
 International Journal of scientific research and management (IJSRM)
 ||Volume||3||Issue||6||Pages|| 3134-3138||2015|| \
 Website: www.ijsrm.in ISSN (e): 2321-3418

Swagatika Kar, IJSRM Volume 3 Issue 6 June 2015 [www.ijsrm.in] Page
3134

Real-Time Monitoring Framework for Parallel Processes

Swagatika Kar

Department of Computer Science, Berhampur University

Berhampur-760007, India

swagatikakar31@gmail.com

Abstract: This paper describes the development of a Real-Time monitoring framework for parallel processes. There are various parallelism

techniques in parallel execution of processes such as Bit-Level parallelism, Instruction-Level parallelism, task parallelism. Besides these

techniques, different hardware architecture of machines for processing like pipelining of processes, superscalar execution, data dependency,

resource dependency are there. By using any of these parallelism techniques or hardware architecture, Real-Time parallel processing

applications can be developed. Our objective is to develop a data- driven framework for these Real-Time parallel processing applications.

The framework monitors entire lifecycle of processes executing in that system and gather granular level data to conclude entire system

information. This information can be used to reduce the overall execution time, chances of deadlocks, production cost along with

improvement in efficiency, consistency, resource utilization. Soft sensors record the entire details of process during its execution like

execution time, waiting time, delay etc. throughout life of processes.

Keywords: Real-Time monitoring, Real-Time Execution Analyzer framework, Real-Time parallel processing.

1. Introduction

Parallel processing is the execution of a process simultaneously

on multiple processors by splitting it into smaller pieces. It is

widely used to reduce the overall execution time for complex

and large-scale tasks. Multiprocessor systems consist of

processors with aggressive branch predictors execute many

memory references and resources distributed over network

locations that might turn out to be on a mispredicted branch

path. Thus in this current scenario of non-linear and dynamic

process environments, it is very difficult to achieve optimal

performance in parallel processing systems. This can concern

in many industries especially in telecommunication. For many

applications it is imperative that parallel execution is

maintained within strict limits, as improved consistency will

result reduced production cost and efficient performance.

Applications of Tele-communication and Messaging services

use different parallelism techniques over variety of hardware

architectures. Common decomposition and common mapping

methods are efficient techniques to achieve parallel processing,

still fault exists with the resource utilization and data

dependency of tasks executing in parallel. Common

decomposition method decomposes a process into small pieces

known as tasks. These tasks are executed independently and

mapped together in common mapping methods to produce the

expected outcome.

In several distributed parallel processing systems like ABS and

ABROSE, CORBA was used as connectivity layer [1].

CORBA facilitates the inter-module communication

management on different servers. Invocation of CORBA is like

non-blocking calls, so there is no difficulty in case of

asynchronous or parallel communications. Utilization of

CORBA is responsible for decrease in execution speed as

compared to execute the entire module in the same JVM. Our

framework is designed in Java platform and Smart-EC [1] is

considered as the best choice for the communication

architecture. Smart-EC also provides communication

infrastructure for inter or intra communication between

different modules of system. It is purely implemented on J2EE

technology, which is based on Java Message Service (JMS) for

synchronous and asynchronous/parallel communication. JMS

is an asynchronous communication API developed for Java

application and lately included with J2EE versions. Execution

of entire module on same JVM makes the communication

faster and improves the efficiency of system. The multi-tier

architecture of J2EE technology also makes the system robust.

2. Issues in Parallel Processing Systems

There has been extensive amount of research carried out on

parallel processing systems since many years [3][4][5]. Parallel

processing has become very important while researching high-

performance solutions. Therefore, some common issues are to

be monitored continuously to improve the performance and

efficiency of any parallel processing system.

Memory Access: In recent years, the speed of processors has

been increased much faster than the DRAM speeds. As the

clock rates of high-end processors have increased at roughly

40% per year over the past decade, DRAM access have only

improved at the rate of roughly 10% per year. It is expected

that the processors speed will be double in each upcoming 18

months which is supposed to continue for the next 10 years.

This will result significant increase in memory latency and

leads to heighten attention on program memory performance,

due to potential for access over a network to remote memory.

Data and Control dependency: In a parallel processing

system programs are divided into smaller units and these

smaller units are executed on different processors. The

execution of one instruction may depend on execution of

another instruction(s) in terms of data or control. This may

either limit the performance in terms of efficiency and

execution time or may lead to possibility of a hazard like

detention of a process or deadlock.

Inter-process communication: Inter-process communication

is one of the major issues in architecture of parallel processing

system. It’s due to data dependency or network configuration.

If the processing is not synchronized properly, two processes

executing concurrently reading and writing data on shared

memory may lead to incorrect data processing.

3. Implementation of Monitoring Framework

In this paper we are introducing a new framework RTEA

(Real-Time Execution Analyzer) and implementing it on java

platform. We can apply multiple soft sensors on top of any real

Swagatika Kar, IJSRM Volume 3 Issue 6 June 2015 [www.ijsrm.in] Page 3135

time parallel processing application to monitor entire execution

cycle. These soft sensors monitor execution of instructions on

each clock cycle of processors. To identify the exact point of

issues in Real-Time parallel processing applications, we apply

the processing of RTEA framework at both grain level of

parallelism.

Figure-1 Process Granularity

The framework collects all data during execution of a process

through soft sensors. Finally, these collected data are analyzed

using RTEA framework. The analysis mechanism involves

“Genetic Programming”. It produces the exact processing data

and analyzes it to find fault or inefficiency in existing parallel

real time application. It also finds the solution for these issues,

which leads to improve the performance and efficiency of

application.

4. Processing of Monitoring Framework

4.1 Importance of continuous execution monitoring

Continuous execution monitoring of all processes running

parallely in a real time application is essential. RTEA

framework injects soft sensors to the application and

continuously monitors the execution of all processes

throughout their life. The details of each individual

process like waiting time, number of sub-processes,

execution time, occurrence of faults during execution etc.

are recorded by soft sensors and stored in database.

Analyzer tool uses these data to produce deficiencies in

the existing system.

Benefits of continuous monitoring of execution of

processes are discussed below:-

By recording execution time of all processes and after

analyzing them, we can find out the reasons behind

waiting time, latency time, turnaround time and also

detention of a process from execution. Due to these

reasons the algorithm or the application hardware

architecture is lagging behind. We can rectify and enhance

the algorithm or the hardware/network architecture to

reduce the total execution time of each process and also

enhance the throughput of the application by reducing

number of fault occurrence.

RTEA framework calculates the execution time of

processes. There are number of ways to calculate the

execution time like using date command or time

command, counting clock cycle of processors, using

Timer/Counter chip etc. Here we are using counting clock

cycle method to calculate the entire execution time. Soft

sensors invoke clock() command to count the number of

clock cycle(s) for each task individually and then these

clock cycle(s) for all tasks are added to get the total clock

cycle(s). We are using Cycles Per Element (CPE) measure

for programs which requires an accuracy of 0.1% for a

procedure having a CPE of 10. A processor clock controls

the execution of instruction while a precision oscillator

regulates it.

The processor hardware works at a microscopic time scale,

where instruction having durations of a few nanoseconds (ns).

The system must deals with a macroscopic time scale, with

events having durations of a few milliseconds (ms).

The total execution time of a task is divided into two

categories i.e., Active (executing its instructions) and Inactive

(waiting for the instruction to be scheduled for execution). Soft

sensors trigger a program in the RTEA framework. It traces the

inactive time, finds the reason behind it and stores all

information.

The analyzer tool fetches all data stored by the framework and

extracts the reasons behind overall inactive time of processors.

It produces information about drawbacks in system

development and configuration architecture. This can help

system designers and algorithm developers of the concern

system to find the feasible solution in order to reduce the

overall inactive time of tasks (It may be from software design

or hardware architecture). This can improve the performance

of real-time application.

Measuring total execution time of code is helpful for

optimization of code, but it is not sufficient enough to analyze

real time system performance. Rather, measuring overall

execution time is an effective step for estimating and analyzing

a feasible solution to enhance the system performance. Figure-

2 and pseudocode define the basic structure to calculate the

total execution time of synchronous and asynchronous

programming.

[Pseudocode for framework execution time calculator]

Figure-2 Framework execution time calculator

newprocessflag=isNewProcess(getPid);

nextStart = clock();

deadline = period;

while(task-> state == ON){

if(tasktype == PERIODIC){

nextstart += task-> period;

Pause(nextStart,period);

return ET and WT;

}

else{

 task->func->sync(task->local);

return ET and WT;

}

START(task->id)

readInputs();

task->function->cycle (task->local);

writeOutouts();

STOP(task->id);

Return ET,WT and RT;

}

Swagatika Kar, IJSRM Volume 3 Issue 6 June 2015 [www.ijsrm.in] Page 3136

4.2 Importance of granular level of data to be recorded

In parallel computing, granularity is the ratio of

computation to the amount of communication [2]. Fine-

grained parallelism means the individual units of tasks are

relatively smaller in terms of number of instruction and

execution time. So, data transfer between processors

occurs frequently in amounts of one or a few memory

words. In case of coarse-grained, data communication

between processors occurs infrequently, after large amount

of computation. Fine-grained increases the potential of

parallelism and speedup, but it also increases the

overheads of synchronization and communication.

We need exact level of granularity in our algorithm to

reduce the overhead up to maximum without

compromising with speedups. The hardware architecture

in terms of memory units and network communication

should be faster. This reduces the response time and

affects the total execution time of tasks. So, here we focus

on coarse grain level of granularity, which restricts to

make smaller units of tasks and task dependencies

unnecessarily.

RTEA framework calculates the number of units in which

tasks are divided. It stores all information about the

instruction execution. It fetches dependency details of the

executing instruction with others instruction and generates

dependency graphs. Our framework reads all data, then

analyzes them and generates a report with collected

details. It informs the administrator about the particular

points of execution, which are lagging behind and

responsible for low performance of the system. The report

contains a detail graph of all instructions within processes.

The graph contains processes and processes are divided

into tasks. Each task contains instructions, sequence of

instructions inside a task and the total time for execution.

With the help of this graph, programmers and architects

can easily identify which instruction is taking more time

than the expected and reason behind that. After gathering

all reasons they can accordingly modify their algorithm to

achieve higher performance and accuracy.

[Pseudocode to check dependencies]

4.3 Monitoring of utilization of processors and other

resources

In hardware architecture, processors and the other

resources (memory units, network communication design

etc.) are main units on which execution and performance

depends. Also the hardware units are expensive. So we

should be careful while selecting and implementing the

required hardware. The algorithm should utilize the

resources optimally to achieve the expected performance.

This RTEA framework also helps to verify the usage and

performance of the hardware units and processor, and

generates all details which helps designer to modify the

design.

These soft sensors trigger over all the resources used in the

system. These trigger record all activities of each

individual resources like idle time, load on resources,

execution time of each instruction and the reasons behind

it. The database stores these data in tabular format. Later

analyzer tool analyzes these data and generates a report.

This report contains information about utilization of all

resources in the system.

Soft sensors are also responsible for tracking failed and

detained processes. By analyzing the stored data we can

find the exact reasons behind the detention or failure. It

helps the designers and programmers to enhance the

existing algorithm or the hardware/network architecture of

the system. This reduces the number of fault occurrence

and results in higher performance.

4.4 Importance of monitoring of communication network

In parallel processing system, communication network

plays a vital role in execution of all processes. There are

three major parts of network communication.

Inter-process communication:

Inter-process communication is the communication

between different processes. In other words, Inter-process

communication deals with the data transfer between tasks

getAllChild(getPid())

{

 for(inti=1;i<=NoOfSubProcess;i++){

 if(i==1)

break;

elseif

(checkdependency(P11,P1i))

return true;

else

return false;

}

}

Swagatika Kar, IJSRM Volume 3 Issue 6 June 2015 [www.ijsrm.in] Page 3137

or instructions of different processes executing in parallel.

RTEA framework triggers the soft sensors to all

instructions executing in parallel and calculates

dependencies between them. It also finds the sequence of

execution and stores these data in database. The analyzer

tool analyzes these data and generates report. From this

report programmers and hardware designers can identify

the reasons for delay in execution. Programmers can

identify which instruction is taking more time than

expected and why. Then they can modify the system to

reduce unwanted or inefficient dependency.

Data communication network:

In parallel processing system there are shared memory

units and different processors access them simultaneously.

Processors are connected to shared memory units by data

buses which creates data communication network. RTEA

framework monitors them and generates report. Then

design architects can identify the memory units taking

long time to respond. They can also design new memory

architecture as required or can implement some faster

accessible memory units like virtual memory, cache etc.

So, it can reduce the overall memory access cycle,

increase overall performance and also can reduce the

occurrence of fault due to memory model.

 Network communication:

Implementation of network communication is necessary

due to usage of multiple shared resources (devices used for

processing), requirement of current online data over

internet like weather condition, traffic condition etc. RTEA

framework triggers its commands using soft sensors to

fetch all details of the time spent by processors over

network communication channel for each instruction. Then

it generates detail report. Using this report network

designers can modify network designs, can use faster buses

to reduce network traffic and the response time to the

processors. The overall modifications can improve the

performance of the system with reduced number of faults.

5. Analyses of Data and Proposed Solution to

Improve Performance

We applied RTEA framework over multiple existing real time

parallel processing systems like intercommunication and

notification system in telecommunication, brokering and

negotiation system. These are based on windows sever

machine where different modules of application are deployed

on individual nodes and found significant result. The changes

made in algorithm and the hardware architecture on the basis

of report generated with the help of this framework results in

higher performance of system with reduced cost, reduced

excess implementation of resources (Resource utilization) and

reduced number of faults.

Here we are presenting the analysis and data for Virtual

Machine scheduling as a proof, where we applied this

framework.

Figure-3 System Architecture with Real-Time Application and

RTEA Framework

As in Figure-3, RTEA framework was implemented on top of a

Real-Time application. There were 4 dual-core processors

used. Assume that, four tasks were triggered to the Real-Time

application. As per the algorithm implemented each process is

divided into 11 tasks and their dependencies are given in

Figure-4.

Figure-4 Tasks dependency graph

The RTEA framework tracked each execution cycle of the

processors for all the processes executing in the system and

provided all information for analysis. We have illustrated

results below for one process in execution. It tracked all

information about each individual instruction of process in

each processor clock cycle.

Table-1 Tasks details by RTEA framework, where: ei:-

execution time, ri:- release time, di:- deadline
 𝒆𝒊 𝒓𝒊 𝒅𝒊
𝐓𝟏 2 0 10

𝐓𝟐 5 0 15

𝐓𝟑 4 10 17

𝐓𝟒 4 0 6

𝐓𝟓 3 8 12

𝐓𝟔 3 5 21

𝐓𝟕 3 12 16

𝐓𝟖 6 11 24

𝐓𝟗 3 16 23

𝐓𝟏𝟎 2 0 18

𝐓𝟏𝟏 4 6 27

Swagatika Kar, IJSRM Volume 3 Issue 6 June 2015 [www.ijsrm.in] Page 3138

In Figure-4, one process was divided into 11 tasks. Individual

weights and CPU times were assigned by the

scheduler/algorithm. There were 4 processes executing

simultaneously. So, total 44 tasks were scheduled by 4 dual-

core processors i.e., 8 CPUs in parallel. As per scenarios we

identified that each task was assigned to two CPU units to

execute its instructions at a given time. So, here we are taking

one process and two CPU units into account to calculate all the

data and illustrate the outputs.

Figure-5 Tasks scheduling diagram

From Figure-5,

Total processor idle time=5

Total waiting time of tasks=34

Total execution cycle=39

Total execution time=78 clock cycles

For this above execution cycle, RTEA framework stored these

information in database and generated a report containing these

details. It also generated reports for processor time spent for

communication channels, memory units and other resources

used in application. Now from Figure-5, we can see that

sometimes processor was idle because there was no available

task for execution. Sometimes tasks were waiting for other

tasks to be executed first because they were dependent on those

other tasks. After viewing these results, the process slicing

algorithm was modified to reduce the number of sliced tasks

and their dependencies. Then RTEA framework was again

used to track each execution cycle of the processors for all the

processes executing in the system and provided all information

for analysis.

Figure-6 Tasks dependency graph

Table-2 Tasks details by RTEA framework

 𝒆𝒊 𝒓𝒊 𝒅𝒊

𝐓𝟏 6 0 17

𝐓𝟐 11 0 24

𝐓𝟑 3 12 16

𝐓𝟒 4 0 6

𝐓𝟓 6 5 21

𝐓𝟔 3 10 23

𝐓𝟕 4 6 27

𝐓𝟖 2 10 18

Figure-7 Tasks scheduling diagram

From Figure-7,

Total processor idle time=2

Total waiting time of tasks=0

Total execution cycle=39

Total execution time=42 clock cycles

Now, we can see that the dependencies of tasks are decreased

so as the total execution time. By analyzing these results

designers and developers can redesign their system. The

changes made on the basis of reports generated by RTEA

framework enhanced the overall performance of the system.

Similarly, we can also track the time consumed by other

resources in the system.

6. Conclusion

In this paper we proposed a framework named Real-Time

Execution analyzer for monitoring of Real-Time parallel

processing applications. This framework can be implemented

for any Real-Time parallel processing system. It can monitor

execution of all processes which enhance the overall

performance with minimal cost. This RTEA framework was

implemented over a Virtual Machine Scheduler in this work

and significant results were found.

References

[1] Valera F., Solages A., Bellido V. and Bellido L.

:Parallelism and messaging services in a J2EE-based e-

commerce brokering platform .Experiences in European

projects. In: International Conference on Electronic Commerce

and Rearch-5

[2] https://en.wikipedia.org/wiki/Granularity

[3] Belikov E., Deligiannis P. amd Totoo P. A survey of High-

Level parallel programming models. In:Technical Report HW-

MACS-TR-0103, Heriot-Watt University, Dec 16, 2013

[4] Lakshmanan K., Kato S., and Rajkumar R. :Scheduling

parallel Real-Time tasks on multicore processors :In Proc.

RTSS’10, 2010, pp. 259–268

[5] Saifullah A., Agrawal K., Lu C., and Gill C. :Multi-core

Real-Time scheduling for generalized parallel task models :In

Proc. RTSS’11,2011, pp. 217–226

Author Profile

Swagatika Kar received the B.Tech.

(Computer Science & Engineering) degree

from Synergy Institute of Engineering and

Technology and M.Tech. (Computer

Science) degree from Berhampur

University in the years 2010 and 2014,

respectively. Her area of research involves

Software Engineering, Data Mining, Real-

Time Systems, Cryptography and Service-

Oriented Architectures.

