U=$ $\mathrm{UB}^{2}, \mathrm{~B}^{2} \mathrm{~V}=\mathrm{VB}^{2}$, then
$\mathrm{B}^{2} \mathrm{~T}+\mathrm{B}^{2} \mathrm{~T}^{*}=\mathrm{TB}^{2}+\mathrm{T}^{*} \mathrm{~B}^{2}$
$\mathrm{B}^{2} \mathrm{~T}-\mathrm{B}^{2} \mathrm{~T}^{*}=\mathrm{TB}^{2}-\mathrm{T}^{*} \mathrm{~B}^{2}$.
This gives, $B^{2} T=B^{2}=C^{2} T$

$$
=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}
$$

$\mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}\right)=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T}$.
Hence T is quasinormal operator.

Theorem: 2.4

Let T be quasinormal operator and $\mathrm{TB}^{2}=$ $\left(C^{2} T\right)$. Then B commutes with U and V.
Proof:
Since $\mathrm{TB}^{2}=\mathrm{C}^{2} \mathrm{~T}$, we have $\mathrm{T}\left(\mathrm{TT}^{*}\right)=$ (${ }^{*}{ }^{*}$) T .
Hence, $\left(T^{*}\right) T^{*}=T^{*}(T * T)$. Since T is quasinormal operator, we have

$$
\begin{aligned}
\mathrm{B}^{2} \mathrm{U} & =\mathrm{TT} \frac{T+T^{*}}{2} \\
& =\frac{T T^{*} T+T T^{*} T^{*}}{2} \\
& =\frac{\left(T^{*} T\right) T+T^{*}\left(T^{*} T\right)}{2} \\
& =\frac{T\left(T T^{*}\right)+\left(T^{*} T\right) T^{*}}{2} \\
& =\frac{T^{2} T^{*}+T^{*} T T^{*}}{2} \\
& =\frac{T+T^{*}}{2} \mathrm{TT}^{*} \\
& =\mathrm{UB}^{2 .}
\end{aligned}
$$

Since B is non negative definite, it follows that $B U=U B$. Similarly, $B V=V B$.

Theorem: 2.5

If T is an operator such that $\mathrm{C}^{2} \mathrm{U}=\mathrm{UC}^{2}$, $\mathrm{C}^{2} \mathrm{~V}=\mathrm{VC}^{2}$. Then T is quasinormal operator.
Proof:
Since If T is an operator such that $\mathrm{C}^{2} \mathrm{U}=$ $\mathrm{UC}^{2}, \mathrm{C}^{2} \mathrm{~V}=\mathrm{VC}^{2}$
Then we have, $\mathrm{C}^{2}(\mathrm{U}+\mathrm{iV})=(\mathrm{U}+\mathrm{iV}) \mathrm{C}^{2}$ and $\mathrm{C}^{2} \mathrm{~T}=$ $\mathrm{TC}^{2},\left(\mathrm{~T}^{*} \mathrm{~T}\right) \mathrm{T}=\mathrm{T}\left(\mathrm{T}^{*} \mathrm{~T}\right)$.

Hence T is quasinormal operator.
Theorem: 2.6
Let T be quasinormal operator and $\mathrm{B}^{2} \mathrm{~T}=$ $\left(C^{2} T\right)$. Then
(i) $C^{2} U=U C^{2}$
(ii) $C^{2} V=V C^{2}$

Proof:

(i) Since $B^{2} T=C^{2} T$

$$
\begin{aligned}
& \Rightarrow\left(\mathrm{TT}^{*}\right) \mathrm{T}=\left(\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{T} \\
& \Rightarrow \mathrm{~T}^{*}\left(\mathrm{TT}^{*}\right)=\mathrm{T}^{*}\left(\mathrm{~T}^{*} \mathrm{~T}\right)
\end{aligned}
$$

Since T is quasi normal operator, we have

$$
\mathrm{C}^{2} \mathrm{U}=\mathrm{T} * \mathrm{~T} \frac{T+T^{*}}{2}
$$

$$
\begin{aligned}
& =\frac{T^{*} T^{2}+T^{*} T T^{*}}{2} \\
& =\frac{T T^{*} T+T^{* 2} T}{2} \\
& =\frac{T+T^{*}}{2} \mathrm{~T}^{*} \mathrm{~T} \\
& =\mathrm{UC}^{2}
\end{aligned}
$$

(ii) Similarly,

$$
\mathrm{C}^{2} \mathrm{~V}=\mathrm{VC}^{2}
$$

Theorem: 2.7

Let T_{1} and T_{2} be two qusinormal operators suchtaht $\mathrm{T}_{1} \mathrm{~T}_{2}=\mathrm{T}_{2} \mathrm{~T}_{1}=T_{1}^{*} \mathrm{~T}_{2}=T_{2}^{*} \mathrm{~T}_{1}=0$. Then their sum $T_{1}+T_{2}$ is quasinormal operator.

Proof:

$$
\begin{aligned}
&\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)\left[\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{*}\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right)\right]=\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)[(\\
&\left.\left.T_{1}^{*}+T_{2}^{*}\right)\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right)\right] \\
&=\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)[\\
&\left.T_{1}^{*} \mathrm{~T}_{1}+T_{1}^{*} \mathrm{~T}_{2}+T_{2}^{*} \mathrm{~T}_{1}+T_{2}^{*} \mathrm{~T}_{2}\right] \\
&=\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)[\\
&\left.T_{1}^{*} \mathrm{~T}_{1}+T_{2}^{*} \mathrm{~T}_{2}\right], \text { since } T_{1}^{*} \mathrm{~T}_{2}=T_{2}^{*} \mathrm{~T}_{1}=0 \\
&=\mathrm{T}_{1}\left(T_{1}^{*} \mathrm{~T}_{1}\right)+ \\
& \mathrm{T}_{1}\left(T_{2}^{*} \mathrm{~T}_{2}\right)+\mathrm{T}_{2}\left(T_{1}^{*} \mathrm{~T}_{1}\right)+\mathrm{T}_{2}\left(T_{2}^{*} \mathrm{~T}_{2}\right) \\
&= \mathrm{T}_{1}\left(T_{1}^{*} \mathrm{~T}_{1}\right)+
\end{aligned}
$$

$\mathrm{T}_{2}\left(T_{2}^{*} \mathrm{~T}_{2}\right)$,since $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are Quasinormal

operators.

$$
=\left(T_{1}^{*} \mathrm{~T}_{1}\right) \mathrm{T}_{1}+
$$

$\left(T_{2}^{*} \mathrm{~T}_{2}\right) \mathrm{T}_{2}$

$$
=\left[\left(\mathrm{T}_{1}+\right.\right.
$$

$\mathrm{T} 2 * \mathrm{~T} 1+\mathrm{T} 2 \mathrm{]}\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right)$
Hence $\mathrm{T}_{1}+\mathrm{T}_{2}$ is quasinormal operator.

Theorem: $\mathbf{2 . 8}$

Let T_{1} be quasinormal operator and T_{2} qusinormal operator. Then their product $T_{1} T_{2}$ is quasinormal operator if the following conditions are satisfied.
(i) $\mathrm{T}_{1} \mathrm{~T}_{2}=\mathrm{T}_{2} \mathrm{~T}_{1}$
(ii) $\mathrm{T}_{1} T_{2}^{*}=T_{2}^{*} \mathrm{~T}_{1}$

Proof:

$\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)\left[\left(T_{1} T_{2}\right)^{*}\left(T_{1} T_{2}\right)\right]=\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)\left[\left(T_{2}^{*} T_{1}^{*}\right)\right.$
$\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)\left(T_{1}^{*} T_{2}^{*}\right)\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)=\mathrm{T}_{1}\left(\mathrm{~T}_{2} T_{1}^{*}\right)$
$\left(T_{2}^{*} \mathrm{~T}_{1}\right) \mathrm{T}_{2}=\mathrm{T}_{1}\left(T_{1}^{*} \mathrm{~T}_{2}\right)\left(\mathrm{T}_{1} \mathrm{~T}_{2}^{*}\right) \mathrm{T}_{2}=\mathrm{T}_{1} \mathrm{~T}_{1}^{*}\left(\mathrm{~T}_{2} \mathrm{~T}_{1}\right)$
$\left(T_{2}^{*} \mathrm{~T}_{2}\right)=\mathrm{T}_{1} T_{1}^{*}\left(\mathrm{~T}_{1} \mathrm{~T}_{2}\right)\left(T_{2}^{*} \mathrm{~T}_{2}\right)=\left(T_{1}^{*} T_{1}^{2}\right)$
$\left(T_{2}^{*} T_{2}^{2}\right)=T_{1}^{*} T_{2}^{*}\left(T_{1}^{2} T_{2}^{2}\right)=\left(T_{1}^{*} T_{2}^{*}\right)$
$\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{2}=\left(T_{2}^{*} T_{1}^{*}\right)\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{2}=\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}$
$\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{2}=\left[\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}\left(\mathrm{~T}_{1} \mathrm{~T}_{2}\right)\right]\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)$
$\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)\left[\left(T_{1} T_{2}\right)^{*}\left(T_{1} T_{2}\right)\right]=\left[\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}\left(\mathrm{~T}_{1} \mathrm{~T}_{2}\right)\right]$
$\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)$
Hence $\mathrm{T}_{1} \mathrm{~T}_{2}$ is quasi normal operators.

References

[1] Sh. Lohaj, Quasinormal operators, Int. Journal of Math. Analysis, 4 (47) (2010), 2311-2320.
[2] S. Panayappan and N. Sivamani, A- Quasi normal operators in semi Hilbertian spaces, Gen. Math. Notes, 10 (2) (2012), $30-35$.
[3] valdete Rexhëbeqaj Hamiti, Some properties of N - Quasinormal operators, Gen. Math. Notes, 10 (1) (2013), 94 - 98.

