International Journal of Scientific Research and Management (IJSRM)

|[Volume||06]|Issue||02||Pages||M-2018-17-24||2018||

Website: www.ijsrm.in ISSN (e): 2321-3418

Index Copernicus value (2015): 57.47, (2016):93.67, DOI: 10.18535/ijsrm/v6i2.m03

Finite Volume Methods for Non-Linear Equations
!L. Bezati & 'Sh. Hajrulla & F.Hoxha

YUniversity of Vlora® , Albania
2University of Tirana, Albania

Abstract:

problem.

We consider the classical numerical-type of models.
numerical model for irotational water waves. Finite volume methods are based on the integral form. A
numerical model for solving the two-dimensional equations is presented. The standard Galerkin method
with mixed interpolation is applied. In the second part we consider the water wave equation with a
logarithmic nonlinearity. Using the Galerkin method, we establish the existence of solutions of the

In the first part we deal with finite difference
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Introduction

We deal with water wave equation. We want to
obtain a model for non-linear equations. In the
first part using the fully non-linear model for
irrotational water waves in the form (see [1], [2])
given as

0 =6L =26 [[Ldxdt (1.1)

we consider the finite volume method. Finite
volume methods are based on the integral form of
the conservation law

d [*2
%.f q(x,t)dx + f (q(x3, 1)) — f(q(xq, 1))

=0 (1.2)
Dingemans (1997) describes several methods with
positive-definite Hamiltonian, but these methods
are quite tedious and have certain ambiguities
regarding the order of certain operators, (see [3],
[4]). The present method leads to a positive-
definite Hamiltonian and can be fully non-linear if
desired. The present model is an additional elliptic
equation in the horizontal plane has to be solved
(see [6]). High-order non-linear models solve free-
surface evolution equations derived from a
Hamiltonian under the constraint that the Laplace

equation is satisfied exactly in the interior of the
fluid domain (see [7]).

In the second part we deal with the existence and
decay of solutions of the following problem

Uy +Au+ u+ h(u,) = kuln|u| (1.3)

with boundary conditions

u(x,t) =Z—Z(x,t) =0, xedQ, t>0
u(x,0) =upg(x);  u(x,0) =u(x)

where Q c R™, n > 1is a bounded domain with
smooth boundary 9Q), k>1and A= (-V)™,
(m = 1), v is the unit outer normal to 9Q and k
is a positive real number. This type of problems
has applications in many branches of physics such
as nuclear physics, optics and geophysics [5,6,11].
In [8], Cazenave and Haraux considered

Uy — Vu = ulnful® (1.4)
M. Al-Gharabli And S. A. Messaoudi J. Evol.
Equ. and established the existence and uniqueness
of the solution for the Cauchy problem. Hiramatsu
et al. [9] introduced the following equation

utt—u + u + ut + |u|2u = uln|u| (1.5

to study the dynamics, Q-ball in theoretical
physics.
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1. Finite difference numerical model for
irrotational water waves

Fully non-linear model for irrotational water
waves in the form (see [1], [2]) given as

0=26L =26 [fLdxdt (1.6)
where the Lagrangian density is
L({,0t, ¢, 05, 0,¢; x,1).
L =¢0{-H with ¢ = [p],=¢

where {(x, t) is the surface elevation, ¢(x, z, t) is
the velocity potential. Than the energy density
H({,0,¢,0,p; x,t) is given by the sum of Kinetic
and potential energy densities as follows

¢

1 1
H= [ 310 + 09)1dz + 587
-h

while the mass density p is taken to be constant
and equal to one. Further h(x) is the still-water
depth and g is the gravitational acceleration.

Note that the Hamiltonian H({, d,.¢, 9,¢) itself is
the partial integral of H:

H=[Hdx (1.7)

Let we see the potential ¢(X, z, t), corresponding
with a parabolic behaviour over depth with d,¢ =
0 at the bed and ¢ = ¢ at the free surface:

p(x.zt) = ¢(xt) + f(z L O D),

h+z+¢

f@he) =5(2 = )52 (1.8)

We want time derivatives of {(x,t) and ¢(x,t)
to appear in the Euler-Lagrange equations. Note
that for a horizontal bottom we have d,¢ = 0 at

z = —h. The velocity components become:
h+z
0rp = 0,0 3 (1+ (G| yas +
f(z h,{)oxp
(1.9)
h+z

where d,90 = ni e 1. Note that Y (x, t) is the

vertical velocity d,¢ atz = {(x,t).

Energy density H is:

H =3+ |00 -390, -2 (h +

Do | +E(h + Do~ (h +

Do 12+ =(h + DY +5g + 7
(1.10)

We take variations of L with respect to ¢, ¢ and y
we get from 6L = 0 and introduce u = 0d,¢,
and note that the discharge q(x,t) and depth-
averaged velocity U(x,t) are: q = (h + Q) U,
and

U=u-—32pox-2(h + Do (111)

Step by step following all actions we have to solve
two time-evolution equations for {(x,t) and u(x,
t), as well as an elliptic equation for ¥(x, t). For
full steps we can [4]. Then the system of
equations to be solved can be written as:

0 + 05 ((h + DU) = 0
Finally,
2
(h+ W[5+ 55 007 = [5(h + Ou—
S(h+ 020, |00 +0, |5 (h+DPu—
S+ aI- 2 (h+ 00| =0
(1.12)

2. Preliminaries

In this section we deal with the existence of
solutions of the following problem for the water
wave equation with logarithmic term.

Uy +Au+ u+ h(uy) = kuln|u| (2.1)

with boundary conditions

u(x,t) =Z—:(x,t) =0, xedQ, t>0
u(x,0) =up(x);  u(x,0) =u(x)

where Q@ € R™, n > 1is a bounded domain with
smooth boundary 0Q, k>1and A= (—A)™,
(m = 1), v is the unit outer normal to dQ and k
is a positive real number, xe , t> 0.

Definition 2.1.(weak solution of eq. (2.1))

A continuous function u = u(t,x) is a global
weak solution to the Cauchy problem (1.2) if:
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u=u(t,x) € C((0,0) x 2)NL*(R, H"())
and |ull pmeq)y < lluoll pmeq) Vit>0u(tx)
satisfies equation (1-2) in the sense of
distributions.

Lemma 2.2..Logarithmic Sobolev inequality

(see [13,14]). Let u be any function in H,™ ()
and a > 0 be any number. Then

1
2 f |ul? Inu| dx < 3 lu|l?in||u]|? +
Q
C(].2 2 2
@ aull? - (1 + molul? (22)

Lemma 2.3. Logarithmic Gronwall inequality

(see [8]). Letc> 0 andy € (0, T,Q). Let
w be any function w: [0, T[ — [1, oo satisfies

w<c(l+ foty(s) w(s)lnw(s)ds),0<t<T

then w <cexp (cfoty(s)ds) ,0<t<T
(2.3)

Lemma 2.4. The Cautchy — Schwartz inequlity

Recall: For the Hilbert space with a norm (u, v)

and its resulted norm ||(u, v)|| = +/ (u, v), than the
Cauchy-Schwartz inequality is the following,
lux), v()| < llullllv]l

3. Galerkin method for existence of solutions

We use the standard Faedo—Galerkin method for
the existence of solutions for the water wave
equation with logarithmic term (2.1).

Theorem 3.1

Let (ug,uy) € HP(2) x L*(2). Then, problem
of equations (2.1) has a global week solution as
u=u(t,x) € C((0,T),

H'(2) n c1(0,T), L>(2) n C?(0,T), H™(2))

Proof: To proof the theorem we consider the
standard Faedo-Galerkin method. We take an
orthogonal basis of the space HJ* () in the form

{w;}" . This is othonormal in L2(2). Let
J)j=1
Vi = span{wl,wz, e a)m} and let the

projections of the initial data on the subspace V,,
be given by

ug' () = Xk qjo; (x) , u*(x) =

Yi=1bjw;i(x)

where ug* - uy in H*(2) and uf* -
u in L?(N), as m - «.

We search for an approximate solution
u™(x,t) = Y7L, gj (H)w;(x) of the approximate
problem in 1,

Jo @Wifw + Au™Aw + u™w + h(uMw)dx = [, wu
u™(0) = ug' = Xjzq(uo,w;) w; (34)

ut*(0) = uf X7t (ug,wj) w;

This leads to a system of ODEs for unknown
functions g;"(t). Based on standard excistence

theory for ODE, one can obtain functions:

g;:10,t,) = R, j=12,..,m,

which satisfy (3,4) in a maximal interval
[0,t,,), tm € (0,T]. Next we show thatt,, =T
and that the local solution is uniformly bounded
independent of m and t. For this purpose, let
w=u" in (3,4) and integrate by parts to obtain

dt
<0 (3.5)

iEm(t) = —J u*h(u™)dx
Q

where,
E™(t)

1 k+2
= §<||uz“||% + a3 + () I

—f lu™|?In|u™|*dx > (3.6)
Q

The last inequality together with the Logarithmic
Sobolev inequality leads to

2
an

AmZ
n)uunz

m||2 k
llug"llz + {1~

k42 ,
+ [(T) + (L + 1na] ™2
< C + [[u*l3 Influ™||3 (3.7)
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. (_i_ih) 21 .
Choossing e\ 2 2t/ <a < ep will make

k+2

ka®cp
2

1

>0 and (2)+k(1+Ina)>0

21

This selection is possible thanks to (A2). So, we
get

lulIZ + NAu™|IZ + lu™]17 < C€(1 +
[lw™ (13 Influ™(12) (3.8)

tou™

Note u™(-,t) = u™(-,0) + | ——(,8)ds

0
Then, using Cauchy-Schwarz’ inequality, we get

lu™ (117 < 2[lu™(0)13

talﬂn 2
(s)ds
'I;) 0s

< 2[u™(0)I3

t
or f W s)2ds  (3.9)
0

+ 2

2

lu™ (117
< 2[u™(0)II3

+ 2TC <1
t

; f ™12 Influ™)12 ds) (3.10)
0

If we put C; = max{2TC, 2|[u™(0)|I3}, (3.10)
leads

lu™13 < 26, (1

+ fot(Q

+ ™12 In (G + lu™13) d5>

Applying the Logarithmic Gronwall inequality to
the last inequality, we obtain the following
estimate

lu™||3 < 2C,e2T < 2C,
Hence, from the inequality (3.8) it follows that:

122 g + AU (122 + lu™ (122 < Cs

where C; is a positive constant independent of
m and t. This implies

sup |[ul%, o, + sup ||Au™|%
te(0,tm) LW te(0,tm) L@

+ sup [[u™||%
te(0,t) L@

<C, (3.11)

So, the approximate solution is uniformly
bounded independent of m and t. Therefore, we
can extend t,,, to T. Moreover, we obtain, from
(3.11),

{um is uniformly bounded in L*(0, T; H{* ()
u™ is uniformly bounded in L* (0, T; L?(Q)
(3.12)

which implies that there exists a subsequence of
u™ (still denoted by u™), such that
If u™ —~u weakly* inL®(0,T; H(Q)
4 ul® = u, weakly * in L®(0,T; L*(Q)

u™ = u wekaly inL?(0,T; HJ*(Q)
Lu}" - u, weakly inL%(0,T; L*(Q) (3.13)

Making use of Aubin —Lions’ theorem, we find,
up to a subsequence, that u™ — u strongly in
L*(0,T; L*(Q) and u™ - u ae inQx(0,T).

Since the map s - sln|s|* is continuous, we
have the convergence u™In|u™|¥ - wln|u|¥in
Qx(0,T)

Using the embedding of H'(Q) in
L*(Q) (Q c R?), it is clear that u™ In|u™|* s
bounded in L* ( x (0,T )). Next, taking into
account the Lebesgue bounded convergence
theorem (€ is bounded), we get converge
strongly

u™In[u™* > ulnlul® in L2(0,T; L2())
(3.14)
Next, we prove that h(u{*) is bounded in

L?(0,T; L?(Q). For this purpose, we consider two
cases:

Case 1. H is linear on [0, £]. Then using (2.1) and
Young’ s inequality, we get
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fhz(uzn)decf uh(u™)dx
Q Q
- | s
Q
<35 ). i
<7 ul|?dx
+60.f h?(u™)dx (3.15)
Q

for a suitable choice of §, , and using the fact that
u™ is bounded in L2((0, T), L2(£2)), we obtain

ffhz(u )dxdt <c (3.16)

Case 2. Let 0 < & < & such that

sh(s) <
min{e, H(e)} forall |s| <g&; (3.17)

{52 + h%(s) < H™Y(sh(s)) forall |s| < &

cils| < |h(s)| < c3s] forall |s| = &

(3.18)
Define the following sets

QG ={xen:|ul <
e}, O ={x € Q: [u"| < &}(3.19)

Then, using (5.7) and (3.19) leads to

f h?(u™)dx =

<cy | |ul?dx
Q

+j (lu™2 + R2(u™))dx
Q4

|ul*|?dx < c}
Q4 Q;

|ul™|?dx +

J H™1 (u*h(u™))dx
Q

1

Let J™(t) :=f u*h(u™)dx
Q

1

Using (3.20) and Jensen’s inequality, we obtain

f h?(ul™)dx < Cf lu|2dx + H~1(J (1))
Q Q

=cJ |ul™|?dx
)
# (agry)

+ m
(& o)

H(J(®) (3.21)

Using the convexity of H(H' is increasing), we
obtain for t € (0,T),

E™(t E™(T
H,( ( )) H,( ( ))
"E™(0) *E™(0)
Let H* be the convex conjugate of H in the sense
of Young, then, for s € (0, H' (r?)]

H*(s) = s(H)™'(s) — H[(H) ™ (s)]
< s(H)1(s) (3.22)

Using the general Young inequality AB <
H*(4A) + H(B), if A€ (0,H'(r*)], BE€
(0,7

For A=H' (eo gzgg) and B =
HH (™)

and using the fact that E™(t) < E™(0), we get

m E"@) (. E™(®)
L hz(ut )dx < cg Em(O)H <€0Em—(0)>

—C(E™)'(t) < CJ [ul*|?dx +c
Q
—CE™Y' (D) (3.23)

Integrating (3.23) over (0,T), we obtain

T T
J f h?(u™)dxdt < ¢ J |ul™|?dxdt + cT
0

— C(E™(T)

(3:20)_ gm0 (3.24)

Using (3.5) and the fact that u{" is bounded in
1((0,T),L*(Q)), we conclude that h(ul™) is
bounded in L2((0,T), L?(2)). So we find, up to a
subsequence that.
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h(u™) — x in L2((0,T),12(Q))  (3.25)

Now, we integrate (3.4) over (0,t) to obtain

Xm

T
= f f (u* — v)(h(u{”) — h(v))dxdt >0, v
0o /o

€ L2(0,T; L*()) (3.29)
j u{”wdx—f u"wdx
2 . 2 . Now, integrate (3.6) over (0, t) and taking m —
+f f Au™(s)Awdxds +f f u™(s)wdxds o0, We obtain
0 JQ 0 JQ
+ f h(u")wdxds
) 0 < limsupX™ < |luqll3 + ||Augll3
t k+2
=f fwum(s) In|u™(s)|*dxds, Yw +<T) lluoll3
Q 0
eV, (3.26
m (3:26) ~ [ Il nluolax
Convergences (3.3), (3.13), (3.14) and (3.25) are o
sufficient to pass the limit in (3.26) as m — oo, get — <|Iut||% + ||Au|3
k+2 5
.f uswdx + (T) llull3
Q
=j 1y wdx —JQ Iullnluldx)
Q
t t t dxd
—f j Au(s)Awdxds—f j u(s)wdxds - q x(t)vdxds
0 JQ 0 JQ Ot
t t
—f f )((s)wdxds] j u(s) winju(s)|*dx, (3.27) _Jo JQ (u
08 8o — v)h(v)dxds (3.30)
which implies that (3.27) i1s valid for any we . ) ) _
HI'(Q). Using the fact that the terms in the right- Replacing w by u, in (3.28) and integrating over
hand side of (3.27) are absolutely continuous (0,7), to obtain
since they are functions of ¢ defined by integrals , , (k+2 ,
over (0,t); hence, it is differentiable for a.e. lim sup X™ < [luy ||z + [ Au,llz + <—4 )”uo”z
t € R*. Thus, differentiating (3.27), we obtain for
a.e.te (0,7). —f |uo| In|u,|dx
Q
k+2
_ 2 2 (2T 2 2
f U (x, Hw(x)dx +f Au(x, t)Aw(x)dx <”ut”2 + llAullz + ( 4 )”ullz
Q Q
+f u(x, Hw(x)dx _JQ |u|ln|u|dx>
Q
t
- x(®vdxds (3.31)
+L x(Hw(x)dx OJQ
=j w()ulx, ) Infulx, )|<dx (3.28) Combining (3.30) with (3.31)
Q
On the other hand, since h is a no decreasing
monotone function, one has
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0 < lim sup X™

t
S.[J- x(®u.dxds
0o Ja

- fot.fﬂ x(t)vdxds

- J:L h(v)(u; — v)vdxds

t
< —h
< f fﬂ (2(®) — h()) (e
— v)dxds (3.32)

Hence,

Letv = A + u, P € L2((0,T), L2(2)). So, we
get,

t
—Af f (x(® — hR(AY + u,) )pdxds
0 Ja
<0, v
€ L2((0,T), ().

fot Jo (x@®) = R + uy) )ppdxds <
0, Vvye LI*((0,T)L*(1)). As
A — 0, we have

t
j j (x(®) — h(up))pdxds <0, V¢
0 70

€ L2((0,T), L3 (). (3.33)

Similarly, for 4 < 0, we get

ftfﬂ ()((t) — h(ut))lpdxds >0 WY
0

€ L2((0,T), (). (3.34)

Thus, (3.31) and (3.33) imply that y = h(u,).
Hence (3.28) becomes
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f ue (x, t)w(x)dx+f Au(x, t)Aw(x)dx
Q Q
+J u(lx, H)w(x)dx
Q
h(u; d
+L (up)w(x)dx

_ f w(X)u(x, £) Infu(x, ) *dx , Vw
Q

€ H'(Q) (3.35)

u™ —=u wekaly inL?(0,T; HJ*(Q))

u™ = u, weakly inL2(0,T; L?(Q))
(3.36)

Thus, using Lion” s Lemma [30], we obtain

u™ > u in C([0,T], L*(Q))
(3.37)

Therefore, u™(x, 0) makes sense and
u™(x,0) - u(x,0) in L2(Q)

Also, we have
u™(x,0) = ug'(x) = up(x) in H*(Q)

Hence, u(x,0) =
U (x)

Now, multiply (3.4) by @ € €;,°(0,T) and
integrate over (0, T), we obtain for any w € V,,

- fo ' fﬂ WP (we' (£ dxdt

T
=—f f Au™(t)Aw@(t)dxdt
0o Jo

T T
—J f umwQ)(t)dxdt—J f u w@(t)dxdt
0 JQ 0 JQ
T
+f f Wiy, Infuy, [* 0(t)dxdt  (3.38)
0 JQ

As m — oo, we have for any w € HJ*(Q) and any
0 € (o’ (0,T)

—JOTL u(Hw' (t)dxdt

__ J ' j Au(e) Awd(6)dxdt
0 JQ
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_foTL uw@(t)dxdt

T
_f f u,wo(t)dxdt
0 Ja
T
+—j J. w@(®)uln|ul* dxdt (3.39)
0o Ja

This means (see [32])
uy € L2([0,T), H-™(Q))
Recalling that u, € L?(0,T; HJ*()), we obtain
u; € C([0,T),)H™(Q)
So, uf™*(x, 0) makes sense and

u*(x,0) -» u:(x,0) in H7™(Q)

But

u™(x,0) = u™(x) - uy(x) in L2(Q)
Hence, u:(x,0) = uy (x).
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