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Abstract: In this proposed work, video deblurring can be done by iterative operations on blurred frames using Accurate Blur 

Kernel estimation and residual deconvolution processes. In general, while recording a video sequence using a digital camera or 

a digital camcorder, blurred frames may happen sparsely. The proposed work involves a novel motion deblurring algorithm in 

which a blurred frame can be reconstructed utilizing the high-resolution information of adjacent unblurred frames. First, a 

motion- compensated predictor for the blurred frame is derived from its neighboring unblurred frame via specific motion 

estimation. Then, an accurate blur kernel is computed using both predictor and the blurred frame. Next, a residual deconvolution 

is applied to both of those frames in order to reduce the ringing artifacts inherently caused by conventional deconvolution. The 

blur kernel estimation and deconvolution processes are iteratively performed for the deblurred frame. Simulation results show 

that the proposed algorithm provides superior deblurring results over conventional deblurring algorithms while preserving 

details. 

Keywords: Blur kernel, deblurring, motion compensation, 

residue deconvolution, unblurred frame.  

1. Introduction 

A motion blur is a common artifact that causes visually 

annoying blurry images due to inevitable information loss. 

This is due to the nature of imaging sensors, which accumulate 

incoming light for a certain amount of time to produce an 

image. During the exposure time, if the camera sensor moves, 

motion blurred images will be obtained. Especially, such a 

motion blur phenomenon often occurs in a dim lighting 

environment where a long exposure time is required. If the 

motion blur is shift-invariant, it can be modeled as the 

convolution of a latent image I with a motion blur kernel K, 

i.e., a point spread function (PSF), in which the kernel 

describes the trace of the image sensor. 

B = I ⊗ K 

Where B is an input blurred image and ⊗ is the convolution 

operator. 

The main goal of deblurring is to reconstruct the latent 

image I from the input blurred image B. In general, image 

deblurring can be categorized into two types: blind 

deconvolution and non-blind deconvolution. The former is 

more difficult because the blur kernel is normally unknown. 

This paper will focus on blind deconvolution. Recently, a lot of 

single image blind deconvolution algorithms have been 

developed [1]–[9]. Fergus et al. used a variational Bayesian 

method with natural image statistics to deblur a single image 

[2]. Their algorithm has a drawback in that a proper image 

patch for kernel estimation should be selected by the user in 

advance. So, the performance of this algorithm highly depends 

on the patch selection. Shan et al. formulated the deblurring 

problem as an MAP (maximum a posteriori) problem, and 

proposed an image noise model of high-order derivatives, and 

employed a local image prior in advance in order to avoid 

trivial solutions [3]. However, since their algorithm incurs a 

heavy computational cost due to the MAP estimation process, 

it may often fail to deblur the images with a large size of blur 

kernels, on general purpose CPUs. Furthermore, Shan’s 

algorithm tends to provide inaccurate and unstable 

performance for a large size of blur kernels, even though it 

shows satisfactory deblurring results in the case of relatively 

small Ks, e.g., 30 × 30 pixels or fewer. In order to mitigate the 

computational burden of the above-mentioned algorithms, Cho 

and Lee presented a fast deconvolution technique that reduces 

the computational overhead for latent image estimation and 

kernel estimation [4]. For kernel estimation, they formulated an 

optimization function using image derivatives and accelerated 

the numerical process by reducing the number of Fourier 

transforms needed for a conjugate gradient method. But, in 

spite of the fast processing of Cho’s algorithm, its deblurring 

performance is slightly inferior to that found in the previous 

works. Xu and Jia proposed a two-phase kernel estimation 

algorithm to separate computationally expensive non-convex 

optimization from quick kernel initialization [5]. For precise 

kernel estimation, they employed spatial priors and iterative 

support detection kernel refinement, both of which avoid hard-

thresholding the kernel elements to enforce sparsity. However, 

their motion deblurring schemes may fail if considerably 

strong and complex textures exist in the latent image. Levin et 

al. summarized the afore-mentioned single image deblurring 

problems in detail and provided theoretical analysis in [9]. 

On the other hand, the video sequences acquired by digital 

camcorders under a dim lighting environment may include 

sparsely existing blurred frames, which cause a sort of 

flickering phenomenon during real-time display. So, we 

thought that if we could exploit adjacent unblurred frames to 

recover the blurred frames, we could obtain much more 

accurate kernels and almost artifact-free images. Cho et al. 
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proposed an example-based approach which directly exploits 

similar patches from a nearby sharp frame of the current 

blurred frame [26]. But, they did not incorporate the de-

convolution techniques into the proposed patch synthesis 

algorithm.  

This paper presents a video deblurring algorithm that utilizes 

the neighborhood of unblurred frames. First, an initial blur 

kernel of an input blurred frame is estimated, and the nearest 

neighbor of the blurred frame is chosen among the unblurred 

frames. And then, the selected frame is deliberately blurred 

using the initially estimated kernel. Next, motion estimation is 

performed between the input blurred frame and the artificially 

blurred neighbor, and the motion compensated predictor of the 

blurred input is obtained. Then, the blur kernel is refined using 

the input blurred frame and its motion-compensated predictor, 

and deconvolution based on the refined blur kernel is finally 

applied to the blurred frame. Here, in order to mitigate the so-

called ringing phenomenon during deconvolution, we propose 

a residual deconvolution that deconvolutes the motion-

compensated residue. This entire process is iterated until the 

residue value becomes sufficiently small. From the intensive 

simulation results, we were able to find that the proposed 

algorithm provides significantly better visual quality, and it 

also shows about 4dB higher ISNR (the increase in signal to 

noise ratio) at maximum than the state-of- the-art deblurring 

methods. 

 
Figure 1: Example of a Blurred Frame in a Video Sequence 

 

 

 
Figure 2: Block Diagram of the Proposed Algorithm 

 

 

 

 

 

 

 

 
Figure 3: Feasibility of the proposed deblurring scheme.    (a) 

Reference unblurred frame R. (b) Blurred input B. 

(c) Motion vector field on B. (d) Motion-compensated frame 

Im. (e) Deblurred frame. (f) Original frame. Here, the upper-left 

boxes in (b) and (e) indicate the original and estimated blur 

kernels, respectively. 
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Figure 4: Example of blur detection. The leftmost tile 

indicates the representative tile in the first frame, and the 

others are the tracked tiles. The bottom numbers stand for 

frame numbers and the figures in parentheses refer to relative 

edge energy. 

 

 

Figure 5: (a) Motion estimation. (b) Four neighbor blocks for 

OBMC. 

 

 

 

Figure 6: Weight matrices for OBMC. 

 

 

 

 

 

 

 

Figure 7: Proposed residue deconvolution process. 

 

 

Figure 8: Average frame difference between the current 

deblurred frame and the resulting frame of the previous 

iteration according to the number of iterations. 

 

Figure 9: (a) Blurred frame and the original blur kernel.   (b) 

Our deblurring result and the estimated blur kernel. 

 

 

 

 

 

 

 

 

 

2. Proposed algorithm 
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This paper assumes that the blur kernel is shift-invariant, 

and that the blur phenomenon sparsely happens in a video 

sequence. Figure 1 illustrates a sparsely occurring blurred 

frame in a video sequence recorded by digital camcorder under 

a dim lighting environment. Our goal is to reconstruct a high 

quality version of the blurred frame in the video sequence.  

Let B and R denote a target blurred frame Fn and its nearest 

unblurred frame Fn−1, respectively. Figure 2 provides an 

overview of the proposed algorithm. First, the blurred frame B 

can be detected using edge energy information. Since the edge 

energy of the blurred frame is noticeably small, we can find the 

position of each blurred frame by comparing edge energies. 

Next, an initial kernel of the blurred frame is estimated and R 

is deliberately blurred using the initial blur kernel. Then, 

motion estimation is performed between B and the artificially 

blurred R. Next, the blur kernel is re-computed using B and the 

motion-compensated predictor of B, which is denoted by Im. 

Finally, once K is refined, we can use Eq. (1) to non-blindly 

recover I from B. As can be seen in Figure 2, this entire 

process is iterated until an acceptable I is produced. 

The main contribution of the proposed algorithm is to 

present an effective deblurring mechanism for video 

sequences. First, accurate registration between two adjacent 

frames in a video sequence, i.e., B and R, accelerates the 

precise estimation of blur kernel. Also, subsequent residual 

deconvolution significantly suppresses visually annoying 

ringing artifacts in the deblurred video frames. For example, 

Figure 3 shows that the deblurring result derived from Im 

provides significantly better visual quality than Im. For this 

experiment, a specific frame in a video sequence is artificially 

blurred, as shown in Figure 3(b). Note that even though Im 

possesses most of the details of the original, it still has 

limitations. From the close-ups of Figure 3(d) and (e), we can 

observe that the proposed algorithm successfully reconstructs 

even fine details in motion [see Figure 3(c) and (e)]. The 

following subsections describe the key components of the 

proposed algorithm. 

 

1.1. Initial kernel estimation and registration between blurred 

and unblurred frames 

In this step, we derive an initial blur kernel of B and produce 

the motion-compensated predictor Im corresponding 

to B. Prior to the main processing, the blurred frames should be 

detected, as in Figure 2. Assume that the blur detection is 

performed on a shot basis in the video sequence, and the first 

frame of each shot is not blurred. We compute the edge 

energies of all the overlapping tiles in the first frame, and 

choose a tile having maximum edge energy as the 

representative tile TR. Here, the tile size is empirically set to 

128 × 128, a half of each tile is overlapped with its neighbors, 

and the edge energy of each pixel in the tile is computed via 

Sobel operator and averaged. Note that tiles having higher edge 

energy tend to be more sensitive to blur phenomenon. Then, 

for the following frames, TR is tracked and the edge energy of 

the tracked tile is compared with that of TR. In this paper, if the 

edge energy of the tracked tile in a certain frame drops to 30% 

below that of TR, we determine that frame to be the blurred 

frame B, and define the nearest unblurred frame to B as R. A 

typical full search block matching algorithm is employed for 

this tracking process, and the search range is set to [−64], [64] 

× [−64], [64]. Figure 4 illustrates an example of the blur 

detection. Several frames in Jets sequence are artificially 

blurred for this example. Every edge-energy is normalized by 

re-scaling the edge energy of TR to 100. We can observe that 

the artificially blurred frames, i.e., the 2nd, 3rd, 4th, 5th, and 9th 

frames are exactly chosen as the blurred frames according to 

the afore-mentioned rule.  

Next, for each B we generate a sharp reference image that is 

motion-compensated from R by the motion vector (MV) field 

between B and R. In general, it is very hard to find an accurate 

MV field between blurred and unblurred frames. Yuan et al. 

presented an effective alignment approach for a blur kernel. 

But, their kernel estimation highly depends on the search 

intervals and ranges for the rotation angle and the scale, and 

rarely handles more complex motion, e.g., perspective 

transformation or non-global motion. Thus, we estimate an 

initial blur kernel for B and artificially blur R by using the 

estimated blur kernel Ki. For the kernel estimation, we 

employed a fast kernel estimation algorithm proposed in [4]. 

Then, motion estimation (ME) is applied between B and the 

artificially blurred R, i.e., Ib. In order to minimize the motion 

compensated error and artifacts, we adopted a hierarchical ME 

from [25], which was used for motion-compensated super 

resolution.  

First, the MV for an overlapping M ×M matching block is 

searched by a full search, and the selected MV for the        M × 

M block is allocated to its central L × L block, as is shown in 

Figure 5(a). Direct motion compensation often causes blocking 

artifacts. In order to reduce such artifacts, we adopt the so-

called OBMC (overlapped block motion compensation), 

exploiting the four neighboring MVs, as shown in Figure 5(b). 

In this paper, the OBMC is performed on a 4 × 4 block basis. 

The pixel value at (i, j) of a certain         4 × 4 block is motion-

compensated as follows: 

),(),(),(),(),( jiRjiWjiRjiWjiI TTCC

m   

                 ),(),(),(),( jiRjiWjiRjiW LLBB   

                  ),(),( jiRjiW RR                                     (2) 

where the weight matrices for the OBMC are defined in 

Figure 6. In Eq. (2), RC(i, j), RT
 (i, j), RB(i, j ), RL

 (i, j), RR(i, j ) 

are the pixel values at (i, j ) in the motion-compensated blocks 

corresponding to current MV, MVs of the top neighbor block, 

the bottom neighbor block, the left neighbor block, and the 

right neighbor block, respectively. Note that ME is performed 

between B and Ib, but the motion-compensated blocks are 

derived from the unblurred reference frame R. So, we can 

obtain a sharp reference frame Im for the deblurring of B. 

The accuracy of the initial blur kernel and the high quality of 

Im which can be achieved in this step quite positively affect the 

overall performance of the proposed algorithm. Since an 

inaccurate blur kernel causes poor registration, it deteriorates 

Im. As a result, the degraded Im gives rise to an unsatisfactory 

visual quality of the final deblurred frame. Even though further 

steps such as kernel refinement and deconvolution mitigate the 

performance degradation caused by inaccurate blur kernel, the 

performance decline of the overall system is ultimately 

unavoidable. 

 

 

1.2. Kernel Refinement 

Now, we refine the blur kernel by using Im and B. Here, the 

initial blur kernel is Ki . Note that as Im is closer to the 

original latent frame, the refined kernel may be more similar to 

its original kernel. Eq. (1) can be represented in matrix form as 

follows: 

                                      b = A k                                      (3) 

where b, A, and k denote matrix forms of B, I, and K, 

respectively. Let K’ be the refined kernel. We can derive the 

best K’ via a minimization process of Eq. (4).  
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                22 ||||||||min kbAkK
k

       (4) 

Here, Tikhonov regularization is employed to find a stable 

solution, and λ is empirically set to 5. In order to solve Eq. (4), 

we use the so-called conjugate gradient (CG) method. Then, 

the gradient of the cost is defined by 

bAkAkAkbAk
k

TT 222]||||||[|| 22 



   (5) 

Eq. (5) should be evaluated many times in the minimization 

process. So, this direct computation of matrix operations 

requires heavy computational and storage overhead. 

Fortunately, since A
T
Ak and A

T
b correspond to convolution, 

we can accelerate the computation by fast Fourier Transforms 

(FFTs), as in Eq. (7). 

)]()1()1([1 KFFFFAkAT         (6) 

   )]()1([1 BFFFbAT                 (7) 

Here, F(X) and F(X) indicate the FFTs of a matrix X and its 

complex conjugate, respectively. Also, ◦ stands for pixel-wise 

multiplication. In addition, we adopted a coarse-to-fine 

approach to reduce computational complexity. The pyramids 

are constructed using a down sampling factor of 1/√2 until the 

kernel size at the coarsest level reaches 9 × 9. Finally, the 

refined kernel K’ is normalized for energy preservation. 

 

1.3. Deconvolution 

Given the refined blur kernel K , the final deblurred frame 

I   can be reconstructed from Im and B, as shown in Figure 7. In 

this paper, we start from the concept of residual deconvolution 

proposed by Yuan et al. in [13]. Instead of the direct 

deconvolution of B, Yuan et al. deconvoluted the residual 

blurred image to remove the ringing artifacts. However, since 

there is generally a shift between the neighboring frame pairs, 

such a deconvolution rarely works for video sequences. So, we 

utilize Im, i.e., the motion-compensated predictor from R 

instead of R itself for deconvolution. Thus, we perform 

deconvolution on the residual blurred frame ∆B ≡ ∆I  K  to 

recover the motion-compensated residual frame ∆I. ∆B is 

derived from the following equation: 

             )( KIBB m
        (8) 

From Eq. (8), ∆ I   can be derived via deconvolution. Here, we 

employed a simple deconvolution algorithm using a 

Gaussian-prior. Finally, the deblurred frame is obtained by 

.III m
 Note that as ME becomes more accurate, 

∆B has less energy. Therefore, while preserving sharp edges 

thanks to Im, the residual deconvolution can predict I  with 

noticeably suppressed ringing artifacts.  

For more accurate deblurring, the above-mentioned processes 

are iterated as shown in Figure 2. Note that at the 1st iteration, 

ME is applied to Ib and B, but from the next iterations it is 

performed directly between I   and R to find 

accurate MVs. The iteration is terminated if the average frame 

difference between the result frames of the current and 

previous iterations (AFD) is sufficiently small. Figure 8 shows 

the AFD values per pixel according to the number of iterations. 

3. Experimental results 

For quantitative evaluation, we applied the proposed algorithm 

to several well-known 1280 × 720 video sequences that 

included artificially blurred frames. For this experiment, we 

blurred several frames of four well-known 1280 × 720 video 

sequences: Shields, Night, City, and Jets by using a few blur 

kernels. For intensive experiments, we selected video 

sequences having various motion types. For instance, the 

dominant motion of Shields is panning,and Night includes 

many different object motions. Also, City has a little rotation as 

well as panning, and Jets’s dominant motion is zooming. For 

motion estimation, the matching block size and motion search 

range were set to 16 × 16 and ±64, respectively. The MV for 

the overlapping 16 × 16 matching block is searched by the full 

search, and the selected MV for the 16 × 16 block is allocated 

to its central 4 × 4 block, as shown in Figure 5(a). We 

compared the proposed algorithm with four state-of-the- art 

algorithms: Fergus’s [2], Shan’s [3], Cho’s [4], and Xu’s 

algorithms [5]. For fair comparison, we employed the so-called 

ISNR (the increase in signal to noise ratio) proposed by 

Almeida [6]. The ISNR is defined as follows; 

2
2

2
2

10
||)(||

||)(||
log10

IIf

IBf
ISNR




       (9) 

where f (.) indicates the affine transformation, and the best 

parameters are estimated between two corresponding frames 

prior to ISNR calculation. The MATLAB routines for computing 

the ISNR are available at 

http://www.lx.it.pt/∼mscla/BID_QM.htm. The higher ISNR 

values indicate that I   becomes closer to I. First, we compared 

the ISNR values of the proposed algorithm according to the 

frame distances between B and R because the blur phenomenon 

happens in a burst, and the distance of R from B may be long in 

such a case. Table 1 shows the ISNR comparison results. 

Table 1:  

ISNR comparison according to the frame distances between B 

and R [dB] 

 
The Frame Distance Between B and R 

1 2 3 4 5 

Shields 7.63 7.01 6.18 6.39 6.96 

Night 9.82 8.94 8.09 8.79 6.01 

City 9.03 9.24 9.13 9.17 8.77 

Jets 5.38 6.26 6.09 5.56 5.59 
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Figure 10: Deblurred results for the Shields sequence. (a) 

Input blurred frame. (b) Fergus’s. (c) Shan’s. (d) Cho’s. (e) 

Xu’s. (f) Proposed algorithm. Here, the upper-left boxes  

indicate original or estimated blur kernels. 

 

 

 
Figure 11: Deblurred results for the Night sequence. (a) Input 

blurred frame. (b) Fergus’s. (c) Shan’s. (d) Cho’s. (e) Xu’s. (f) 

Proposed algorithm. Here, the upper-left boxes indicate 

original or estimated blur kernels. 
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Figure 12: Deblurred results for the City sequence. (a) Input 

blurred frame. (b) Fergus’s. (c) Shan’s. (d) Cho’s. (e) Xu’s. (f) 

Proposed algorithm. Here, the upper-left boxes indicate 

original or estimated blur kernels. 

 

 

 
Figure 13: Deblurred results for the Jets sequence. (a) Input 

blurred frame. (b) Fergus’s. (c) Shan’s. (d) Cho’s. (e) Xu’s. (f) 

Proposed algorithm. Here, the upper-left boxes indicate 

original or estimated blur kernels. 

 

 

4.  Conclusion 
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This paper presents an iterative video deblurring algorithm 

utilizing a neighborhood of unblurred frames. First, the sharp 

predictor of a blurred frame is derived from its neighboring 

unblurred frame using motion estimation. Second, an accurate 

blur kernel is computed using the predictor and the blurred 

frame. Third, again using both of those frames, a residual 

deconvolution is proposed to significantly reduce the ringing 

artifacts inherent in conventional deconvolution. From 

experimental results we proved that the proposed algorithm 

reconstructs details better than conventional algorithms do, 

with fewer ringing artifacts. In this paper, we assume that the 

blur kernel is shift-invariant. As for further work, we plan to 

extend our approach to shift-variant blur kernels. 
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