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Abstract:  

In this work we are interested in developing approximate models for water waves equation. We present 

the derivation of the new equations uses approximation of the phase velocity that arises in the linear water 

wave theory. We treat the (KdV) equation and similarly the C-H equation. Both of them describe 

unidirectional shallow water waves equation.  

At the same time, together with the (BBM) equation we propose, we provide the best approximation of 

the phase velocity for small wave numbers that can be obtained with second and third-order equations. 

We can extend the results of [3, 4].  A comparison between the methods is mentioned in this article. 
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1.Introduction 

In many cases the numerical methods gives us a good approximation related to approximation of solutions. 

The finite-element method is a special case of the Galerkin method in which the base functions are chosen 

such that each base function becomes 1 at the corresponding nodes but otherwise 0 at other nodes. The 

Galerkin method permitted finite-element techniques to be extended into areas such as fluid mechanics, 

especially in water waves theory. Milder, Miles and Broer deal with the water waves on the Hamiltonian 

theory of surface waves (see [10], [11], [12]). 

The KdV equation was originally derived by Korteweg and de Vries [7] from the model surface waves in a 

canal. The key to a soliton's behavior is a robust balance between the effects of dispersion and nonlinearity. 

Than we see the water wave equation with logarithmic term [1]. 

We are concerned with a two-dimensional, irrotational flow of an incompressible ideal fluid with a free 

surface under the gravitational field. The domain occupied by the fluid is bounded from below by a solid 

bottom. The upper surface is a free boundary and we take the influence of the gravitational field into account 

on the free surface. Our main interest is motion of the free surface, which is called a gravity wave. 

The KdV equation was obtained by Benjamin [2]. We extend the Finite Volume Methods for Non-Linear 

Equations and results used in [3,4] and we assume that the waves are weakly nonlinear and weakly 

dispersive. In other words, the water depth is much smaller than the typical wavelength. Solitons are among 

the most interesting structures in nature. Being configurations of continuous fields, they retain their localized 

shape even after interactions and collisions. 

The nonlinear surface water waves in perturbed problem are discussed by [5, 6] in the presence of the effect 

of surface tension. Based on the method of multiple-scale expansion for a small amplitude, they derived two 

KdV equations and discussed the two-soliton solution for KdV equations by using analytical methods. 
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The main aim in this work is to effectively derive the KdV equations and employ the modified form of 

Laplace decomposition method introduced by Khuri [9] to establish approximate solutions of waves 

propagating along the interface between air-water. 

The Galerkin method permitted finite-element techniques to be extended into areas such as fluid mechanics and series 

solution of some problems in elastic equilibrium of rods and plates (see [13]). Several other researchers have 

tested the validity of the KdV equation and variants in laboratory experiments (Remoissenet [9], Helfrich 

and Melville [8]). Their study includes a numerical scheme with error estimates, a convergence test of the 

computer code, a comparison between the predictions of the theoretical model and the results of laboratory 

experiments. 

2. Basic Equations  

The equation for the surface of water is 𝑦 = 𝜂(𝑥, 𝑡) where 𝑦 = 0 represents the equilibrium situation. We 

assume that the motion is irrotational within the wave. Therefore, we can describe the wave inside the water 

by a velocity potential 𝛷(𝑥, 𝑦, 𝑡) whose gradient is the velocity field:   

                               (𝛻𝛷 =   
𝜕𝛷

𝜕𝑥
,
𝜕𝛷

𝜕𝑦
 )                                                                                      ( 2.1) 

The divergence-free condition on the velocity field implies that the velocity potential Φ satisfies the 

Laplace's equation: 

                               
𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
= 0, 𝑓𝑜𝑟 − ℎ < 𝑦 < 𝜂(𝑥, 𝑡)                                       (2.2) 

We consider the unsteady two-dimensional flow of inviscid, incompressible fluid in a constant gravitational 

field. The space coordinates are (𝑥,y) and the gravitational acceleration 𝑔 is in the negative 𝑦 direction. Let ℎ 

be the undisturbed depth of the fluid. The bottom of the fluid is assumed to have no topography at 𝑦 = − ℎ. 

This problem describes the interface dynamics, between air and water waves, under the gravity 𝑔. 

Since the majority of shallow water flow of practical interest is two-dimensional, the governing differential 

equation can be written as: 



                                      
𝜕2(𝑈𝑢)

𝜕𝑥2
+

𝜕2(𝑈𝑣)

𝜕𝑥𝜕𝑦
+

𝜕2(𝑈𝜏)

𝜕𝑦2
=

𝑝𝑧(𝑥, 𝑦)

𝑆
+

𝜕(𝑈ℎ)

𝜕𝑥2
                               (2.3) 

 

where, 𝑝𝑧  is the lateral pressure that is being applied, 𝑆 is the flexural deformation of the wave.  

Here, 𝑢 and  𝑣 denote the velocity components in 𝑥 and 𝑦  directions, respectively, and 𝜏 denotes the depth 

of the free surface.  

 

On a solid fixed boundary, the normal velocity of the fluid must vanish at  𝑦 =  −ℎ 

                                      
𝜕𝛷

𝜕𝑦
 = 0             𝑎𝑡        𝑦 = −ℎ,                                                                    (2.3)      

which dictates that there is no flow perpendicular to the bottom.  The boundary conditions at the free surface 

𝑦 = 𝜂(𝑥, 𝑡) are given by  

                                 
∂η

∂t
+

∂η

∂x

∂Φ

∂x
=  

∂Φ

∂y
                                                                                          (2.4)   
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The Camassa-Holm (CH) equation:  

 

                                        (𝑢 − 𝑢𝑥𝑥)𝑡 + 3𝑢𝑢𝑥 = ε (2 𝑢𝑥  𝑢𝑥𝑥  + 𝑢𝑢𝑥𝑥𝑥  ) ,     𝑥𝜖 Ω, t > 0       (2.5)                

 

or                                                      𝑢𝑡  − 𝑢𝑡𝑥𝑥 + 3𝑢𝑢𝑥 −  2 𝑢𝑥  𝑢𝑥𝑥  − 𝑢𝑢𝑥𝑥𝑥  = 0           (2.6)                                   

3. Korteweg-de Vries Equations 

3.1 Derivation of Korteweg-de Vries Equations 

In this section, we show that it is indeed possible to derive KdV equations [10] for the free surface 𝜂(𝑥, 𝑡) by 

using a multiple-scale perturbation theory. We introduce a small deformation parameter  𝜖 . We get the 

system equations  

                                 𝜖
𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
= 0, for      − 1 < 𝑦 < 𝜖 𝜂 (𝑥, 𝑡)                        (3.1.1) 

                                                       
𝜕𝛷

𝜕𝑦
 = 0             at        𝑦 = −1,                                             (3. .1.2)      

                              𝜖
∂η

∂t
+ 𝜖2

∂η

∂x

∂Φ

∂x
=  

∂Φ

∂y
               at      𝑦 = 𝜖 𝜂                                      (3.1.3)   

To get a suitable expansion for the velocity potential Φ, we note that from the Laplace equation (3.1) and the 

boundary condition (3.2), we may derive the following representation for Φ(𝑥,𝑦,𝑡) as a series in 𝑦+1. Since 

𝜕Φ/𝜕𝑦 = 0 at 𝑦 = −1, 

                                                          Ф(𝑥, 𝑦, 𝑡) = ∑(𝑦 + 1)𝑛Ф𝑛(𝑥, 𝑡)                                      (3.1.4)

∞

𝑛=0

 

3.2  The Conditions Along the Boundaries 

 

Recall that the conditions on a simply supported edge parallel to the y-axis at x =a, are. 

 

                                                                                            𝑈|𝑋=𝑎 = 0                                              (3.2.1) 

 

                                                 𝑀𝑥|𝑋=𝑎 = −𝑆(
𝜕2𝑤

𝜕𝑥2
+ 𝜗

𝜕2𝑤

𝜕𝑦2
)𝑋=𝑎 = 0                                              (3.2.2) 

                                    
On a simply supported edge parallel to the x-axis at y =a, the change of w with respect 

to the x-coordinate vanishes; thus, the condition along this boundary are 

 

                                                                                       𝑈|𝑌=𝑎 = 0                                           (3.2.3)   
 

                                                  𝑀𝑦|𝑌=𝑎 = −𝑆(
𝜕2𝑤

𝜕𝑦2 + 𝜗
𝜕2𝑤

𝜕𝑥2 )𝑌=𝑎 = 0(3.2.4)   

 

The following part presents the numerical results achieved for the problems of approximation. All of the 

computation was carried out with the help of a symbolic algebra software system, Mathematica [16]. 

 

4. Fundamentals of Modified Laplace Decomposition Method 

In this section, a brief outline of  LDM is explained. For this, we consider the general nonlinear partial 

differential equation of first order (without loss of generality) in the following form: 
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                                           𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁(𝑢(𝑥, 𝑡)) = ℎ(𝑥, 𝑡)                                 (4.1)               

 with the following initial condition: 

                                                                  𝑢(𝑥, 0) = 𝑓(𝑥)                                                       (4.2) 

where 𝐿 is the first-order differential operator, 𝐿=𝜕/𝜕𝑡, 𝑅 is linear differential operator, 𝑁(𝑢) presents the 

nonlinear term, and ℎ(𝑥,𝑡) is the source term. The methodology consists of applying Laplace transform first 

on both sides of   (4.1) 

                            £[𝐿𝑢(𝑥, 𝑡)] + £[𝑅𝑢(𝑥, 𝑡)] + £[𝑁(𝑢(𝑥, 𝑡))] = £[ℎ(𝑥, 𝑡)]                           (4.3) 

Using the differentiation property of Laplace transform, we get 

                             𝑠£[𝑢(𝑥, 𝑡)] − 𝑓(𝑥) + £[𝑅𝑢(𝑥, 𝑡)] + £[𝑁(𝑢(𝑥, 𝑡))] = £[ℎ(𝑥, 𝑡)]              (4.4) 

Now, we will define the solution (𝑥,) by the series in the following form: 

                                𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)                                                                                         (4.5)

∞

𝑛=0

 

and the nonlinear operator 𝑁(𝑢) represented by an infinite series of the so-called Adomian's polynomials:        

                                      𝑁(𝑢) = ∑ 𝐴𝑛                                                                                               (4.6)

∞

𝑛=0

 

where 𝑢𝑛(𝑥, 𝑡), 𝑛 ≥ 0 are the components of 𝑢(𝑥,𝑡) that will be elegantly determined and 𝐴𝑛  are called 

Adomian's polynomials and defined by 

                          𝐴𝑛 =
1

𝑛!
[

𝑑𝑛

𝑑𝜆𝑛
𝑁 (∑ 𝜆𝑖𝑢𝑖

∞

𝑖=0

)]

𝜆=0

,    𝑛 ≥ 0                                                              (4.7) 

Using (4.5) and (4.6) in (4.4), we get 

      £ ⌊∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

⌋ =
1

𝑠
𝑓(𝑥)

1

𝑠
£[ℎ(𝑥, 𝑡)] −

1

𝑠
£ ⌊𝑅 ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

⌋ +
1

𝑠
£ ⌊∑ 𝐴𝑛

∞

𝑛=0

⌋                  (4.8) 

For numerical comparisons purpose, we construct the solution (𝑥,) such that 

            lim
𝑛→∞

𝑈𝑛(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ,        where   𝑈𝑛(𝑥, 𝑡) = ∑ 𝑢𝑖(𝑥, 𝑡),      𝑛 ≥ 0                      (4.9)

𝑛−1

𝑖=0

 

5. Approximation of the Solution With a Polynomial 

The method has been used to solve problems in mechanical engineering such as structural mechanics, 

dynamics, fluid flow, heat and mass transfer, acoustics and other related fields. We consider the idea to 

approximate the solution with a polynomial involving a set of parameters. The polynomial is made to satisfy 

both the differential equation and the associated boundary conditions. Using orthogonality of polynomials, 

we can approximate the solution to the differential equation on shallow water wave equation.  

Let´s we have the second differential equation for a horizontal surface for water waves as follow 



Leonard Bezati, IJSRM Volume 07 Issue 08 August 2019 [www.ijsrm.in]                                      M-2019-170 

 
𝜕2𝑈

𝜕𝑥2 +
𝜕2𝑈

𝜕𝑥𝜕𝑦
+

𝜕2𝑈

𝜕𝑦2 =
𝑝𝑧(𝑥,𝑦)

𝑆
+

𝜕𝑈

𝜕𝑥2                                  (5.1)   

 
Consider a differential operator L, defined as 
 

𝐿 = [
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑥𝜕𝑦
+

𝜕2

𝜕𝑦2
]                                                   (5.2) 

 
So, eq. (2.1) becomes,     

                                                     𝐿𝑈 =
𝑃𝑧

𝑆
                                                           (5.3) 

 
We can express the solution to the above equation in terms of the eigenfunction and eigenvalues, 
which are defined as: 
 

                                                  𝐿𝑒𝑛𝑚(𝑥, 𝑦) = 𝜆𝑛𝑚𝐿𝑒𝑛𝑚(𝑥, 𝑦)                                  (5.4) 
 
where 𝑒𝑛𝑚(𝑥, 𝑦) are the eigenfunctions and 𝜆𝑛𝑚   are the corresponding eigenvalues. Once the 
eigenfunctions and eigenvalues are known, it is possible to express 𝑈(𝑥, 𝑦)  as, 
 

                                                             𝑈(𝑥, 𝑦) = ∑ ∑ 𝑢𝑛𝑚𝑒𝜆𝑛𝑚𝑒𝑛𝑚(𝑥, 𝑦)                                   (5.5)

∞

𝑚=1

∞

𝑛=1

 

 

Polynomial approximating functions will be used to represent the lateral deformation of the horizontal zone 

water. In this discussion, the trial function 𝑒𝑖(x, y) will be represented as:   

                               ∅𝑖(𝑥, 𝑦) = ∑ ∑ 𝑎[𝑖, 𝑗]𝑢𝑗(𝑥, 𝑦)                                     (5.6)

𝑁

𝑗=1

𝑁

𝑖=1

 

where 
𝑢𝑗(𝑥, 𝑦) = 𝑥𝐿𝑗 ∙ 𝑦𝑀𝑗                                                          (5.7) 

 
and, 𝐿𝑗  and 𝑀𝑗  are positive integers and ∅𝑖(𝑥, 𝑦)  are coefficients to be determined. 

 

Conclusions and Discussion 

We see that the method mentioned in this article is one of the methods which were used to obtain the KdV 

equations. It is relatively short in mathematical calculation and more effective.  

The Galerkin method can be used to approximate the solution to ordinary differential equations, partial 

differential equations and integral equations. The Galerkin method is used to determine the coefficients of 

these polynomials. The finite element and Galerkin methods are currently the standard numerical technique 

in use to solve various nonlinear problems.  

In this study, we present model equations for surface water waves by using Laplace decomposition 

technique. It is used to estimate the KdV equations for the nonlinear theory, describing the behaviour of the 

perturbed system.  

While the Hamiltonian expansions are complex in mathematical calculation. For the same, the Dirichlet-

Neumann operator expansions is relatively a long method when compared with the Galerkin method. 
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Special attention is given to derive the solutions for the KdV equations, which describe the water waves 

propagation by using the MLDM, and then analyzed and discussed theoretically and computationally. 

We observe that the elevation of the water waves is in form of traveling solitary waves, which increases in 

amplitude as the wave number increases. 

Finally, the horizontal and vertical velocities have a nonlinear characters, which describe the physical 

situation of the system for free surface between air and water. 

1. LDM does not require small parameters which are needed in perturbation method;  

2. the method is very promising for solving wide application in   nonlinear differential equations. 

The extension of the general finite element method of structural analysis to water waves studies, since 

almost any particular situation can now be analyzed using a general purpose computer program. 

In the last  years, with the advent of the digital computer, other methods such as finite differences and finite 

elements have become practical. In 1956 Clough, Martin and Topp introduced the finite element method. 
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