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Abstract:  

We deal with the Camassa-Holm equation                             possesses a global 

continuous semigroup of weak conservative solutions for initial data   |     ̅ in   . The result is 

obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize 

conservative solutions it is necessary to include the energy density given by the positive Radon measure µ 

with           
      . The total energy is preserved by the solution. 
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Introduction 

In this paper, we reformulate the Camassa – Holm equation using a different set of variables and obtain a 

semilinear system of ordinary differential equations, as Bressan and Constantin [ ]  The Cauchy problem for 

the Camassa – Holm equation [ ] [ ]  
 

                                        |     ̅                                
 

has received considerable attention the last decade. With   positive it models, see [ ] [ ], propagation of 

unidirectional gravitational waves in a shallow water approximation, with   representing the fluid velocity. 

The Camassa-Holm equation has a bi-Hamiltonian structure and is completely integrable. It has infinitely 

many conserved quantities. In particular, for smooth solutions the quantities  

 

∫             ∫      
                ∫       

                                             

 

are all time independent. 

In this article we consider the case     on the real line, that is 

 

                                                                             
 

and henceforth we refer  to (1.3) as the Camassa – Holm equation. The equation can be rewritten as the 

following system 
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A highly interesting property of the equation is that for a wide class of initial data the solution experiences 

wave breaking in finite time in the sense that the solution   remains bounded pointwise while the spatial 

derivative    become unbounded point wise. However, the    norm of   remains finite. More precisely, 

Constantin, Escher and Molinet [    ] showed the following result:  If  the initial data  |           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

and  ̅   ̅   ̅    is a positive Radon measure, then equation (1.3) has a unique global weak solution 

  ( [   ]      ), for any   positive, with initial data  ̅.  However, any solution with odd initial data  ̅ 

in        such that  ̅       blows up in a finite time. 

The problem how to extend the solution beyond wave breaking can nicely be illustrated by studying an 

explicit class of solutions. The Camassa –Holm equation possesses solutions, denoted (multi) peakons, of 

the form 

                          ∑      
 |       |                                              

 

   

 

where the (           )  satisfy the explicit system of ordinary differential equations 

 ̇  ∑   
 |     |               ̇  ∑         (     )

 

   

  |     |

 

   

 

 

Observe that the solution (1.5) is not smooth even with continuous functions (           ); one possible 

way to interpret (1.5) as a weak solution  of (1.3) is to rewrite the equation (1.3) as  

 

   (
 

 
        

    (   
 

 
  

 ))
 

   

 

Peakons interact in a way similar to that of solutions of the Korteweg-de Vries (KdV) equation, and wave 

breaking may appear when at least two of the    „s coincide. If all the       have the same sign, the peakons 

move in the same direction. Furthermore, in that case the solution experiences no wave breaking, and one 

has a global solution. Higher peakons move faster than the smaller ones, and when a higher peakon 

overtakes a smaller, there is an exchange of mass, but no wave breaking takes place. Furthermore, the       

remain distinct. However, if some of       have opposite sign, wave breaking may incur, see, e.g., [   ].  
 

For simplicity, consider the case with     and one peakon         (moving  to the right) and one 

antipeakon         (moving to the left). In the symmetric case                           
          the solution will vanish pointwise at the collision time     when     

       
  , that is, 

           for all    . Clearly, at least two scenarios are possible; one is to let the peakon and 

antipeakon “pass through” each other in a way that is consistent with the Camassa – Holm equation. In the 

first case the energy ∫      
     decreases to zero at   . Clearly, the well-posedness of the equation is a 

delicate matter in this case. The first solution could be denoted a dissipative solution, while the second one 

could be called conservative. Other solutions are also possible.  

The problem of continuation beyond wave breaking was recently considered by Bressan and Constantin [4]. 

They reformulated the Camassa-Holm equation as a semilinear system of ordinary differential equations 

taking values in a Banach space. This formulation allowed them to continue the solution beyond collision 

time, giving a global conservative solution where the energy is conserved for almost all times.  

 

Going back to the original function u, one obtains a global solution of the Camassa-Holm equation. The 

well-posedness, i.e.,the uniqueness and stability of the solution, is resolved as follows. In addition to the 

solution u, one includes a family of non-negative Radon measures   with density   
     with respect to the 

Lebesgue measure. The pair         constitutes a continuous semigroup, in particular, one has uniqueness 

and stability. 

Very recently, Bressan and Fonte [5, 11] presented another approach to the Camassa-Holm equation. The 

flow map  ̅        is, as we have seen, neither a continuous map on    nor on   . However, they 

introduced a new distance         with the property 
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  ‖   ‖            ‖   ‖    

It satisfies 

        ̅    | | ,                    ̅  ̅    | |  

  

where           are solutions with initial data  ̅  ̅¯ respectively. The distance is introduced by first 

defining using the global, conservative solution described above. This enables them to construct 

conservative solutions for the Camassa-Holm equation which is continuous with respect to the distance  . 
 

 

Premilinary 

In this paper, we reformulate the equation using a different set of variables and obtain a semilinear system of 

ordinary differential equations, as Bressan and Constantin [1]. 

However, distinct variables from that simply corresponds to the transformation between Eulerian and 

Lagrangian coordinates. 

Let            denote the solution, and        the corresponding characteristics, thus           
            . Our new variables are         
 

                  ,         ∫       
     

      

  
                (1.6) 

 

where U corresponds to the Lagrangian velocity while H could be interpreted as the Lagrangian cumulative 

energy distribution. The characteristics         are defined as solutions of the equation 

                       

with the initial condition          .  Let we consider the momentum          of the system and 

introduce the variable    related direct to the momentum, as    

                  
  

  
         , 

Camassa shows the following system of partial differential equations 

          
 

 
∫      |               |                   
 

 

          
 

 
∫              |               |           
 

                             

Furthermore, let            

        
 

 
∫      |               |                     
 

 

        
 

 
∫              |               |             
 

                             

 

Then we can show that the following system  

{

    
     

         
                                                                                 (1.7) 

 

is equivalent to the Camassa-Holm equation.  
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Global existence of solutions of (1.7) is obtained starting from a contraction argument. As noted in [1], even 

if       is a natural space for the equation, there is no hope to obtain a group of solutions by only 

considering      . Thus, we introduce the following space  , which characterizes the solutions in Eulerian 

coordinates. 

 

     Definition 2.1. The set   is composed of all pairs       such that   belongs to       and   is a positive 

finite Radon measure whose absolute continuous part, satisfies           
      .  

 

For a given  , can also be seen as the position of a particle evolving in the velocity field  , where   is the 

solution of the Camassa-Holm equation. We are then working in Lagrangian coordinates. 

The pairs       such that            if           and   is a positive Radon measure whose absolutely 

continuous part satisfies           
        With three Lagrangian variables         versus two 

Eulerian variables        we define a group of transformations which acts on the Lagrangian variables and 

let the system of equations (1.7) invariant. Using this group, we are able to establish a bijection between the 

space of Eulerian variables and the space of Lagrangian variables when we identify variables that are 

invariant. This bijection allows us to transform the results obtained in the Lagrangian framework into the 

Eulerian framework .   

In particular, and this constitutes the main result of this paper, we obtain a metric    on   and a continuous 

semi-group of solutions on (       The distance     gives    the structure of a complete metric space. This 

metric is compared with some more standard topologies, and we obtain that convergence in       implies 

convergence in        which itself implies convergence in        Our main result states that for given 

initial data in   there exists a unique weak solution of the Camassa-Holm equation. The associated measure 

     has constant total mass, i.e.,                   for all  , which corresponds to the total energy of the 

system. This is the reason why our solutions are called conservative.  

The method described can be studied in detail for multipeakons, see [12] for details. By suitably modifying 

the techniques described in this paper, the results can be extended to show global existence of conservative 

solutions for the generalized equation 

 

{
             

           
 

 
        

                                                                     (1.8) 

 

where             . Observe that if             and         
  

 
  , then (1.8) is the classical 

Camassa-Holm equation (1.1). See [  ] for a recent proof of existence of dissipative solutions of (1.8). The 

details will be not described in this paper. Furthermore, the methods presented in this paper can be used to 

derive numerical methods that converge to conservative solutions.  

 

2.1.  Global solutions in Lagrangian coordinates 

Assuming that   is smooth, it is not hard to check that 

      
            

                                                             (2.1) 

Let us introduce the characteristics y(t; ξ) defined as the solutions of 

                                                                                                       (2.2) 

for a given          Equation (2.1) gives us information about the evolution of the amount of energy 

contained between two characteristics. Indeed, given        in  , let      ∫        
      

        

        
 be the 

energy contained between the two characteristic curves          and         . Then, using (2.1) and (2.2), 

we obtain  
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              |   

                                                                                   (2.3) 

Solutions of the Camassa-Holm blow up when characteristics arising from different points collide. It is 

important to notice that we do not get shocks as the Camassa-Holm preserves the    norm and therefore 

solutions remain continuous. However, it is not obvious how to continue the solution after collision time. It 

turns out that, when two characteristics collide, the energy contained between these two characteristics has a 

limit which can be computed from (2.3). As we will see, knowing this energy enables us to prolong the 

characteristics and thereby the solution, after collisions. 

We now derive a system equivalent to (1.4). All the derivations in this section are formal and will be 

justified later. Let y still denote the characteristics. We introduce two other variables, the Lagrangian 

velocity and cumulative energy distribution,   and  , defined as                      and                       

      ∫       
                                                                                

      

  

 

From the definition of the characteristics, it follows that  

                                                                         (2.5) 

This last term can be expressed uniquely in term of    , and  . From (1.4b), we obtain the following 

explicit expression for  , 

       
 

 
∫  |   | (        

 

 
  

      )                                         
 

 

Thus we have 

           
 

 
∫                |        | (        

 

 
  

      )                                     
 

 

Since            
        

           
 

 
∫                    |         | (       )                                           
 

 

where the t variable has been dropped to simplify the notation. Later we will prove that y is an increasing 

function for any fixed time t. If, for the moment, we take this for granted, then      is equivalent to   where 

        
 

 
∫                                      (       )                                     
 

 

        
 

 
∫                              (       )                                                            
 

 

Thus      and     can be replaced by equivalent expressions given by (2.8) and (2.9) which only depend on 

our new variables      and  . We introduce yet another variable,          simply defined as         

           . It will turn out that          . We now derive a new system of equations, formally equivalent 

to the Camassa-Holm equation. Equations (2.5), (2.3) and (2.2) give us 
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{

    
     

         
                                                                                 (2.10) 

As we will see, the system (2.10) of ordinary differential equations for         from [    ] to   is well-

posed, where   is Banach space to be defined in the next section. We have 

    
 

 
   (

 

 
    )      and                                                        

Hence, differentiating (2.10) yields  

{

         (          )

    
 

 
   (

 

 
    )    

                      

                                                                                                                                                       

The system (2.12) is semilinear with respect to the variables   ,    and   . 

 

2.2. Existence and uniqueness of solutions of the equivalent system.  

In this section, we focus our attention on the system of equations (2.10) and prove, by a contraction 

argument, that it admits a unique solution. Let V be the Banach space defined by  

  {          |       
     } 

where                      and the norm of   is given by ‖ ‖  ‖ ‖      ‖ ‖     . Of course 

          but the converse is not true as   contains functions that do not vanish at infinity. We will 

employ the Banach space   defined by                     

For any              , the norm on   is given by ‖ ‖  ‖ ‖  ‖ ‖      ‖ ‖  

The following lemma gives the Lipschitz bounds we need on   and  . 

Lemma 3.1. For any              , we define the maps   and   as          and          where 

  and   are given by (2.8) and (2.9), respectively. Then,   and   are Lipschitz maps on bounded sets 

from   to      . 

Moreover, we have 

    
 

 
   (

 

 
    )           and                                                           

Note: The proof is not given in this article 

Let           and :               , be two B-Lipschitz maps. Then, the product               is 

also a B-Lipschitz map from   to      , or from   to  .   

Since the mapping           is  -Lipschitz from   to   , then    is the product of two B-Lipschitz maps, 

one from   to      and the other from   to   , it is B-Lipschitz map from   to      ). Similarly, one 

proves that    is  -Lipschitz and therefore   is  -Lipschitz. Furthermore,   is  -Lipschitz. The formulas 

(2.13) are obtained by direct computation using the product rule, see [15]. 

 

In the next theorem we prove the existence of solution to the system (2.10) by using a construction 

argument. 
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Theorem 3.2.   Given  ̅       ̅  ̅  ̅   in  , there exists a time   depending only on ‖ ̅‖  such that the 

system (2.10) admits a unique solution in     [     ]    with initial data  ̅  
 

Lemma 3.3  Given initial condition  ̅      ̅   ̅     ̅     [         ]    we consider the solution    

                  [     ]     of (2.15) given by Theorem 3.3.  Then,         [     ]    [         ]    

Thus, this lemma allows us to pick up a special representative for              given by          which is 

defined for all       and which, for any given   satisfies the ordinary differential equation (2.15).  

Proposition 3.4. Let   be a bounded linear operator on a Banach space   into a Banach space  . Let   be in 

  [    ]      Then,    belongs to   [    ]     and therefore is Riemann integrable, and  

∫         
[    ]

 ∫                                                                        
[    ]

 

Definition 3.5. The set   is composed of all               such that 

            [         ]    

                            almost everywhere, and                 

          
         

  almost everywhere 

where we denote                  

Note that if all functions are smooth and         for initial data in G, the solution of (2.10) exists globally. 

Proof of the Theorem 3.2:   First, we can rewritten the solution of (2.10) as follow, 

      ̅  ∫                                                                         
 

 

 

where           is given by                           where             The integrals are 

defined as Riemann integrals of continuous functions on the Banach space  . Using Lemma 3.1, we can 

check that each component of       is a product of functions that satisfy one of the assumptions of Lemma 

3.3 and using this same lemma, we obtain that       is a Lipchitz function on any bounded set of  . Since   

is a Banach space, we use the standard contraction argument to prove the theorem. 

We now turn to the proof of existence of global solutions of (2.10). We are interested in a particular class of 

initial data. In particular, we will only consider initial data that belong to   [        ]    where  

        {          |       
    }. Given    ̅  ̅  ̅       [        ]   , we consider the short-time 

solution              [    ]      2of (2.10) given by Theorem 3.2. Using the fact that   and P are Lipschitz 

on bounded sets (Lemma 3.1) and, since X 2 C([0; T ]; E), we can prove that P and   belongs to 

   [    ]        . We now consider     and   as given function in    [    ]        . Then, for any fixed  

     , we can solve the system of ordinary differential equations 
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{
  
 

  
 

 

  
             

 

  
       

 

 
       ((

 

 
    )      )             

 

  
         (          )(        )                       

                                                                      

which is obtained by substituting   ,    and    in (2.12) by the unknowns     and  , respectively.  

Notation:  We have to specify the initial conditions for (2.15). Let A be the following set 

  {      | | ̅    |   ‖ ̅ ‖     
  | ̅    |   ‖  ‖     

  |  ̅   |   ‖  ̅‖     
 } 

We have that   has full measure, that is, measure(   ) = 0. For       we define 

                                ̅       ̅        ̅      However, for        we take 
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