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Abstract: This paper deals with LP based Mel-Generalized cepstrum which has been used as front-end for Hidden Markov Model (HMM) 

based speech recognition and it incorporates equal-loudness power law as well as auditory-like frequency resolution. To utilize the 

generalized cepstral representation, the model spectrum can be varied continuously from the all-pole spectrum to that represented by the 

cepstrum according to the value of γ. The performance of Mel-LP based generalized cepstral analysis has been evaluated on Aurora-2 

database for HMM based speech recognition. The word accuracy for Mel-Generalized cepstral analysis is found to be 63.63% for test set A. 

On the contrary, the conventional Mel-LPC gives 59.05% word accuracy. 
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1. Introduction 

Linear prediction [1], [2] is a widely accepted method for 

obtaining all-pole representation of speech. However, in some 

cases, for instance, nasal sounds spectral zeros are important 

and a more general modeling procedure is required. However, 

cepstral modeling based on linear prediction can represent 

poles and zeros with equal weights; the cepstral method [3] 

with a small number of cepstral coefficients overestimates the 

bandwidths of the formants. To overcome this problem, the 

generalized cepstral analysis method [4], [5] can be used. The 

generalized cepstral coefficients [6] are identical with the 

cepstral and AR coefficients when a parameter γ equals 0 and 

−1, respectively. Thus, utilizing the generalized cepstral 

representation, the model spectrum can be varied continuously 

from the all-pole spectrum to that represented by the cepstrum 

according to the value of γ. 

Since the human ear has high resolution at low frequencies, 

introducing the similar characteristics to the model spectrum 

will be more effective for encoding speech signal. Therefore, 

mel-generalized spectral model is one of the appropriate 

methods to estimate the auditory-like feature parameters as it 

includes the intensity-loudness power law by the generalized 

logarithmic function [7] as well as auditory frequency 

resolution. 

     
Fig.1:  The frequency mappings function by bilinear 

transformation. 

          

 Fig.2 :  Generalized autocorrelation function 
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2. Mel-LP Analysis  

The frequency warped signal ][~ nx (n=0… α) obtained by the 

bilinear transformation [8] of a finite length windowed signal 

][nx  (n = 0, 1, 2… N 1) is defined by: 
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where 
1~z  is the first-order all-pass filter: 
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where 10   is treated as frequency warping factor. 

The phase response of 
1~z  

 
is given by: 
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This phase function determines a frequency mapping. In the 

frequency domain, the spectrum )( jeX on the linear 

frequency axis   is converted to the frequency warped 

spectrum )(
~ ~

jeX on the mel-frequency axis 
~

 by the above 

frequency mapping function given by Eq. 2.3. Fig. 2.1 shows 

the approximated frequency mapping functions of the bark and 

the Mel scales (solid lines) at the sampling frequency of 8 kHz. 

This figure also shows the following analytical expressions of 

the “Mel” and Bark scales (dotted lines) based on 

psychoacoustic works [9], [10]: 

 

   7500/tan5.300076.0tan13 11 ffBark  

  ………….(4) 

and 

 700/1log2595 10 fMel        ………….(5) 

 

where f is the frequency in Hz.  As shown in Fig 1, α = 0.35, α 

= 0.40 can approximate the mel-scale and bark-scale at the 

sampling frequency of 8 kHz, respectively.  

In Mel-LP analysis, the spectral envelope of  )~(
~

)~(
~

zWzX
 
 is 

approximated by the following all-pole model on the linear 

frequency domain,  
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where ka~ is the k-th mel-prediction coefficient and 
2~

e is the 

residual energy [11]. 

 

Fig.3: Mel-LP analysis on the linear frequency scale. 

The model )~(
~

za  is estimated on the basis of minimization 

of mean square error (MMSE) as shown in Fig. 3. Since ][~ nx  

is an infinite sequence, the prediction error signal is also an 

infinite sequence. Thus, the total error energy E
~

 over an 

infinite sequence is given by: 
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Where ][nxk is the output signal of a k-th order all-pass filter 

kzz )(~  excited by ][][0 nxnx  . As a result of 

minimizing E
~

, the mel-prediction coefficients  ka~  are 

obtained by solving for the following normal equations: 
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In the warped frequency domain, Eq.9 can be rewritten as: 
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where the frequency weighting function
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jeW is defined by: 

1

2

~1

1
)~(

~





z
zW




   ………….(11) 

which is derived from 
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Eq.8 indicates that ),(
~

km  reduces to the autocorrelation 

function of the signal whose Fourier transform is equal to the 

frequency warped and frequency weighted 

spectrum )(
~

)(
~ ~~

 jj eWeX .This autocorrelation function is 

called as “generalized autocorrelation function”. Fig. 2 

illustrates the calculation procedure of generalized 

autocorrelation function. From Eq.8, it should be noted that 

),(
~

km  is a function of the difference )( mk  . Thus, 

),(
~

km  can be calculated from the sum of finite terms 

without any approximation,  
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Therefore, to solve for ka~  and e~ , the generalized 

autocorrelation coefficients of the input signal ][nx  is required 

instead of autocorrelation coefficients in the traditional LP 

analysis [12], [13]. Since the mel-prediction coefficients  ka~  

are obtained from the generalized autocorrelation function of 

the input signal ][nx  , the proposed system enhances the 

speech signal in the generalized autocorrelation domain. 

Although the estimated model given by Eq. 6 includes the 
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frequency weighting )(
~ ~

jeW , this can be easily removed by 

inverse filtering in the generalized autocorrelation domain 

using  11)~(
~

)~(
~ zWzW , which leads to the mel-

autocorrelation function ][~ mr :  

 ]1[~]1[~][~][~
10  mrmrmrmr  …….(14) 

       

and     
212

1 )1(     ………….(15) 

As feature parameters for recognition, the Mel-LP cepstral 

coefficients can be expressed as:     
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where  kc~  are the mel-cepstral coefficients. 

The mel-cepstral coefficients can also be calculated directly 

from mel-prediction coefficients  ka~ [14] as shown in Fig.4, 

using the following recursion:   

 

Fig.4: Block diagram for the calculation of Mel-LP cepstrum 
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It should be noted that the number of cepstral coefficients need 

not be the same as the number of prediction coefficients.         

3. Generalized LP Cepstrum Analysis 

In auditory perception, intensity-loudness compression is not 

logarithmic, but is rather cubic-root characteristic as used in the 

PLP analysis. In order to incorporate this auditory 

characteristic into the spectral representation, the following 

generalized logarithmic function [6] has been introduced 

instead of the logarithmic function: 
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where )(ws  approaches the logarithmic function as 0 . 

 

The generalized cepstrum [6] for a minimum phase sequence is 

defined by substituting this function to the logarithmic function 

in the definition of the cepstrum. The generalized cepstrum for 

)(zH  is computed by the recursion similar to the 

conventional cepstrum. 

. 

 

4. Mel-Generalized Cepstral Analysis 

Although all-pole modeling is effective and simple to estimate, 

it is not appropriate to represent the spectra with zeroes as in 

the case of nasal sounds. In order to take both the pole and zero 

into account and also to incorporate the auditory characteristics 

of frequency resolution and the intensity-loudness power law, 

the mel-generalized cepstral analysis has been shown to be 

effective [7]. In this analysis, using the mel-generalized 

cepstral coefficients, a spectrum is modeled by  
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This spectral representation includes various types of models 

depending on the value of   and . The models when   

equals -1 and 1 are identical to the all-pole and all-zero models, 

respectively, and   = 0 leads the conventional cepstral model. 

The parameter   controls the degree of frequency warping by 

Eq. 3. 

The model parameters are estimated so as to minimize a 

criterion used in the unbiased estimation of the log spectrum 

[15]: 
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where            
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For 1  this minimization is solved directly by a set of 

linear equations, while for 01    the optimal estimates 

are obtained by an iterative algorithm whose convergence is 

quadratic. 

5. Evalution on Aurora-2 Database 

5.1  Experimental Setup 

Place The proposed system was evaluated on Aurora 2 

database [16] which is a subset of TIDigits database 

contaminated by additive noises and channel effects. This 

database contains the recordings of male and female American 

adults speaking isolated digits and sequences up to 7 digits. In 

this database, the original 20 kHz data have been down 

sampled to 8 kHz with an ideal low-pass filter extracting the 

spectrum between 0 and 4 kHz. These data are considered as 

clean data. Noises are artificially added with SNR ranges from 

20 to -5 dB at an interval of 5 dB. 

To consider realistic the frequency characteristics of terminals 

and equipment in the telecommunication area an additional 

filtering is applied to the database. Two standard frequency 

characteristics G.712 and MIRS are used which have been 

defined by the ITU (1996) [17].Their frequency responses have 

been shown in Fig. 5 
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Fig.5: Frequency responses of G712 and MIRS filters 

It should be noted that the whole Aurora-2 database was not 

used in this experiment rather a subset of this database was 

used as shown in Table 1. 

Table-1: Definition of training data. 

 

The recognition experiments were conducted with a 12th order 

Mel-LP analysis. The pre-emphasized speech signal with a pre-

emphasis factor of 0.95 was windowed using Hamming 

window of length 20 ms with 10 ms frame period. The 

frequency warping factor was set to 0.35. For mel-generalized 

cepstral analysis the value of   was set to 0.3 since it gives 

better performance.  

As front-end, 14 cepstral coefficients and their delta 

coefficients including 0th terms were used. Thus, each feature 

vector size is 28. The acceleration coefficients were not used in 

the proposed system, because it was found that their 

incorporation could not improve the word accuracy, especially 

in low SNR conditions [18].The reference recognizer was 

based on HTK (Hidden Markov Model Toolkit, Version 3.4) 

software package. The HMM was trained on clean condition. 

The digits are modeled as whole word HMMs with16 states per 

word and a mixture of 3 Gaussians per state using left-to-right 

models. In addition, two pause models ‘sil’ and ‘sp’ are 

defined. The ‘sil’ model consists of 3 states, which illustrates in 

Fig. 6. This HMM shall model the pauses before and after the 

utterance. A mixture of 6 Gaussians models each state. The 

second pause model ‘sp’ is used to model pauses between 

words. It consists of a single state, which is tied with the middle 

state of the ‘sil’ model. The recognition accuracy (Acc) is 

evaluated as follows:      %100



N

ISDN
Acc

   …………(23) 

where N is the total number of words. D, S and I are deletion, 

substitution and insertion  

errors, respectively. 

   
Fig. 6: Possible transition in the 3-state pause model ‘sil’. 

6. Experimental Results 

The detail recognition results are presented in this section. The 

detail recognition results using the Mel-LPC feature parameter 

with the value of warping factor of 0.35 is tabulated in Table 2. 

For the Mel-Generalized cepstral parameter with the same 

value of warping factor and  = 0.30 is listed in Table 3.  

Form these tables it is observed that for Mel-LPC, the average 

recognition accuracy for noise categories subway, babble, car 

and exhibition are found to be 68.30%, 48.06%, 53.77% and 

66.05%, on the other hand, for Mel-Generalized cepstral, the 

average recognition accuracy found to be 66.14%, 61.15%, 

63.30% and 63.93%, respectively. 

On the average, the word accuracy for the Mel-LPC is found to 

be 59.05% while the accuracy for the Mel-Generalized cepstral 

parameter is found to be 63.63%.  

Table 2: Word accuracy for Mel-LPC with the value of 

warping factor, 35.0  

 
Table 3: Word accuracy for mel-generalized cepstral parameter 

with 35.0  and 30.0 . 

 
 

 

 

7. Conclusion  

From the recognition experiments, it has been found that the 

Mel-Generalized cepstrum outperforms the Mel-LPC. The 

word accuracy for Mel-Generalized cepstrum and for Mel-LPC 

Training 

Model 

Filter Noise SNR [dB] 

Clean G.712 …  

           

Multi 

        

G.712 

Subway,  car ,babble, 

exhibition 

20, 15, 10, 5, 

0, -5 and 

clean 
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was found to be 63.63% and 59.05%, respectively, for test set 

A.  After evaluating the performance of Mel-Generalized 

cepstrum and Mel-LPC the average ward accuracy are obtained 

61.15% for babble and 63.30% for car, whereas, in the case of 

Mel-LPC 48.06% is obtained for babble and 53.77% for car.  

For Mel-LPC, the average word accuracy is obtained 68.30% 

for subway and 66.05% for exhibition, on the other hand, in the 

case of Mel-Generalized cepstrum 66.14% is obtained for 

subway and 63.93% is obtained for exhibition. 

From the above discussion we can conclude that Mel-

Generalized cepstral analysis is more effective than Mel-LPC 

analysis for noise type’s babble and car; on the other hand Mel-

LPC is more suitable for subway and exhibition noises. 
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