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Abstract:  

We have proposed a simple technique for extracting high frequency material complex relative permittivity 

from 0.1 GHz up to beyond 5.1 GHz despite the test fixture’s discontinuities along with the characteristic 

impedance. The frequency range limitation depends on the test fixture’s sizes. Based on the S-parameter 

measurements, the overall technique associates the test fixture in which the sample to characterize is 

inserted and the technique for altering the propagation constant of the considered region. Mathematics 

concepts, through their formulations, allow extracting material complex relative permittivity. The 

technique foundation is primarily based on the fixture calibration when there is a filling up of vacuum. A 

coaxial test cell is used to validate the extraction procedure. That fixture is suitable for measuring material 

electric parameters used in medical and civil engineering, telecommunications, and oil and gas domains. 

We have presented results ensuing from measures of spring water and biological materials: human tissue 

and liquid 900 MHz. Both biological materials are liquids and react as a muscle subjected to an 

electromagnetic wave. The technique is broadband, making it easy to fill up the test cell with the sample to 

be tested.  
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1. Introduction 

Electromagnetic material characterization is the 

radiofrequency and microwave electronics element 

that relates to the analysis and interpretation of 

material behavior following electromagnetic 

excitation. All methods, along with their techniques, 

are based on two main principles: the entrapment of 

a material under test (MUT) in an environment 

called testing cell and the S-parameter 

measurements [1][7]. One of those techniques is 

the transmission line, which can be used in 

reflection and/or transmission [8]. In this paper, we 

have developed that technique (despite the fixture 

discontinuities) [9] to extract the complex relative 

permittivity *

r  of some liquid materials in the 

frequency range 0.1 – 5.1 GHz with accuracy better 

than 5%. Many scientists have been developing 

techniques to sort out the discontinuity problems 

when computing data of intrinsic material 

parameters that generate order modes spreading 

inside of the test cell [10][11]. The developed 

technique in this paper is focused on the 

determination of the propagation constant , which 

is the best way to reduce the discontinuities’ impacts 

[12][14]. The technique description is divided into 

two main parts: the mathematical formulation and 

the experimental validation with a second principle 

to counter difficulties of extracting sample losses. 

Experimental measurements, using some biological 

materials (900MHz liquid and human tissue) and 

normal water, have been done to validate the 

technique’s procedure. We used a brass circular 

coaxial transmission line, in which the sample under 

test (SUT) is trapped. Also, O-rings have been set up 

in the fixture’s design in order to avoid liquid 

spreading out.  

 

2. Theory and Mathematic Model 

2.1 Propagation constant 

The extraction of intrinsic electric parameters is 

quite often based on the use of the propagation 
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constant  [11]-[14] when assuming that the MUT is 

none magnetic. This is due to discontinuities related 

to the transition interfaces, which are located 

between the input source and the ideal transmission 

line. This transmission-line secondary parameter is 

measured from S-parameters via the wave cascade 

matrix (WCM), written as [C] and given by: 
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However, this matrix can be defined according to the 

transmission line propagation constant  on the 

assumption that 011 S  and 022 S as: 
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where l  is the line’s length. Consider the fixture’s 

schema as showed in figure 1, the discontinuity 

inverse transfer matrix is: 
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where 
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The total wave amplitude matrix for the device in 

figure 1 is written as: 
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which gives 
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Once the de-embedding is done, equation (5) is 

reduced to: 
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From equation (4), the characteristic impedance of 

the cell test is given as: 
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Figure 1 is the summary of the entire testing cell 

when the sample under test (SUT) is inside or not. 

 

 

 

The wave cascade matrix of the ideal line is given by 

the following equation: 
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Solving equation (8) leads to: 
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  21221211 CCCCB   
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Using equation (2), by identification, we need to 

solve the second-order polynomial, which is: 

 

  0121122

2

21  CCCC  

 

We get easily the reflection coefficient at the line-

connector interface. It is given as: 
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Figure 1: Simplified representation of a transmission-

line in the presence of discontinuities. 
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This last result is used for determining the 

characteristic impedance expressed in equation (4). 

From equation (10), combined with (2), we obtain 

the propagation constant expression as: 
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As far as we have considered the fixture as the ideal 

one, it is necessary that 0,  mv . In that case, the 

propagation constant in two situations (vacuum and 

SUT) becomes: 
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We ultimately rewrote the propagation constant in 

both situations: in or out of presence of the sample 

under test, indicated by v  for vacuum and m  for 

material under test. The phase constant in the case of 

vacuum is determined by      
vv Cl 11lnIm  

while      
mm Cl 11lnIm . This constant is 

obtained after having disrupted the environment of 

the testing cell. Moreover, the energy conservation 

equation is often used in telecommunication as: 

 

1TR                                                             (13) 

 

It allows settling up loss problems by considering a 

general mismatched system and easily demonstrating 

that: 
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In the particular case where the system is matched, 

equation (14) becomes: 
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11S  and 21S  are found from equation (2), as results 

are given below: 
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Making measurements of connections in short 

circuit and in open circuit, the obtained reflection 

parameters, respectively SCS11  and OCS11 , give the 

opportunity for extracting the characteristic 

impedance and the propagation constant 00l  as: 
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where  50nZ  is the characteristic impedance of 

the metering equipment.  

 

2.2 Extraction of material electric parameters 

We have extracted the material intrinsic parameters: 

the relative permittivity 
r , the dielectric loss 

tangent dtan , and/or the electric conductivity e . 

Mathematic expressions giving the methodology of 

these parameters have been implemented with a 

compute program. This is a real stake of several 

scientific works and publications [7]-[12]. After 

having linearised the phase constant, with the 

assumption that the SUT is a perfect insulator, 

equation (19) is expressed as: 
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and the electric conductor: 
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3. Experiment Results and Discussion 

We calibrated the vector network analyzer in 2-port 

to solve all measurement system blemishes [15].  

 

 
Figure 2a: Relative permittivity of human 

tissue and liquid 900 MHz 

 

 
Figure 2b: Electric conductivity of human 

tissue and liquid 900 MHz 

 

We compare the sound-transmission gel 

manufacturer values at 900 MHz to those we 

obtained through the following table resume. 

Table 1: Benchmarking values of liquid 900 MHz 

Parameters Manufacturer Measured 

r  39.3 40.03 

 mSe /  0.95 0.89 

 

We observed an error of 1.86% and 6.31% on the 

relative permittivity and the electric conductivity, 

respectively. We sketched curves to compare the 

human tissue electric parameters to validate the 

trend that has been observed with the sound-

transmission gel. 

 

 

Figure 3a: Comparative results of human 

tissue relative permittivity 

 

 
Figure 3b: Comparative results of human 

tissue electric conductivity of human tissue 

 

These measured results through its sketches show a 

good match with the manufacturer ones. 

 

 
Figure 4a: Relative permittivity of spring 

water 

 

 
Figure 4b: Loss tangent of spring water 
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The spring water results are in accordance with the 

two transmission-line technique [16]. 

4. Conclusion 

A broadband technique for measuring any material 

bulk properties (i.e. complex permittivity) has been 

developed. The technique utilizes a coaxial 

transmission-line fixture, loaded with a material in 

the unknown intrinsic parameters. Those parameter 

measurements are made despite the fixture’s 

discontinuities, and S-parameters are computed 

automatically with the network analyzer in order to 

be used in the extraction procedure. Some measured 

data for standard biological dielectrics in [0.1–5.2] 

GHz have been presented. The technique allows for 

accuracy better than %5  on relative permittivity and 

%10  on the electric conductivity parameters. The 

sample under test conductive losses and its dielectric 

constant along with the device dimensions are the 

three reasons that caused the frequency band 

limitations. From different obtained results, this 

measurement technique should be suitable for other 

materials with electromagnetic applications. 
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