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Abstract: the life-time of wireless sensor network can easily be prolonged very significantly, with the 

use of energy harvesting technologies. The energy management policy of an energy harvesting WSN 

take into account the energy replenishment process, unlike a traditional WSN powered by non- 

rechargeable batteries. In this paper, we present a study about the energy allocation for transmission 

and sensing in an energy harvesting sensor node with a finite buffer and rechargeable battery. The 

aim of the sensor node is to maximize the total data transmitted in a finite horizon subject to channel 

fading, energy harvesting rate and energy availability in the battery. Here in this paper we present a 

energy distribution algorithm using dynamic programming for energy allocation problem. We 

conduct simulations to compare the performance between our proposed algorithm and the existing 

algorithm from[1]. Simulation results show that the proposed algorithm achieves a higher 

throughput than the existing algorithm under different settings. 

Index Terms—Energy harvesting,Markov 

decision process(MDP),resource allocation, 

wireless sensor network(WSN) 

i) INTRODUCTION 

A wireless sensor network (WSN) is composed of 

a large number of sensor nodes that are deployed 

for various purposes such as environmental 

sensing, monitoring, and maintenance.  A sensor 

node is powered by a non-rechargeable battery, 

having a finite energy storage capacity. so, a 

wireless sensor network can only function for a 

finite amount of time. Various  research work  

have been carried out to prolong the lifetime of a 

WSN by enhancing  its energy efficiency [2]–[5]. 

Alternatively, the idea of energy harvesting was 

proposed to address the problem of finite lifetime 

in a WSN by enabling the wireless sensor nodes to 

replenish energy from ambient sources, such as 

solar, wind, and vibrations [6], [7]. The design 

issues of an energy harvesting WSN are different 

from a non-rechargeable battery operated WSN in 

various ways. As there is unlimited energy 

available to the sensor nodes, an energy harvesting 

WSN can remain operated for a long period of 

time. Hence,to conserve energy is not our 

primarily design issue in energy harvesting WSN. 

Second, the energy management strategy for an 

energy harvesting WSN needs to take into account 

the energy replenishment process. Third, the 

energy availability constraint, which requires the 

energy consumption to be less than the energy 

stored in the battery,must be met at all time. This 

constraint complicates the design of an energy 

management algorithm, since the outcome in the 

future would affected by current energy 

consumption decision. Some of the recent works 

on energy harvesting WSNs have formulated the 

energy management problem as a dynamic 

programming (DP) [8], [9] problem. Ho et al. in 

[1] proposed a throughput-optimal energy 

allocation algorithm for a time- slotted system 

under time-varying fading channel and energy 
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source by using dynamic programming.  A 

throughput-optimal energy allocation policy[10] 

was derived in a continuous time model and some 

suboptimal online waterfilling schemes were 

proposed to address the dimensionality problem 

inherent in the DP solution. Chen et al. in [11] 

studied the energy allocation problem of a single 

node using the shortest path approach. A simple 

distributed heuristic scheme was proposed that 

solved the joint energy allocation and routing 

problem in a rechargeable WSN. Sharma et al. in 

[12] proposed some energy management schemes 

for a single energy harvesting sensor node that 

achieved the maximum throughput and minimum 

mean de- lay. Gatzianas et al. in [13] presented an 

online adaptive transmission scheme for wireless 

networks with rechargeable batteries that 

maximizes total system utility and stabilizes the 

data queue using Lyapunov techniques. In [14], 

utility-optimal energy allocation algorithms were 

proposed for systems with predictable or 

stochastic energy availability. 

Most of these results from [1], [10]–[14] assumed 

either an infinitely long data backlog or data 

buffer. Yet, it is more reasonable if a finite data 

buffer is considered. Besides, the energy 

consumed in data sensing has always been 

overlooked in the literature. This motivates us to 

design an energy distribution algorithm for energy 

harvesting WSNs which takes into account both 

the data sensing energy consumption and the finite 

capacity of the data buffer. The results show that 

the our proposed algorithm achieves a higher 

throughput than the existing algorithm under 

various settings. Here i  study the impact of  data-

sensing efficiency (i.e., the amount of data that the 

sensor can sense per unit energy) on the  

performance of total data transmitted. Unlike the 

various existing works in the literature [1], [10]–

[14], we take into account a finite data buffer and 

the energy consumed for sensing. 

Kansal et al. [15] proposed analytically tractable 

models to characterize the complex time-varying 

nature of en- ergy sources. Distributed algorithms 

were developed to utilize the harvested energy 

efficiently. Srivastava and Koksal [16] analyzed 

the limits of the performance of energy harvesting 

sensor nodes with finite data and energy storage. 

An energy management scheme was proposed that 

achieves the optimal utility asymptotically. Mao et 

al. [17] studied the joint databuffer and 

rechargeable battery control problem that aims to 

maximize the long-term average sensing rate of a 

wireless sensor network. , power allocation,  

routing algorithms and joint rate control were 

proposed for both single-hop and multihop 

networks. Khouzani et al. [18] proposed routing 

and scheduling policies that do not require explicit 

knowledge of the statistics of the energy 

replenishment or the traffic generation processes. 

They were able to learn and adapt to time 

variations in the physical and network 

environments dynamically, to achieve the long- 

term optimal data rates. In [19], energy 

management policies were identified that 

guarantees a minimum average distortion while 

ensuring the stability of the data buffer.Wang and 

Liu [20] considered the near-optimal power 

control policies with a saturated data queue in 

both the finite-horizon and infinite-horizon cases. 
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Fig. 1. System model of an energy harvesting wireless sensor node transmit- ting data to the receiver Rx of the sink. At allocation 

interval m, the random variables are the energy to be harvested hm and the channel gain αm. Due to channel feedback delay and the 

time required to track the energy harvesting rate, we assume that the values of αm−1 and hm−1 are only known at the beginning of 

allocation interval m. The optimization variables (or actions) are the energy consumed for transmission ek and sensing sm. The 

stored battery level is bm and the amount of data available in the buffer is qm. x(sm) is the amount of data obtained by using sk 

amount of energy. The amount of data transmitted in allocation interval m is min{μ(em,αm),qm}. Our problem is to optimally 

allocate em and sm such that the expected total amount of data transmitted until the sensor node stops functioning is maximized.[1] 

 

 

II)         SYSTEM MODEL 

As shown in Fig. 1, we assume a single energy 

harvesting sensor node, which contains a 

rechargeable battery with capacity bmax Joule and 

a data buffer with size qmax Mbits. We assume 

that the system is time-slotted with M time slots 

and the duration of a time slot is K sec.  Let m ∈M 

{0,1,...,M−1} be the index of time slot. The sensor 

node performs sensing in the field, stores the 

sensed data in the buffer, and transmits the data to 

the receiver Rx of the sink over a wireless 

channel. We consider an additive white Gaussian 

noise (AWGN) channel with block flat fading. 

Then the channel will be  constant for the duration 

of each time slot, but may change at the slot 

boundaries. Let αm be the channel gain in time slot 

m. We assume that the sink sends delayed channel 

state infor- mation (CSI) of the previous time slot 

back to the sensor node. In other words, at the 

beginning of time slot m, the sensor node only 

knows the value of αm−1, but not αm. At the 

beginning of time slot m, the stored battery level 

is bm and the amount of stored data in the data 

buffer is qm. During the whole time slot m, the 

sensor node is able to replenish energy by hm, 

which can be used for sensing or transmission in 

time slot m +1 onward. As a result, the sensor 

node does not know the value of hm until the next 

time slot m +1. In other words, at the beginning of 

time slot m, the sensor node knows the value of 

hm−1, but not hm. If the channel gain is αm and the 

allocated transmission energy is em in time slot m, 

so the instantaneous power of transmission  is em 

D , and the sensor node is able to transmit 

μ(em,αm) bits of data in time slot m. so  μ(em,αm) is 

a monotonically non-decreasing and concave 

function in em given αm. One such function is 

given by [21]: 

Qm TX 
Rx 

Bm 
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μ(em,αm)=DW log21+ αmem N0WD bits (1) 

where N0 is the power spectral density of the 

Gaussian noise, and W is the bandwidth of the 

channel. For sensing in time slot m, we letx(sm) be 

the amount of data generated when sm units of 

energy are used for sensing. In general, x(sm) is a 

monotonically non-decreasing and concave 

function in sm. 

 

Y0,a0    y1,a1       y2,a2       y3,a3                                                                                                             yk-2,ak-2        yk-1,ak-1 

 

0             1            2             3                                                                                          k-2            k-1                 time 

 τ  

Fig.[2]      Timing diagram of an MDP[2]

The data obtained by sensing in time slot m will 

be stored in the data buffer until it is transmitted in 

the following time slots. Except for sensing and 

transmission, we assume that other circuits in the 

sensor node consume negligible energy. The 

sensor node needs to decide on em and sm, for all 

m ∈M 

such that the overall expected throughput in the M 

time slots is maximized. To achieve this goal, it 

has to maintain a good tradeoff between the 

energy allocation for em and sm. Given a fixed 

energy budget in a time slot, if em is too small, 

then the throughput in mth time slot will be small. 

However  If em is too large, then sm will be small 

that insufficient amount of sensing data is stored 

in the buffer for transmission in the next time slot, 

which leads to a reduction in throughput. In 

addition, the total energy budget em +sm in time 

slot m should also be carefully controlled. If the 

energy management policy is highly aggressive 

such that the rate of energy harvesting is lesser 

than the rate of energy consumption, it may 

produce an energy outage, which prevents the 

proper functioning of sensor node. On the other 

hand, an overly conservative energy management 

policy would limit the throughput in each time 

slot. Thus it is a challenging problem to decide the 

values of em and sm optimally in each time slot m 

∈M. 

III)       PROBLEM FORMULATION 

In this section, we formulate the problem of 

finding the optimal energy allocation for sensing 

and transmission as a finite-horizon sequential 

decision problem [8], [9], which consists of five 

elements:, states, actions, state transition 

probabilities, decision epochs and rewards. The 

decision epochs are 

m ∈M= {0,1,...,M− 1}.                 (2) 

At the beginning of time slot m, the state of the 

system is denoted as 

Ym =( bm,qm,hm−1,αm−1),                   (3) 

which includes the battery energy state bm and 

data buffer state qm for the current time slot m, as 

well as the energy harvesting state hm−1 and 

channel state αm−1 in the previous m-1 time slot. If 

the  energy state of battery in m time slot , the 

sensor node harvests energy hm units from the 

environment. On the other hand, it consumes em 

units of energy for data transmission and sm units 

of energy for sensing. Since the battery has a finite 

capacity bmax, hence the energy stored in the 

battery is given as 

bm+1 = min{bm − (em + sm)+hm,bmax},∀m ∈M .       

…………………………….  (4) 

It ensures that the maximum stored energy bmax 

is not exceeded. We assume that the initial energy 

b0 is known and satisfies the constraint that 0 ≤ b0 

≤ bmax. Moreover, the amount of energy 
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consumed for sensing and transmission must be 

no more than the battery level: 

 em + sm ≤ bm, ∀m ∈M .            (5) 

Second, for the data buffer state in time slot m, 

x(sm) amount of sensing data are generated and 

queued up in the data buffer if sm units of energy 

are allocated for sensing. On the other hand, 

μ(em,αm) amount of data are transmitted and 

removed from the data buffer if em units of energy 

are used for transmission. However, since the data 

available in the data buffer for transmission at 

time slot m is qm, the throughput at time slot m is 

given by min{μ(em,αm),qm}. Since the data buffer 

is finite with capacity qmax, the amount of data in 

the buffer is then updated as: 

qm+1=min{[qm−μ(em,αm)]+ x(sm),qmax},∀m ∈M ,  

………….  (6) 

with [z]+ = max[z,0]. We assume that the initial 

amount of data in the data buffer q0 is known and 

satisfies 0 ≤ q0 ≤ qmax. Equation (6) implies that 

if the energy allocated by the sensor is high for 

transmission so that μ(em,αm) >qm, then energy is 

properly utilized. On the other hand, if the sensor 

allocates too much energy for sensing so that 

x(sm) >qmax, then the data buffer overflow and 

energy is wasted in network. So the sensor should 

make a proper energy allocation decision at each 

time slot. Third, since the energy harvesting rate 

and the current channel state information at time 

slot m is not known to the sensor, hence we use 

two first order independent   stationary Markovian 

models to model hk and αk. The random variable 

hm takes values in some finite set H = 

{H1,H2,...,HN}. On the other hand the random 

variable αm takes values in some finite set A = 

{A1,A2,...,AM}. The transition probability of these 

two independent random variables are denoted as 

P(hm |hm−1) and P(αm |αm−1). Based on the current 

state ym at time slot m, the sensor will choose to 

consume em units of energy for data transmission 

and sm units of energy for sensing. That is, an 

action (em,sm) is taken for transmission and 

sensing energy allocation from its feasible set 

Um(ym). We have 

(em,sm) ∈ Um(ym)={(em,sm)|em + sm ≤ bm,em≥ 0,sm≥ 

0},         ……………………..(7) 

where Um(ym) represents the feasible set of (em,sm) 

at time slot m. The constraint em + sm ≤ bm, ∀ m ∈ 

M ensures that the amount of energy consumed 

for sensing and transmission must be no more 

than the battery level. In addition, it is possible to 

impose some additional constraints on (em,sm).As 

for example, a constraint on the minimum amount 

of energy for sensing or transmission to ensure a 

minimum amount of sensed data or transmitted 

data for each time slot, respectively. Also, the 

maximum transmission power constraint can be 

imposed. The state transition probability 

P(ym+1 | ym,em,sm) is the probability at time slot m 

when the system will go into state ym+1 if action 

(em,sm) is taken at state ym. So due to the 

independence between (bm+1,hm) and (qm+1,αm) for 

all m ∈M , the state transition probability is.. 

P(ym+1 | ym,em,sm) 

= P(bm+1,qm+1,hm,αm |bm,qm,hm−1,αm−1,em,sm) 

= P(bm+1,hm |bm,hm−1,em,sm)P(qm+1,αm 

|qm,αm−1,em,sm) 

= P(bm+1 |bm,hm,em,sm)P(hm |hm−1) 

×P(qm+1 |qm,αm,em,sm)P(αm |αm−1),                                                                                        

…………………………….(8) 

where 

P(bm+1 |bm,hm,em,sm)        =          1, 

if (4) is satisfied, 

0, otherwise,                                                               

……………………………..(9) 

 

P(qm+1 |qm,αm,em,sm)     =    1, 

if (6) is satisfied, 

0, otherwise.                                      

……………………………(10) 
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P(hm |hm−1) and P(αm |αm−1) are defined  

corresponding to Markov model. 

Given the current state yk and the action (em,sm), 

Eαm[μ(em,αm)] is the expected amount of data that 

can be transmitted when em units of energy are 

used for transmission. As the data available in the 

data buffer for transmission at time slot m is qm, 

the expected throughput (i.e., the amount of data 

transmitted in the time slot) at time slot m is given 

by Eαm[min{μ(em,αm),qm}]. We define the 

expected reward at time slot m to be the expected 

throughput is.. 

Eαm[min{μ(em,αm),q m}] 

= min α∈Aμ(em,α)P(α|αm−1),q m…. (11) 

Let π = {(em(ym),sm(ym)),∀ ym,m ∈ M}be the 

power allocation policy, where(em(ym),sm(ym)) is 

the transmissionand sensing power allocation at 

state ym under policy π.A feasible policy should 

satisfy (7) in all the time slots. Let Π be the 

feasible set of π. Since αm and hm are random 

variables, the sensor node aims to find an optimal 

and feasible sensing and transmit power allocation 

policy π∗ that maximizes the total expected 

reward, i.e., the total expected throughput summed 

over a finite horizon of K time slots. That is, given 

the initial state y0 =( b0,q0,h−1,α−1) in the first 

time slot, it aims to solve the following 

optimization problem 

T ∗ = max π∈ΠM−1   

m=0Emin{qm,μ(em,αm)}y0,π,           (12) 

where E[·] denotes the statistical expectation 

taken over all relevant random variables given 

initial state y0 and policy π. In general, the 

optimization problem in (12) cannot be solved 

independently for each time slot due to the 

causality constraints on different variables. For 

example, the current energy consumption affects 

the energy availability in the next time slot, and 

thus affects the future energy allocation. Also, the 

energy allocated for sensing at the current time 

slot affects the amount of data in the queue for 

transmission in the next time slot. For such 

sequential optimization problem (12) under 

channel condition and energy harvesting rate 

uncertainties, we can solve it optimally using 

finite-horizon DP. 

IV)DYNAMIC PROGRAMMING FOR 

ENERGY ALLOCATION  

In this section, by using finite- horizon DP i solve 

problem (12). Here I proposed  an algorithm to 

achieves the maximal expected throughput in 

problem (12). Let Jm(bm,qm,hm-1,αm−1) be the 

maximum expected throughput from time slot m 

to m −1, given that the system is in state 

(bm,qm,hm-1,αm-1) at time slot m immediately 

before the decision.  The following recursive 

equations starting from m = M − 1 to m =0 given 

by the bellman’s equations.. 

 

For m = M − 1, we have 

Jm−1(bm−1,qm−1,hm−2,αm−2) 

= max (em − 1,sm − 1) ∈ Um − 1(ym − 1)Eαm − 

1[min{μ(em−1,αm−1),qm−1}|αm−2]……..(13(i)) 

For m = M − 2,...,0, we have 

Jm(bm,qm,hm−1,αm−1) 

=max(em,sm)∈Um(ym)Eαm[min{μ(em,αm),qm}|αm−1] 

……………………. (13(ii)) 

+ Ehm,αm[Jm+1(bm+1,qm+1,hm,αm)|hm−1,αm−1], 

where bm+1 and qm+1 are updated as in (4) and (6), 

respectively. Notice that if the feasible set of 

(em,sm) is Um(ym) as defined in (7), then (13a) can 

be simplified as 

JM−1(bm−1,qm−1,hm−2,αm−2) 

=Eαm − 1[min{μ(bm−1,αm−1),q m−1}|αm−2]. 

………………………….(14) 

That is, we use all the available energy for 

transmission in the final time slot. Thus the 

optimal energy allocation for the final time slot is 

(e∗ m−1,s∗ m−1)=( bM−1,0). For (13(ii)), ,the 
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expected immediate throughput for time slot k and 

the expected total future throughput respectively 

for time slot m +1to m − 1 if action (em,sm) is 

chosen. so the equation (13b) describes the 

tradeoff between the current  and the future 

rewards. 

V)   PERFORMANCE EVALUATION 

In this section, we evaluate the performance of our 

proposed algorithm by comparing its achieved 

throughput with that of the existing algorithm 

from [1].  Assuming a band-limited  channel 

having a channel bandwidth W = 100 KHz and the 

noise power spectral density is N0 = 10 −18 

W/Hz. The channel state can be “g = good”, “n = 

normal”, or “b = bad”. It evolves according to the 

three-state Markov chain with the transition 

matrix of the Markov chain given by 

PG  = [

 P𝑏𝑏 𝑃𝑏𝑛 𝑃𝑏𝑔
𝑃𝑛𝑏 𝑃𝑛𝑛 𝑃𝑛𝑔
𝑃𝑔𝑏 𝑃𝑔𝑛 𝑃𝑔𝑔

]  =            

[
 .3 . 7 0

. 25 . 5 . 25
0 . 7 . 3

]          …………(15) 

 

Fig.[3] 

where PAB represents the probability of the 

channel state going from state A to state B , where 

A and B ∈{g,n,b}. The gain of the channel G is 

defined as 1.5 × 10−13, 1 × 10−13, and 0.5 × 10−13 

when the channel state is “Good”, “Normal”, and 

“Bad”, respectively. The  buffer size of 

battery,bmax is consider to be 100 Joules, and the 

data buffer  size , qmax is consider to be  as 1 

Mbits. For tractability, we assume that the energy 

harvesting state em takes values from the finite set 

E = [E1,E2,E3,E4] and  according to the four-state 

Markov chain with the state transition probability 

given by 

Ph  =   [

. 3 . 7 0      0
. 25 . 5 . 25   0

0
0

. 25
0

. 5

. 7
  
. 25
. 3

]    ………(16) 
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Fig[4] 

where PEiEj  represents the probability of the 

energy harvesting state going from state Ei to state 

Ej, ∀ i, j ∈ {1,2,3,4}. The probability of steady 

state  is then given by [PE1 PE2 PE3 PE4] = [0 .13 

0.37 0.37 0.13]. 

x(sm) is assumed to be a linear function and given 

by 

x(sm)=γsm,   …………..        (17) 

where γ is the parameter fordata-sensing 

efficiency. Where i denote the average throughput 

as H’ ,hence given by 

¯        H’ =  
𝐻∗

𝑀
,   ……………        (18) 

 

 

 

 

 

Fig.[5] 
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where H ∗ is the maximal total expected 

throughput over K time slots defined in (12).  

Algorithm in [1] neglected the sensing energy and 

assumed infinite backlogged data. For comparison 

purpose, we modify the proposed  algorithm with 

size qmax . We assume that the sensor allocates a 

fixed percentage of energy available in the battery 

for sensing in each time slot, and optimizes the 

energy allocated for transmission. By examining 

the average throughput H of the existing algorithm 

with different number of total time slots M. The 

efficiency parameter of data-sensing γ is set to be 

0.02 Mbits/J.So in the existing algorithm We set 

the fixed percentage of energy for sensing. The 

value of energy harvesting rate is taken from the 

set E = {E1,E2,E3,E4} = {6,12,18,24} J/time slot. 

our proposed algorithm achieves 32% higher 

average throughput than the existing algorithm 

when M = 30. The reason is that in the existing 

algorithm, the sensor just controls the 

transmission energy . However, in our proposed 

algorithm, the sensing energy and transmitting 

energy both is allocated  optimally, in turn which 

gives us a better performance than the previous 

algorithm. 

 

 

 

Fig.[6] 

we consider the performance of the two 

algorithms under different average energy 

harvesting rates.  Here we plot the average 

throughput versus the average energy harvesting 

rate. However if E is high we observe that our 

proposed algorithm performs much better than the 

existing algorithm. As shown in Fig. 3 & 4, our 

proposed algorithm achieves 105% higher average 

throughput than the existing algorithm when the 

average energy harvesting rate ¯ E = 35J/time slot. 

Moreover, as the harvested energy cannot be 

accommodated the throughput of the existing 

algorithm saturates very quickly as the average 

harvesting rate is increased.But in our proposed 

algorithm, energy wastage will not occur as long 

as the data buffer is large enough and  harvesting 

rate is less than bmax. The reason for the better 

performance  is that under the proposed algorithm, 

the sensor node maintains a good balance between 

the energy allocated for sensing and transmission. 
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Finally, we study the average throughput under 

different value of γ. since the sensor node spends 

less energy for sensing the same amount of data, 

A larger value of γ corresponds to a higher data 

sensing efficiency,as shoen in fig. 5 & 6 when γ is 

increased.because more energy is available for 

data transmission the throughput increases as 

well.However the performance saturates as γ is 

increased beyond a limited value. When γ 

approaches infinite, it corresponds to the case 

where sensing is highly efficient.

VI)          CONCLUSIONS 

Here, i studied the problem of maximizing the 

total amount of data transmitted under channel 

fluctuations and energy harvesting rate variations 

in a time-slotted system for an energy harvesting 

sensor node. First time the energy consumed and a 

finite data buffer for sensing data was considered.  

Sensor should achieve a good tradeoff between 

the energy consumed for  transmission and 

sensing. Here i discussed the problem as an 

infinite-horizon markov decision process. I 

obtained the new policy and proposed an new 

algorithm based on value iterations in the MDP. 

So i assume that there was infinite data back-log 

we studied the transmission energy allocation 

problem. I proved that the existing policy was a 

monotonically increasing function of the available 

battery energy and obtained structural results for 

the existing policy. Finally,  simulate the  results 

to compare the performances of our proposed 

algorithm with  the previous existing algorithms. 

We also studied that how the total amount of data 

transmitted depends on the average energy 

harvesting rate, the data sensing efficiency and 

various other parameters. The outcome showed 

that this algorithm transmitted the largest amount 

of data among the three algorithms. Future work is 

the extension of our model to a multihop setting 

for data transmission. 
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