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Abstract: Branch Divergence has a significant impact on the performance of GPU programs. I used three Novel Software based 

divergence reduction techniques namely Fixed Scheduling, Frequency scheduling, and Balanced scheduling that aims to reduce branch 

divergence and comparing the execution time of each schedules. The calculation of End Semester Examination marks of Engineering and 

MBA students is the application to which the scheduling techniques are applied. The divergence condition checked whether the student 

belongs to Engineering Section or MBA section and based on that calculations further processing have been carried out. Evaluation shows 

frequency scheduling and balanced scheduling exhibiting large improvement in execution time. 
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1. Introduction 
 

  Parallel Computing has massively become a Commodity 

Technology. The main motivation behind massive Parallel 

Programming is for applications to enjoy a continued increase 

in speed. Parallel Programming targets the computationally 

intensive code, it can be divided into small parts and then solve 

concurrently. The fundamental design philosophies of CPU and 

GPU are entirely different and this results in a performance gap 

–  CPUs are low latency low throughput Processors handling 

task parallel problems optimized for sequential code execution 

whereas GPUs are high latency high throughput Processors 

solving data parallel problems.  

  For Parallel Computations SIMD (Single Instruction Multiple 

Data) is the suitable execution model containing multiple 

processing elements receive same instruction but operate on 

different data streams and supervised by the same control unit  

[1]. GPU adopt SIMT (Single Instruction Multiple Thread) 

architecture which extends SIMD. SIMD use one thread with 

wide execution path, whereas SIMT split identical independent 

work over multiple lockstep threads which means run same set 

of operations at the same time in parallel [2]. Even though 

GPU offers high speed, limited programmability is one of the 

main drawbacks. Programma- 

bility restricted in number of ways which include difficulty in 

handling divergence such as loops and conditional clauses. 

When a divergence occurs entire batch of threads will execute 

both sides of branch sequentially, even though each thread 

executes only one of the paths, So that divergence kills the 

performance. In this study analysed and compared the 

execution time of loop optimization techniques for divergence 

reduction on GPUs which is likely to increase SIMD efficiency 

To carry out this task an application of data processing of 

students marks of two  different streams has been chosen and 

the performance evaluation based on the execution time for 

each scheduling has been studied.  

 

2. Related Works 
 

  Since divergence degrades the performance of GPU, there are 

several attempts to solve this problem which include 

architectural proposals and software proposals. Majority of the 

architectural proposals aiming to increase the number of 

control units, effectively shifting SIMD to MIMD (Multiple 

Instruction Multiple Data). Some of the efforts are: 

 

 Exploit control flow locality among threads by extending 

the sharing of resources in a blocks of warps. A common 

block-wide stack is shared by warps within a block for 

divergence handling. At a divergent branch, threads are 

compacted into new warps in hardware [3]. 

 To improve processor utilization for global rendering 

algorithms, introduce an SIMT architecture that allows for 

threads to be created dynamically at runtime. Large 

application kernels are broken down into smaller code 

blocks called µ-kernels so that dynamically created threads 

can execute. These runtime µ- kernels allow for the removal 

of branching statements that would cause divergence within 

a thread group, and result in new threads being created and 

grouped with threads beginning the execution of the same 

µ-kernel  [4].  

 Compaction-Adequacy Predictor (CAPRI). CAPRI 

dynamically identifies the compaction-effectiveness of a 

branch and only stalls threads that are predicted to benefit 

from compaction [5]. 

 Iteration delaying: Executing loop iterations that take the 

same branch direction and delaying those that take the other 

direction until later iterations [6]. 
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 Branch distribution: reduces the length of divergent code by 

factoring out structurily similar code from the branch paths 

[6]. 

 

3. Background 
 

3.1 GPU 

  In the initial stages GPU has evolved to rendering graphics 

only. As technology advanced number of cores associated with 

GPU exploited thereby computational capability also 

increased. GPU is a massively Parallel Architecture, 

multithreaded (fine and lightweight threads) with thousands of 

threads; hundreds of cores and have tremendous computational 

horsepower and very high memory bandwidth. 

 

 
Figure 1: Design philosophies of CPU and GPU 

  

3.2 CUDA 

 

 CUDA stands for Compute Unified Device Architecture 

developed by NVIDIA Corporation. A CUDA program 

consists of host code and device code:  the phases that show 

diminutive or no parallelism are carved in host part and that 

have rich amount of parallelism are included in the device part.  

 

3.2.1 Programming model 

 

  When a kernel is invoked, it is executed as a grid of thread 

blocks and it is to be noted that Parallel execution of kernel is 

not possible, it is always sequential i.e. one kernel after the 

other.  

 

  
 

Figure 2: CUDA thread organization 

 

 

At the top level, each grid comprises of thread blocks which is 

organized as 2-dimensional (blockIdx.x and blockIdx.y) and all 

the blocks must have the same number of threads structured in 

the same manner. Threads are 3-dimensional identified by 

threadIdx.x, threadIdx.y, threadIdx.z. Threads within a block 

co-operate each other to accomplish the tasks. Blocks are 

moved to the Streaming Multiprocessor(SM) for processing as 

soon as there are enough resources in SM to take the block, for 

example upto 8 blocks can be assigned to each SM in the 

GT200 design. Each block is again divided into 32-thread units 

called a warp which is the unit of thread scheduling. In a SM, 

number of warps will be higher than number of SPs and it is 

useful for latency hiding [7]. 

 

3.3 Branch Divergence  

 

  In GPU, data processing is performing in SIMT fashion i.e. 

all the threads in a warp execute the same instruction before 

moving into the next instruction. When all the threads within a 

warp follow the same path it works well. Suppose for an if-

then-else construct, the execution works well when either all 

threads execute if part or all execute else part. When threads 

within a warp take different paths i.e. some of the threads take 

if part and others take else part, the SIMT execution style no 

longer works well. In such situations the hardware makes all 

these paths execute sequentially, even though each thread 

executes only one of the paths and execution of the warp will 

require multiple passes: one pass for those that choose if part 

and another pass for those choose else part. 

 

 Figure 

3: Branch Divergence 

 

4. The Optimizations 
 

  For this used two scheduling techniques i.e. fixed scheduling 

and dynamic scheduling have been used. Two variants of 

dynamic scheduling are Frequency scheduling and balanced 

scheduling [8]. Compared the execution time of these 

schedules with native scheduling. The calculation of End 

Semester Examination marks of Engineering and MBA 

students is the application to which the scheduling techniques 

are applied. The divergence condition checked whether the 

student belongs to Engineering Section or MBA Section and 

based on that calculations are happening. 

First, created a database which contains 257000 records of the 

students’ details such as name, register number, course, number 

of subjects, mark of different subjects etc. Then copied these 

details to a student record and passed to kernel function where 

the actual computations are carried out.  

 

4.1 Native scheduling 
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It is the conventional serialization; serialization of a branch 

takes two consecutive time slots for SIMD units in a warp to 

process iteration because SIMD units cannot execute different 

tasks at the same time and one of the slots being always 

idle. 

 Algorithm: 
   Bool path 

   while condition1 do 

             path = (bool)(course == 'Engineering')         

              if  path then              

                   Path A;                

              else               

                    Path B; 

    end while     

     

4.2 Fixed scheduling 

 
Assuming the simplified case of ‘n’ iterations, each with equal 

processing demands in divergent branches for every thread in a 

thread block, i.e., time spent processing path A is equal to time 

spent processing path B subject to the branching condition [8]. 

Algorithm: 

Bool path, next_path 

next_path = 0 

if  condition1 then 

  path = (bool)(course == 'Engineering')                    

 while condition1 do 

         next_path = !next_path; 

         if path == next_path then 

         if  path then                 

                    Path A                

              else 

                     Path B;                

              if  condition1 then 

                 path = (bool)(course == Engineering')                                 

            end if 

    end while 

 

4.3 Frequency scheduling 
 

  It is based on majority voting by selecting the most frequent 

flow among the pending iterations [6]. In CUDA, __ballot () to 

perform warp voting operations across all lanes (usually with 

the size of 32) within a warp and should be supported by 

graphic cards with compute capability of at least 2.0. __ballot() 

is combining with __popc(), it can be used to accumulate the 

number of threads in each warp having a true predicate and 

returns the number of bits set with a 32-bit parameter[9].  

Algorithm: 

Bool path, next_path 

int noA, noB 

if  condition1 then 

   path = (bool)(course == 'Engineering')                   

 while  condition1 do 

         noA = __popc(__ballot(path == true)) 

        noB = __popc(__ballot(path == false)) 

        next_path = noA > noB 

         if  path == next_path then 

         if  path then                

                    Path A;                

               else               

                    Path B;                

              if  condition1 then              

              path = (bool)(course == 'Engineering')     

        end if                

  end while 

 

4.4 Balanced scheduling 

 
In frequency scheduling if a branch path occurs rarely, it takes 

a substantial number of iterations to collect a majority vote, 

resulting a prolonged vertical waste. Instead of a group-wide 

vote over the next path, voting is performed only by threads 

that lag most behind the rest of a group [8]. 

Algorithm: 

Bool path, next_path 

int noA, noB 

int idle = 1, max = 1  

if  condition1  then 

   path = (bool)(course == 'Engineering')              

 while  condition1 do 

   noA = _popc(__ballot(idle==max && path == true)) 

   noB = _popc(__ballot(idle==max && path == false)) 

    next_path = noA > noB 

    if  (noA != 0 && noB != 0) then  

            max++; 

     if  path == next_path then 

          if  path then                 

                    Path A;                

              else 

                    Path B; 

              if  condition1 then              

                path = (bool)(course == 'Engineering')                           

        end if 

        else 

           idle++ 

   end while 

  If statement mostly contains the same computation in both 

branches, which is most probably, remove from the divergence 

by the compiler optimization and count as overhead. Further, 

iteration limit should be much higher than no.of blocks * no. of 

threads that are using.  

 

5. The Results and Discussions 
 

Software implementation of the three iteration scheduling 

disciplines on the NVIDIA GPU. Except for the simplest native 

case, the reductions of the predicate expressions across the 

threads are needed. They are achieved by the hardware 

supported function, i.e. ballot() in CUDA C. Its 32-bit return 

value consists of each thread’s predicate value in a bit 

corresponding to the SIMD lane id [9]. By counting the number 

of bits set to 1, each thread arrives at the same result. The 

population count instruction popc() is used for that purpose, 

which is also realized in hardware on this GPU. The GPUs 

used were GeForce GT 540 M, based on the Fermi architecture  

which consists of two streaming multiprocessors each with 48 

CUDA cores.  
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Figure 4: Scheduling Vs Execution time 

 

The above graph shows time taken by different schedules. The 

performance will vary according to the branching probability 

and branching frequency. If statement mostly contains the same 

computation in both branches, which is most probably, remove 

from the divergence by the compiler optimization and count as 

overhead. 

Fixed scheduling achieved negligible reduction in execution 

time than native scheduling. For the given size and nature of 

dataset, frequency scheduling and balanced scheduling 

 accomplished the work with 48% and 44% reduction of 

execution time respectively.   
 

6. Conclusion 
 

This paper has presented a performance analysis of repeated 

divergence reduction technique by preserving the aids of 

SIMD. The execution time depends on the adopted scheduling 

technique and branching sequence. The more important 

decision than choosing between the two dynamic scheduling 

algorithms is the question of payoff threshold at which iteration 

scheduling becomes rewarding. The time spent in each 

divergent path, as well as the time spent in non-divergent parts 

of a loop can be approximated reasonably well by the 

instruction count at least in compute-bound kernels. On the 

other hand, the expected number of iterations a SIMD is 

concurrently processing a divergent path depends on the 

selected algorithm and branching probabilities. 
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