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Abstract--Graph signal processing must explicitly consider the structure of the signal. To propose M channel filter bank for graph 

signal. Oversampled graph filter bank can be used to de-noise graph signals. Over sampling improves resolution, reduces noise and 

helps avoiding aliasing and phase distortion by relaxing anti-aliasing filter performance. Oversampled scheme that uses an 

oversampled wavelet transform in oversampled scheme. It provides better noiseless graph signal. Here noise reduction can be done by 

using Chebychev filter. Chevebychev filter minimize the error between the idealized and the actual filter characteristic over the range 

of the filter. Wavelet transform captures both frequency and time. 

Keywords--Graph signal processing, oversampling, wavelet 

transform. 

 
I. INTRODUCTION 

Different kinds of time–frequency localized waveforms 

have been subsequently used in signal processing. 

Oversampled filter banks whose number of channels is 

greater than their sub-sampling factor, because they can 

provide improved noise and erasure resistance [2]. Many 

signal processing techniques are based on transform 

methods, where the input data is represented in a new basis 

before analysis or processing [4]. One of the most successful 

types of transforms in use is wavelet transform.  

 

In the first step, acoustic signal can be taken for 

oversampling process. A bandwidth-limited signal can be 

perfectly reconstructed, if sampled at or above the Nyquist 

rate, which is twice the highest frequency in the signal. 

Oversampling improves resolution, reduces noise and helps 

avoid aliasing and phase distortion by relaxing anti aliasing 

performance [1].  

In the second step, wavelet transform is applied. 

Wavelet compression is a form of data compression well 

suited for audio compression [2]-[4]. Coefficients can then 

be compressed easily because of the information is statically 

concentrated in just a few coefficients. This principle is 

called transform coding. After that the coefficients are 

quantized and quantized values are entropy encoded and run 

length encoded. It captures both frequency and time.  

The remaining part of this paper is organized as 

follows. Section II over sampled filter banks. Multi 

dimensional separable wavelets filter banks for arbitrary 

graphs in Section III. Section IV gives the experimental 

results and Section V presents the conclusion.  

 
II. OVER SAMPLED FILTER BANKS 

We consider a filter bank with M channels and sub 

sampling by the integer factor N in each channel. The filter 

bank is assumed to have perfect reconstruction with zero 

delay [15]-[17]. 

 

Fig.1 Block diagram of M-channel critically sampled filter bank 

A subsequent down sampling, up sampling operation, 

discards and replaces with zeros the output coefficients on 

the set L in the low pass channel and on the set H in the 

high pass channel. Since L and H are disjoint and 

complementary subsets of vertex set V, the retained set of 

output coefficients is critically sampled. 

 

Output at the low pass channel is, YL=1/2(IN-M) 

Output at the high pass channel is, YH=1/2(IN+M) 

Then the overall transfer function is, 

f=1/2 G0(I-M)H0+ 1/2 G1(I+M)H1 

  =1/2(G0H0+G1MH1) + 1/2 (G1JH1-G0MH0) =IN 

In this case, Hk=∑ i€σ(£)hk(λi)Pλi is a filter in the analysis 

section, Gk==∑ i€σ(£)gk(λi)Pλi is a filter in the synthesis 

section. A necessary and sufficient condition for the perfect 

reconstruction in the two channel filter bank is,  
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The advantage of representing perfect reconstruction 

conditions is that the filter bank can be designed in the 

spectral domain of the graph by designing spectral kernels 

which satisfy [2]. 

III. OVERSAMPLED GRAPH SIGNALS 

In this section, we describe the actual oversampled 

position in the signal processing flow of spectral graph 

signal processing and explicitly show the redundancy of the 

oversampled graph filter bank. 

A. TWO-CHANNEL FILTER BANK CONDITIONS 

FOR BIPARTITE GRAPHS 

The nodes in H only retain the output of high pass 

channel and nodes in L retain the output of the low pass 

channel. In our proposed design, we also choose the 

synthesis filters G0 and G1 to be spectral filters with kernels 

G0( ) and G1( ) respectively. Then, by using the perfect 

reconstruction conditions it can be rewritten as: 

   Teq = G0H0 +G1H1 

          =                              P  

Talias = G1JβH1 -G0JβH0 

           =                                 P JβPγ 

1) Aliasing cancellation: Using the spectral folding property 

of bipartite graphs, Talias f can be written as: 

Taliasf =                                  P2-

 Jβf 

        =                               

 )P Jβf
2-  

Since, Jβf
2- is the aliasing term corresponding to f , 

Taliasf is the aliasing part of the reconstructed signal, and an 

alias-free reconstruction using spectral filters is possible if 

and only if for all  in (G), 

G0( )H0(2 - ) -G1( )H1(2 - ) = 0 

B. PERFECT RECONSTRUCTION 

Perfect reconstruction means that the reconstructed 

signal  
 

is the same as the input signal f. Teq +Talias = I. 

Therefore assuming the filter banks cancel aliasing, the 

perfect reconstruction can be obtained if and only if Teq 

=c
2
I for some scalar constant c. Thus, a necessary and 

sufficient condition for perfect reconstruction, using spectral 

filters, in bipartite graphs filter banks is that for all   in 

 (G), 

G0( )H0( ) + G1( )H1( ) = c2; 

G0( )H0(2-  ) -G1( )H1(2 -  ) = 0 

IV. MULTI-DIMENSIONAL SEPARABLE 

WAVELET FILTER BANKS FOR 

ARBITRARY GRAPHS 

At stage i with sets Hi and Li, Ei contains all the links 

in       
   Ek that connect vertices in Li to vertices in Hi. 

Thus E1 will contain all edges between H1 and L1. Then, 

we will assign to E2all the links between node sin H2 and 

L2 that were not already in E1. This is also illustrated in 

Figure 2. Note that, by construction and B2 (H1), which 

each will be processed independently by one of the two 

filter banks at this second stage. Clearly, this guarantees 

invertibility of the decomposition. So it will be possible to 

recover the signals in B2 (L1) and B2 (H1) from the outputs 

of the 2nd stage of the decomposition. The same argument 

can be applied to the decompositions with more than two 

stages. That is, the output of a two-channel filter bank at 

level i leads to two sub graphs, one per channel, that are 

disconnected when considering the remaining edges 

      
  The output of a Klevel decomposition leads to 2K 

disconnected sub graphs. 

 

Fig. 2 Example for graph over sampling 

SPECTRAL GRAPH WAVELET TRANSFORM 

The transform will be determined by the choice of a 

kernel function G: R
+ R

+
. This kernel g should behave as a 

band-pass filter, i.e. it satisfies         G(0) = 0. 

 

WAVELETS 

The spectral graph wavelet transform is generated by 

wavelet operators that are Operator valued functions of the 

Laplacian. Spectral graph wavelet kernel g, the wavelet 

operator Tg= g(L)acts on the Fourier mode as, 

  
 

gf(l) = g( l) 
 

(l) 

Inverse Fourier mode is, 

(Tgf)(m) =          
    

 

(l) l(m) 

The wavelet operators at scale t is then defined by Tt
g
=g(Tl). 

In graph domain it can be expanded as, 

Ψt, n (m)=          
   l*(n)χl(m) 

The wavelet coefficients of a given function f are produced 

by taking the inner product with wavelets, 

Wf(t,n)=<ψt,n,f> 

Wavelet coefficients are achieved as, 

Wf(t, n)=         
   χl(m) 

 

(l) 

 

SCALING FUNCTION OF WAVELET TRANSFORM 

 

Wavelets are defined by the wavelet function ψ (t) and 

scaling function φ (t) in the time domain. The wavelet 

function is in effect a band-pass filter and scaling it for each 

level halves its bandwidth. These spectral graph scaling 
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functions have an analogous construction to the spectral 

graph wavelets. They will be determined by a single real 

valued function h: R
+ R, which acts as a low pass filter and 

satisfies h (0) >0 and h (x)  0 as x  . The scaling 

functions help ensure stable recovery of the original signal f 

from the wavelet coefficients when the scale parameter t is 

sampled at a discrete number of values. 
 

V. EXPERIMENTAL RESULTS 

Below figure 3 shows the output graph of the applied 

input signal. In this case the below graph is the relationship 

between frequency in hertz and amplitude in voltage. 

 

 
 

Fig. 3 Input signal 

 

 

Fig. 4 Input signal after addition of noise 

Spectrograms can be used to analyze the results of 

passing a test signal through a signal processor such as a 

filter in order to check its performance. A spectrogram is a 

visual representation of the spectrum of frequencies in a 

sound or other signal as they vary with time or some other 

variable. Spectrograms are sometimes called spectral 

waterfalls, voice prints. Spectrograms can be used to 

identify spoken words phonetically and to analyze the 

various calls of animals. They are used extensively in the 

development of the fields of music, sonar, radar, and speech 

processing, seismology, etc. Spectrogram of the given input 

signal is shown below. Spectrogram usually created by filter 

bank that results from a series of band pass filters. 

DENOISING 

De-noising removes white Gaussian noise from the 

acoustic signal. Over sampled filter bank is combined with 

the spectral graph wavelet transform by using more number 

of channels. This operation is established by using matlab. 

Over sampled graph filter banks consider all the edges in the 

bi partition filter bank output. 

 

Fig. 5 Spectrum of the input signal 

Below figure 6 shows the resultant output after the over 

sampling and wavelet transform. In this case noise is 

removed by using chebychev filter. 

 

Fig. 6 Final result 

V. CONCLUSION 

We have proposed the construction of critically 

sampled wavelet filter banks for analyzing graph-signals 

defined on any arbitrary finite weighted graph. It can be 

successfully applied in many different places were signal 

extraction, de-noising and many real time applications. 
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