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Abstract:  

In this paper we can consider the problem of week solutions for the general shallow water wave equation. 

In the first part of this paper, we deal to the well-known Kdv equation. We obtain the Camassa-Holm 

equation in particular. Both of them describe unidirectional shallow water waves equation. Moreover, all 

these equations have a bi-Hamiltonian structure, they are completely integrable, they have infinitely many 

conserved quantities. From a mathematical point of view the Camassa-Holm equation is well studied. In 

the second part of this paper, we obtain a global weak solution as a limit of approximation under the 

assumption        Some concepts related to high dimensional spaces are considered. Then the Cauchy 

problem is considered. It has an admissible weak solution          to the Cauchy problem for        
Existence, uniqueness, and basic energy estimate on this approximate solution sequence are given in some 

lemmas. Finally, the main theorem and the proof is given.  

  

Keywords: Kdv equation; shallow water wave equation; global solution; weak solution; Camassa-Holm 
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1. Introduction 

The Camassa-Holm equation and Degasperis-Procesi equation are the two equations satisfying the complete 

integrability condition. 

For      in equation (1-2) we obtain the well-known Kdv equation: 

                           

In 1993 Camassa and Holm derived equation  and for    ,      ,      in equation (1-1) as a model 

for unidirectional water wave propagation in shallow water with u representing the height of the water’s free 

surface above a flat bottom.  The Camassa-Holm equation as follow: 

 

                                                ,                        (1.1)  

 

Both of them describe unidirectional shallow water waves. Moreover, all these equations have a bi-

Hamiltonian structure, they are completely integrable, they have infinitely many conserved quantities. From 

a mathematical point of view the Camassa-Holm equation is well studied, see [11] for an extensive list of 

references. The relevance of the equation as a model for shallow water wave has been further investigated 

by Johnson. In [1]-[3], Degasperis and Procesi firstly studied the following family of third order dispersive 

PDE conservation laws with boundary conditions.  

                                                             
      

              ,                       (1.2) 

where                    are real constant and indices denote partial derivatives. The notation,   is a domain 

where the functions are defined, for example    [   ]    

Following the methodology described in [6] for general bi-Hamiltonian systems, it is possible to derive an 

infinite number of conserved quantities for the solutions of  (1-1). The problem consists of computing the 

scattered far-field over an obstacle whose ´´shape´´  is determined in some way by   (for t-fixed). In 
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practice, it means finding the eigenvalues of a linear operator depending on         The remarkable fact is 

that as time evolves, if        satisfies (1-1), then these eigenvalues satisfy trivial linear ordinary 

differential equations which can be solved explicitly and the far-field can be determined for any time. The 

inverse scattering problem consists of retrieving the ´´shape´´ of the obstacle, that is  , from the knowledge 

of the scattered far-field. 

When     
 

 
  and     

      

 
  and      , than replacing            and           in the equation (1-1), 

we obtain the general shallow water equation as follow: 

                                                       ,                 (1.3) 

There are at least three famous equations that satisfy the completely integrability condition within this 

family: KdV equation (see [4]), Camassa-Holm equation (see [5][16]), and Degasperis-Procesi  

equation (see [1]-[3]).  

The shallow water equations model the propagation of disturbances in water and other 

incompressible fluids. Shallow water flows are characterized by flow regions with a free surface, an 

impermeable The shallow water wave equations form a non-linear hyperbolic system. The equations often 

admit discontinuous solutions even when the initial data is smooth and analytical solutions are limited to 

very few idealized cases.  

The depth of the fluid is small compared to the wave length of the disturbance. For example, we do 

not ordinary think of the Indian Ocean as being shallow. The depth is two or three kilometers. But the 

devastating tsunami in the Indian Ocean on December 26, 2004 involved waves that were dozens or hundred 

of kilometers long. So the shallow water approximation provides a reasonable model in this situation.      

In particular, we recall that existence and uniqueness results for global weak solutions have been proved by 

Coclite et al. [11], Constantin and Escher [12], and Xin and Zhang [13]. 

In Section 2, we give some knowledges related to KdV equation, than give  the statements of the main 

results. Section 4 deals with the viscous approximate solutions and the basic energy estimate on      Some 

explanation related to the conservation law of energy is treated.  

2. Preliminary  

The Korteweg-deVries equation (the KdV equation), is perhaps the simplest nonlinear partial differential 

equation:                                      

where  u = u(x, t) is a function of two variables. The KdV  equation is extremely important as it arises in 

many physical contexts. It can be used to describe waves in shallow water, anharmonic nonlinear lattices, gas 

dynamics, and hydromagnetic and ion-acoustic  waves in cold plasma, for example. The interested reader is 

for the physical derivations. Note that the coefficients in front of the three terms are somewhat arbitrary. 

     The Modified  KdV Equation.  A similar equation that will play an important role in what follows is 

known as the Modified KdV equation, abbreviated the MKdV  equation: 

                     
In the course of attempting to solve the KdV equation exactly, it was discovered that the equation has an 

infinite sequence of nontrivial conservation laws, which we shall presently define. 

Some notes:   

Functional space of         
Def: Functional space is a set of functions with operations.  

Example:             {                                 } is a linear space that contains all 

continuous functions on  .          {                                                     }    
We define:       {                                                   }. 
 

Sobolev spaces        
Recall the       spaces. For analogy define the integral spaces      . 
Def.  The integral spaces       is called,                       
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The square-integrable space              is         {    ∫            
 

}    

Claim:                           . This means that any Cauchy sequence {  } in   . In other words, there 

is a          such that           ‖    ‖         or                                                                                        

Def.  A Cauchy sequence is a sequence that satisfies the property: for any given positive number  , there is 

an integer  , such that  ‖    ‖        ,  if       ,        . 

Def.  A complete normed space is called a Banach space (a Cauchy sequence converges in terms of the 

norm).  Therefore       is a Banach space. 

 

Definition of Sobolev spaces       
Having defined the first partial derivatives, we define the Sobolev spaces       as 

      {           | |        | |   } 
Def.  We denote the norm in Sobolev space       as   

‖ ‖  ‖ ‖  {∫    | |   |    |    
 

}
 

 ⁄

, where      is the Fourier transform of     . 

 

Sobolev spaces-related to derivatives in integral forms 

Similar to      , we use       to define function spaces with derivatives in integral forms.  Such 

functions spaces are part of Sobolev spaces. 

If there is no derivative, we define:             {     ∫ |  |    
 

} 

 

The        spaces 

Def .   The        spaces  is defined as               {    ∫            
 

}               

Def.  The distance in       is defined as            {∫  |   |     
 

}  
 

                     

Notation: We shall use the standard notation | |   for the norm of the space                  

( i.e. | |  {∫  | |     
 

}  
 

   ) 

 

3. Global weak solution and the main theorem 

Before giving the precise statements of the main results, we introduce the definition of a weak solution to 

the Cauchy problem ( 1-2).  

Def  1.  A continuous function          is a global weak solution to the Cauchy problem 

(1.2)  if:                                     and  ‖ ‖       ‖  ‖            ∀     

       satisfies equation (1-2) in the sense of distributions. 

Note:        ,     ,  is a bounded domain with smooth boundary    . 
 

Theorem 2.      Suppose that       
     .  Then the Cauchy problem (1.2) has an admissible weak solution 

         in the sense of Def 1 above.  Furthermore, the weak solution         to the Cauchy problem ( 1-

2) satisfies the following properties: 

1) (Oleinik type estimate) There exists a positive constant   depending only on ‖  ‖        such that  

         
 

 
     for all     

2)                      and                        for any     ( i.e. for any    ,    

  , there exist a positive constant              such that  

∫∫ |        |
 

| |  
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3) Assume        is of one sign, than          approaches zero point wise as    , i.e.  

      |      |     , for all       (    ,       

4. Some lemmas and proof of the Theorem 2 

In this section, supposing     in Eq. (1-2), we construct the approximate solution sequence            

as solutions to the Cauchy problem (4-1), i.e.  

{

                            
      

   
 

 
∫   |   |  

  
(
   

 
  

  
   

 
      

         )        

                

                             (4-1), 

The existence, uniqueness, and basic energy estimate on this approximate solution sequence are given in the 

following lemma: 

Lemma 3(Propos. 3):  Let     and            for some       Then there exist a unique solution 

                            to the Cauchy problem (3.1). Furthermore,    satisfies  

‖  ‖       ‖   ‖      
      ∀     

Lemma 4(Propos. 4): Let           and         be the solution to the Cauchy problem (4-1). There exist 

a positive constant   depending only on ‖  ‖      , such that  

           
 

 
     for all      ,     

Lemma 5(Propos. 5): Let   
  

    
 with     being positive integers and    . Assume that       are 

arbitrarily given finite constants with            . Then there exists a positive constant   

           ‖  ‖         independent of              

∫∫ |         |
   

 

 

      

 

 

 

We start with the weak compactness in   (        ). We are now ready to obtain the necessary 

compactness of the viscous approximate solution          

Lemma 6(Propos. 6): There exist a subsequence {    
               }   of the sequence {   

              }  

and some functions {             }        (        ) and     (        ),       such that          

    
    as       and             in   (        )   as       for all        . 

Next, we show the stronger result, i.e.                      in   (        )  as        which will 

guarantee that        is a desired weak solution. First, we state a slight variation of the basic 

result of the theory of Young measures ( see [     ]       

Lemma 7(Propos. 7): Let         be the Yang measure associated with{        }  {          }    

Than for any continuous function        with         | |   and          | |      as | |    and 

    and for any ψ    
     with 

 

   
 

 

 
   we have  
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       ∫          
 

         ∫           

 

 

uniformly in each compact subset     where  

     ∫             

 

 

 Lemma 8(Propos. 8):  Let           be the young measure  given in Lemma 7. Then 

          ̅                  for almost all             

Proof of the Theorem  

 

With all the preparation given in the previous section, we are now in a position to prove the main results i.e., 

Theorem 2. Let            be the limit of the viscous approximate solutions (      )       as     . It 

then follows  from Lemma 3, 4 and 6 that     [                                      . 

Taking      in (3.1), on can see free the Proposition 6 that             will be an admissible weak 

solution provided that 

                                         
                                   (5-1) 

as     .  However  (5.1) is now a simple consequence of Lemma 8 and Lemma 7. In fact  it follows  

(4.6)-(4.7) and Lemma 8 that there exists a subsequence of  {       }, still denoted by itself, such that                      

                                       
  (       

     )  ∀                           (5-2) 

This together with Lemma 5 implies                                 
         ∀               (5-3) 

by a simple interpolation, which  gives (5.1) immediately. Furthermore, it follows from (5.3) that 

          
         ∀    

hence the local space-time higher integrability  estimate, holds. 

Last  step of  the proof, is to investigate the asymptotic behavior of the solution         By our assumption 

that        is one of the sign, we will consider the nonnegative solution only.  The other case is similar. Let 

         be an admissible weak solution to equation (1.2) with    . Then for any        integrate 

equation (1.2) over [   ]       ] to get 

∫          
 

 
∫            ∫          ∫          ∫        

 

  

 

 

 

 

 

 

 

  
                (5-4) 

We have:  ‖     ‖    
 

 
‖      ‖        ‖      ‖       ‖      ‖       ‖  ‖             (5-5) 

On the other hand, from the standard estimate on convolution one can get 

‖       ‖     ‖  ‖  
      which shows that                                                 

     

Hence, there exists a subset      with             such that             for all          It 

follows from this and (5.5) that                             |      |                                          (5-6) 
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For any      there is a sequence {  }         such that      as      . Since 

|      |  |      |  |             |  |      |    |    | 

we conclude that                                    |      |                                                                       (5-

7) 

Then (2.4) follows  from (5.6) and (5.7). This complete the proof of the Theorem. 

5. Conclusion 

Such wave breaking is observed in fluid flows, and under this aspect, the Camassa-Holm equation could be 

seen as a more suitable model than the well known Korteweg-de Vries equation, for instance. On the other 

hand, in the derivation of the Camassa-Holm equation, it is assumed that the solutions are more regular than 

breaking waves [19]. In this respect, smooth solutions are more closely related to the fluid flow problem 

than are irregular solutions. From this point of view, a spectral approximation seems a natural choice for a 

spatial discretization. Another application of the Camassa-Holm equation arises when γ = 0. In this case, the 

equation can be derived as a model equation for mechanical vibrations in a compressible elastic rod.  

Notwithstanding its importance as a model equation, one reason for the interest in the Camassa-Holm 

equation is its vast supply of novel mathematical issues, such as its integrable bi-Hamiltonian structure. This 

property alone has led to many interesting developments. One aspect of the 

integrability of the equation in case γ = 1 is that the solitary-wave solutions are solitons, similar to the 

solitary-wave solutions of the Korteweg-de Vries equation.  

However, the Camassa-Holm equation also admits solitary waves which are not smooth, but rather have a 

peak or even a cusp. These peaked solitary waves are well known, and owing to their soliton-like properties 

they have been termed peakons. 

For the purpose of numerical study, it is important to have a satisfactory theory of existence of solutions, as 

well as uniqueness and continuous dependence with respect to the initial data.  
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