
International Journal of scientific research and management
(IJSRM) ||Volume 2 ||Issue 11||Pages|| 1731-1735 ||Nov 2014||
Website: www.ijsrm.in ISSN (e): 2321-3418

Miss Priyanka Phakade, Dr. Suhas Raut, IJSRM volume 2 issue 11 Nov 2014 [www.ijsrm.in] Page 1731

A Paradigm Shift for Improved Processing of Small

Files in Hadoop

Miss Priyanka G. Phakade
1
, Dr. Suhas D. Raut

2

1N.K. Orchid College of Engineering and Technology, Solapur

priyankaphakade@gmail.com

2N.K. Orchid College of Engineering and Technology, Solapur

suhasraut@gmail.com

Abstract: HDFS is designed to handle large files containing petabytes or exabytes of data. However, there are plenty of applications that

need access & manipulation of large number of small files. HDFS suffers performance penalty while dealing with large number of small

files. With the rapid development of Internet, users may tend to store their data and programs in a cloud computing platform.

Personal data has an obvious feature –large number and small file size. In such cases, HDFS struggles to meet performance criteria. In

hadoop architecture, the FileInputFormat generates a split per file. Map tasks usually process a block of input at a time. In case of large

number of small files, each map task processes very little input. Every map task imposes extra bookkeeping overhead on NameNode and also

consumes considerable time to process large number of small files. We have attempted a strategy wherein large number of small files are

clubbed together to form a single split. This inherently reduces number of blocks generated by FileInputFormat, resulting in lesser

processing time. Clubbing of small files is achieved through a customized mapper. Practical setup has indicated performance improvement

of around 80%. The paper covers this paradigm shift in processing large number of small files in HDFS for performance improvement.

Keywords: Hadoop Distributed File System; mapreduce; map task; small files.

1. Introduction

The Hadoop Distributed File System (HDFS) [7] is a

distributed file system designed to run on commodity hardware.

HDFS provides efficient access to application data and is

suitable for applications having big data sets[6]. Hadoop is an

open-source software framework developed for reliable,

scalable, distributed computing and storage [19]. It is gaining

increasing popularity for building big data ecosystem such as

Cloud based on it [14]. Hadoop distributed file system (HDFS),

which is inspired by Google file system [13], is composed of

HDFS is a representative for Internet service file systems

running on clusters [15], and is widely adopted to support lots

of Internet applications as file systems. HDFS is designed for

storing large files with streaming data access patterns [16], and

stores small files inefficiently. The Hadoop framework itself is

mostly written in the Java programming language, with some

native code in C and command line utilities written as shell-

scripts [17].

2. Small File Problem

The Hadoop Distributed File System (HDFS) is a distributed

file system. It is mainly designed for batch processing of large

volume of data. The default block size of HDFS is 64MB.

HDFS does not work well with lot of small files for the two

reasons. First reason is that each block will hold a single file.

Thus, if there are so many small files then there will have a lot

of small blocks (smaller than the configured block size).

Reading all these blocks, one by one means a lot of time will be

spent with disk seeks. Another reason is the NameNode keeps

track of each file and each block (about 150 bytes for each) and

stores this data into memory. A large number of files will

occupy more memory [20]. The performance of the Hadoop

Distributed File System (HDFS) decreases dramatically when

handling interaction-intensive files, i.e., files that have

relatively small size but are accessed frequently[10].

3. Related Work

Researches on small file storage on HDFS can be classified

into two categories: general solutions and special solutions to

meet particular scenarios [1]. General solution includes HAR,

SequenceFile. Mackeyet al [4] utilized HAR to improve the

metadata management of HDFS for small files. New Hadoop

Archive (NHAR) designed the architecture of HAR in order to

improving performance of small-file accessing in Hadoop[3].

As for special solutions, HDWebGIS [9] is an interesting

solution. Liu et al [8] proposed an approach to optimize I/O

performance of Geographic data on HDFS. Jiang et al[5]

proposed HDFS I/O optimization by using local cache to save

some metadata of small files to reduce usage of NameNode.

EHDFS is an extension of the work done by Dong et al. for

handling small files in HDFS[2]. Hadoop is an open-source

Apache project. Yahoo! has developed and contributed to 80%

of the core of Hadoop [4] from Yahoo! described the detailed

design and implementation of HDFS. They realized that their

assumption that applications would mainly create large files

was flawed, and new classes of applications for HDFS would

need to store a large number of smaller files. As there is only

one NameNode in Hadoop and it keeps all the metadata in

main memory, a large number of small files produce significant

impact on the metadata performance of HDFS, and it appears

to be the bottleneck for handling metadata requests of massive

small files [12]. HDFS is designed to read/write large files, and

there is no optimization for small files. Mismatch of accessing

patterns will emerge if HDFS is used to read/write a large

Miss Priyanka Phakade, Dr. Suhas Raut, IJSRM volume 2 issue 11 Nov 2014 [www.ijsrm.in] Page 1732

amount of small files directly (Liu et al., 2009). Moreover,

HDFS ignores the optimization on the native storage resource,

and leads to local disk access becoming a bottleneck. In

addition, data prefetching is not employed to improve access

performance for HDFS[11]. HAR is a general small file

solution which archives small files into larger files [18].

4. Proposed System

The Hadoop Distributed File System (HDFS) is developed to

store and process large data sets over the range of terabytes &

petabytes. However, storing a large number of small files in

HDFS is inefficient. Also too many small files increases the

number of mappers, less input for each map task and overall

processing time. Hadoop works better with a small number of

large files than a large number of small files. One reason for

this is that FileInputFormat generates splits in such a way that

each split is all or part of a single file. Compare a 1 GB file

broken into sixteen 64 MB blocks and 10,000 or so 100 KB

files. The 10,000 files use one map each, and the job time can

be tens or hundreds of times slower than the equivalent one

with a single input file & it uses 16 map tasks. The situation is

alleviated by CombineFileInputFormat, which was designed to

work well with small files. FileInputFormat creates a split per

file. CombineFileInputFormat packs many files into each split

so that each mapper has more to process. Therefore, as the each

mapper gets sufficient input to process, the job completion time

becomes less. In this way, this method minimizes the overall

processing time.

Fig.1 shows the proposed system for small files. In first step,

we have implemented the middleware between the HDFS &

HDFS Client. HDFS Client requests for connection to

NameNode. NameNode accepts the connection. This is

implemented by socket. HDFSClient wish to store files in

HDFS. For this purpose HDFS client want to take permission

from NameNode. NameNode can grant or deny the permission.

This is achieved by using DataOutputFormat. If NameNode

does not allow to HDFS Client for storing files into HDFS then

HDFS Client cannot store the files into HDFS and the

connection between the HDFS Client & NameNode is closed.

Otherwise HDFS Client can store the files into HDFS. Once

the small files are stored into HDFS then NameNode starts to

process these files. The maximum split size is defined as

64MB. The JobTracker which resides on NameNode will pack

many files into one split (until split size becomes 64MB) by

using CombineFileInputFormat. Splits are provided as an input

to each DataNode. The TaskTracker which resides on

DataNode will processes the input using map & reduce tasks.

The input for map tasks is key-value pair. With each line a key

provided for mapper consists of the file name and the offset

length of that line & Text is a value. When a map task is

completed it will generates the intermediate result which is

given to reducer. After getting the input, the reducer gives sort-

merge output & finally the result is stored on HDFS. Here,

multiple reducers are used for taking advantage of parallelism.

The proposed system is differentiated than the normal hadoop

architecture in such a way that the input provided for map tasks

are more. As single reducer will surely bring down

performance due to lack of parallelism the multiple reducers

are used.

5. Evaluation and Results

5.1Experimental Environment

The test platform contains a cluster comprising 6 machines
(1 NameNode, 4DataNodes & 1Client).

Each of these machines has the following configuration:

1) Intel(R) Core(TM)2 Duo CPU T6570 @ 2.10GHz

2) 2GB RAM

3) 160 GB SATA HDD

All the machines are connected using 1 GBPS Ethernet
network. In each machine, Ubuntu 13.04 with the kernel
version of 3.8.0-19.29-generic 3.8.8 is installed. Hadoop
version 1.2.1 and Java version open-jdk-7 have been used. The
number of replicas for data blocks is set to 6 and the default
block size is 64MB.

The number of mapper used is one & multiple reducers are
used. The number of reducers has been set to 13. We compare
our system with word-count application of Hadoop. Word-
count counts the number of unique words in large input text
files. Finally, we have calculated the processing time for word-
count application as well as our proposed system.

5.2 Workload Overview

Figure 1. Workflow of Prposed System

Miss Priyanka Phakade, Dr. Suhas Raut, IJSRM volume 2 issue 11 Nov 2014 [www.ijsrm.in] Page 1733

In existing system, the Mapper maps input key/value pairs
to a set of intermediate key/value pairs. Maps are the individual
tasks that transform input records into intermediate records.
The transformed intermediate records do not need to be of the
same type as the input records. A given input pair may map to
zero or many output pairs. The Hadoop MapReduce framework
spawns one map task for each InputSplit generated by the
InputFormat for the job. Reducer reduces a set of intermediate
values which share a key to a smaller set of values. Multiple
mappers & Single reducer is used for Word-Count application.
On the other hand, in proposed system the MapReduce
framework spawns one map task for each split generated by the
CombineFileInputFormat. So, the number of files are grouped
into one split. Each split is processed by map task. The map
task gives the intermediate output to multiple reducers so that
the result brought out in much less time. As shown in result,
hadoop job is executed on NameNode. The files used for
processing are 15,000 in number. HDFS Client gives input of
5000 files to HDFS System. The NameNode grants the
permission to store the files into the HDFS System. After
getting permission from NameNode, the files are stored in
HDFS System. Then One map task & thirteen reduce tasks are
assigned to process those 5000 files. The time required to
process those files is 23 seconds. On the other hand, in existing
system, the word count application assigns 2546 map tasks &
one reduce task to process those files. Processing time for those
files is 318 seconds. The workload for the processing time
measurement contains a total of 15,000 files. The size of these
files range from 10KB to 150KB. Following table shows time
required to process the small files in seconds.

TABLE I

PROCESSING TIME REQUIRED FOR RESPECTIVE SYSTEM

Number

of Files

Processing time

for Proposed

System (sec)

Processing time for

WordCount

(sec)

1000 26 318

2000 25 605

3000 23 878

4000 24 1179

5000 23 1697

.

The following result shows that the proposed system requires

23 sec for processing 5000 small files of 15KB to 150KB size.

Miss Priyanka Phakade, Dr. Suhas Raut, IJSRM volume 2 issue 11 Nov 2014 [www.ijsrm.in] Page 1734

The following result shows that the Word Count application

requires 28 min, 17 sec for processing 5000 small files of

15KB to 150KB size.

Conclusion

In this paper, we introduce the improved model for processing

of small files. It requires modification in the input format and

task management of the mapreduce framework. HDFS is

designed to store large files. It cannot process large number of

small files efficiently. Small file is the one that significantly

smaller than an HDFS block (64MB). If there are so many

small files then a block is assigned to each file. Map task

processes block of input at a time, therefore each map task

processes very little input. So, there is need of providing more

input to Mapper. Hence, the number of small files are

combined into one split. Each split processed by single map

task. In this way, the number of map tasks are reduced. Each

map task processes multiple blocks at a time so that each

mapper gets more input to process. Thus, the processing time

required for large number of small files is minimized.

Acknowledgement

The Author place on record and warmly acknowledges the

continuous encouragement, invaluable supervision, timely

suggestions and inspired guidance offered by guide Dr. Suhas

Raut, Professor, Department of Computer Science and

Engineering, Nagesh Karajagi Orchid College of Engineering

& Technology, Solapur.

References

[1] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, Y. Li. “A

Novel Approach to Improving the Efficiency of Storing

and Accessing Small Files on Hadoop: A Case Study by

PowerPoint Files”. In Proceedings of IEEE International

Conference on Services Computing, Miami, Florida,

USA, July 2010, pp. 65 72.

[2] Chandrasekar S, Dakshinamurthy R, Seshakumar P G,

Prabavathy B, Chitra Babu "A Novel Indexing Scheme

for Efficient Handling of Small Files in Hadoop

Distributed File System" IEEE 2013 International

Conference on Computer Communication and Informatics

(ICCCI-2013), Jan. 04 - 06, 2013, Coimbatore, INDIA

[3] ChatupornVorapongkitipun, Natawut Nupairoj,

"Improving Performance of Small-File Accessing in

Hadoop" 2014 11th International Joint Conference on

Computer Science and Software Engineering (JCSSE)

[4] G. Mackey, et al., "Improving metadata management for

small files in HDFS," in Cluster Computing and

Workshops, 2009. CLUSTER '09. IEEE International

Conference on, 2009, pp. 1-4.

[5] J. Liu, et al., "THE optimization of HDFS based on small

files," in Broadband Network and Multimedia

Technology (IC-BNMT), 2010 3rd IEEE International

Conference on, 2010, pp. 912-915.

[6] Kala Karun. A, Chitharanjan. K "A Review on Hadoop –

HDFS Infrastructure Extensions" In Proceedings of 2013

IEEE Conference on Information and Communication

Technologies (ICT 2013)

[7] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The

Hadoop Distributed File System,” 26 th IEEE Symposium

on Mass Storage Systems and technologies, Yahoo!,

Sunnyvale, pp. 1-10, May 2010

[8] L. Xuhui, et al., "Implementing WebGIS on Hadoop: A

case study of improving small file I/O performance on

Miss Priyanka Phakade, Dr. Suhas Raut, IJSRM volume 2 issue 11 Nov 2014 [www.ijsrm.in] Page 1735

HDFS," in Cluster Computing and Workshops, 2009.

CLUSTER '09. IEEE International Conference on, 2009,

pp. 1-8.

[9] Xiayu Hua ; Dept. of Comput. Sci., Illinois Inst. of

Technol., Chicago, IL, USA ; Hao Wu ; Shangping Ren,

"Enhancing Throughput of Hadoop Distributed File

System for Interaction-Intensive Tasks" In IEEE

International Conference on Parallel, Distributed and

Network-Based Processing (PDP), 2014

[10] Shafer J, Rixner S, Cox A. The hadoop distributed

filesystem: balancing portability and performance. In:

IEEE international symposium on performance analysis of

systems & software (ISPASS). IEEE; 2010. p. 122–33.

[11] S. Ghemawat, H. Gobioff, and S. Leung, “The Google

File System,” Proc. of the 19th ACM Symp. on Operating

System Principles, pp. 29–43, 2003.

[12] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li, and

Ying Li, “Hadoop high availability through metadata

replication,” Proc. of the First CIKM Workshop on Cloud

Data Management, pp. 37-44, 2009.

[13] W. Tantisiriroj, S. Patil, and G. Gibson, “Data-intensive

file systems for internet services: A rose by any other

name,” Tech. Report CMU-PDL-08-114, Oct. 2008.

[14] Tom White. Hadoop: The Definitive Guide. O’Reilly

Media, Inc. June 2009.

[15] Apache hadoop

http://en.wikipedia.org/wiki/Apache_Hadoop

[16] Hadoop archives,

http://hadoop.apache.org/common/docs/current/hadoop_a

rchives.html.

[17] Hadoop official site, http://hadoop.apache.org/.

[18] Solving the “Small Files Problem” in Apache Hadoop:

Appending and Merging in HDFS

http://pastiaro.wordpress.com/2013/06/05/solving-the-

small-files-problem-in-apache-hadoop-appending-and-

merging-in-hdfs/

	PointTmp

