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Abstract 

This article proposes a method to speed the slow response issues (rise time, settling time and prediction) of 

the existing MPC algorithms up due to the computation load of online optimization without reducing 

computation load. In the method, original MPC strategy is warped using an integer time scaling factor in 

time domain. The aim is to speed this strategy up by exploiting the speeds of fast microprocessors. For this 

aim, an integer time scaling factor is selected according to the limit of the used microprocessor. Solution of 

plant, which is controlled, is contracted and sampled by this scaling factor. Standard MPC problem is 

based on this modification of plant. The first elements of fast computed control law vectors are dilated 

until original online optimization sampling period is reached again and applied to plant at each sampling 

period. The modified MPC strategy, which is called Upsampled MPC (UMPC), settles faster to desired 

output than original MPC strategy and also satisfies faster prediction at each sampling period. Since the 

method is more compatible with fast microprocessor and the speed of UMPC results from microprocessor, 

slow operation issue of MPC algorithms is solved for different time scaling factors by this method. 

Therefore, the control energy of UMPC is lower. There also exists the free times between online 

optimization sampling periods of original MPC and UMPC strategies. These free times can be used for 

improvement of the existing MPC algorithms.   

Keywords: Model Predictive Control; Plant Model Time Scaling; Fast Settling Response; Free Time. 

1. Introduction 

 In control theory, Model Predictive Control (MPC), which was described by J. Richalet in 1978 for control 

and stability of dynamical systems (plants), is an online optimal control strategy and it consists of five 

important parts. These parts are plant model or prediction plant model, objective or cost function, 

constraints, optimization, and Receding Horizon Principle (RHP) [1-2]. In literature, all the researches focus 

on these five parts of MPC. 

MPC algorithms for Linear Time-Invariant (LTI) dynamical systems require to solve a Quadratic Program 

(QP) periodically and online using prediction plant model and RHP on constraints at sampling periods. After 

an MPC problem is converted to a QP, it is solved using improved numerical methods. Thus, current and 

future inputs (nonlinear control laws) and output responses are predicted. When the existing MPC 

algorithms contain problems with high-dimensional plant models and constraints, long state and control 

horizons, and high sampling times, control of plant starts to be difficult [3]. Thus, the MPC algorithms are 

convenient to be used for slow dynamics because of the computational load, which causes slow response 

(slow rise time, settling time and prediction), feasibility, stability and timing problems in controlling linear 

and nonlinear plants with high sampling time. In this case, the classical MPC algorithms are not applicable. 

The most important reasons for the slow response are as follows: 

• Inclusion of physical constraints,  

• QP and Nonconvex Nonlinear Programming (NLP) solvers can not converge to a feasible local or 

global minimum solution and the required time to find a minimum solution can take a long time,  

• Non-sparse high-dimensional matrix multiplications and growing computation time with state and 

control horizons,  

• High-dimensional prediction model and physical constrains,  



Baris Dundar, IJSRM Volume 08 Issue 03 March 2020 [www.ijsrm.in]                                EC-2020-333 

• Control requirements with short sampling periods,  

• Time elapsed on the identification, if online model identification is available in control.  

       The online computational load can be reduced by; 

• Using the microprocessors or FPGA ICs, which operate in parallel and faster [4-6],  

• Considering the prediction plant model states as the online optimization variable in QP [3],  

•Using the improved online and explicit MPC methods (active set, interior point, and multi-parametric 

solvers) [7-19],  

• Reducing dimensions of matrices and vectors and to simplifying multiplication, if it is possible [20],  

• Shrinking state and control horizons in the online optimization time, if it is possible [21],  

• Implementing the combination of the slow and fast MPC algorithms to plant, which can be divided into 

slow and fast subsystems [22].  

This article focuses on the fast response (i.e. fast rise time, settling time and prediction) of the MPC 

algorithms. In microprocessors and integrated circuits, control and stability of a plant are controlled at a 

sampling period   , which is selected according to bandwidth and settling time of closed - loop dynamical 

system or rise time of open - loop dynamical system.    is an optimal plant control sampling period for 

digital control. The existing MPC algorithms solve the QP on discrete - time prediction plant model 

according to    online. In this method, MPC strategy with online optimization sampling period    (Original 

MPC) is warped using an integer time scaling factor     in time domain. The aim is to speed original 

MPC up by exploiting speeds of fast microprocessors. For this aim,   is selected according to the limit of 

the microprocessor. The solutions of the continuous-time linear plant are contracted by  . These dynamics 

will be called as contracted plant. The contracted plant is sampled at a new online optimization sampling 

period         to be able to yield the values of the discrete-time plant with   , which is a plant model of 

the original MPC. This discrete-time form of the contracted plant will be called as Upsampled Plant. We use 

the Upsampled Plant as the plant model of the original MPC algorithm. This dynamic will be called as 

Upsampled Plant Model (UPM). However, all the other components of original MPC algorithm (the cost, 

reference and constraints functions) are scaled by   and sampled by   , as well. The modified MPC 

operates faster by   times than the plant and original MPC with sampling period    due to fast 

microprocessor and will be called as Upsampled MPC (UMPC). Since UPM has faster sampling period than 

that of sampling period of the plant model, the term "upsampled" is used. This expression is not related to 

"upsampling of a signal" in Signal Processing. The first elements of fast computed control law vectors at 

each    in UMPC are dilated till each    reaches and applied to plant at each   . Thus, the new strategy 

provides fast response contribution according to the original MPC at each    and there are also free times 

        between the original MPC with    and UMPC with    at   . As another contribution, the free times 

can be used;  

• to compensate modelling errors and disturbances by online system identifications,  

• to incorporate with adaptive control and other control strategies,  

• to increase control capabilities by different scenarios.  

When the free times are not used for the improvement of MPC algorithms, UMPC has energy efficiency 

according to the original MPC. The method can be applied to the MPC methods [4-22], and extended to 

nonlinear plant models. In the study, the main idea of the method and its application  results on a simulation 

are discussed. 

This article is organized as follows. The UPM is attained in Section 2, the original MPC algorithm with    is 

reformulated for UMPC algorithm with    in Section 3, the fast response, free time and lower control 

energy contributions of UMPC are illustrated on linearized Citation Cessna aircraft dynamics and compared 

to the original MPC in Section 4, and the conclusions follow in Section 5. 
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2. Time scaling and upsampled solutions of LTI plant 

Consider the deterministic Multi-Input Multi-Output (MIMO) LTI plant is given by the following state 

equation [23]  

 

      

  
              

            

                          

 (1 

where state variable         , initial state variable      , input/control variable          , output 

variable         , constant matrices       ,        ,         of the plant (1) ,  and continuous 

time variable     . Assume the plant is controllable. 

The solution    for the plant (1) is given by 

 
                 ∫  

 

  
               

 
 

             
 (2) 

      is a linear combination of        and        resulting from superposition theorem.        is 

zero-input response with non-zero initial state    and        is zero-state with non-zero input. 

Consider a microprocessor, which can operate faster than online optimization sampling period of original 

MPC, and under this condition, we can select a large enough integer time scaling factor    .  

Then we can define the following dynamics for time-scaled solutions of plant (1) 

 

      

  
                 

            
                          

 (3) 

where state variable         , the measured or estimated initial state variable       from the plant (1), 

input/control variable          , output variable          of the dynamics (3). The time-scaled state 

space dynamics are called contracted plant in time domain. Multiplying       on both side of state equation 

of the contracted plant (2), the following equation is yielded 

            

  
                           (4) 

This equation is the same to the following equation 

 
 

  
                          (5) 

Integrating both side of the equation from    to   

                
   ∫  

 

  
              (6) 

we reach 

                      ∫  
 

  
              (7) 

Thus we have the solution       of contracted plant 

          
          ∫  

 

  
                 (8) 

Using change of      ,       
  and       for the solution (2) 
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      ⏟  
     

    
       ⏟      

            
 

    ⏟
     

∫  
 

  
            ⏟        

     

 (9) 

we can write the time scaling relation between the solutions of the plant       and the contracted plant 

      

              (10) 

under the condition 

              (11) 

      has faster response by   times than       in time domain. Consider the discrete-time form of 

the plant (1) is sampled at    of the original MPC algorithm. 

 

                         

            

                        

 (12) 

where        for time instant            ,                and 

 
        

     ∫  
  

 
       

 (13) 

The solution of the discrete-time plant (12) is given by 

 
         

    ∑     
      

             

 
 

             
 (14) 

The discrete-time plant (12) with    is the plant model of the original MPC algorithm with   . 

We claim that the original MPC algorithm is contracted by   and has a faster online optimization period 

       . This algorithm will be called as UMPC. For this aim, the contracted plant (3) is sampled by 

       . This discrete-time form is yielded as 

 

                         
            
                        

 (15) 

where        for time instant          ,                and 

 
             

      ∫  
  

 
            

 (16) 

Note that         can be yielded using change of variables. The solution of the discrete-time plant 

model (15) is given by  

 
         

    ∑     
      

             

 
 

             
 (17) 

The equation (15) is called Upsampled Plant Model (UPM) of UMPC. 

The dynamic pairs (12) and (15) have the same behavior at different times.  
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We can write the following time-shifted relationship between       and      . 

                                   (18) 

where 

 
           

        
 (19) 

We can state from the equation (18) that if the values of         are dilated by       by saving its values at 

each time instant  , it is equated to        . In this case, the UPM (15) is transformed to the original plant 

model (12). 

2.1 Case study 

2.1.1 Case 1 

Consider the feedback linearized simple pendulum 

 

 ̇            

 ̇           

                   
                 

 (20) 

where       is rad/sn. 

For             , the solution is 

 
                          

                   
 (21) 

The contracted plant is 

 

 ̇             
 ̇            

                   
                 

 (22) 

For             , the solution is 

 
                            
                    

 (23) 

For                , the solutions are 

 

                                       

                                (24) 

 

                                   

           

                                     
 (25) 

The solution pairs (21-23) and (24-25) satisfy the equation (10) under the condition (11) [24]. 

2.1.2 Case 2 

Consider the linearized continuous-time plant (Citiation Aircraft) 
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 (26) 

where       is the elevator angle,        is the angle of attack,        is the pitch angle,        is the pitch 

rate,        is the altitude, the outputs        and        are the pitch angle and the altitude, respectively. 

The constraints are the elevator angle                        , the elevator rate         
                   ,the pitch angle                           The plant is linearized at altitude of 

5000 m. and a speed of 128.2 m. / sec. The open-loop impulse response vector       is unstable due to 

open-loop poles are                   [Zeilinger et al, 2016]. 

The plant model of the original MPC for the plant (26) at the online optimization sampling period        

     is 
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 (27) 

 

                                                 (a)                                                             (b)   

Fig.1 Discrete - Time Plant or Plant Model of Original MPC and UPM of UMPC Impulse Responses (a), 

The Pitch Angle Impulse Responses (b), The Altitude Impulse Responses 



Baris Dundar, IJSRM Volume 08 Issue 03 March 2020 [www.ijsrm.in]                                EC-2020-338 

The contracted plant for      is 
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 (28) 

where              . The UPM of UMPC at              is 
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] [

      
      
      
      

]

                        

 (29) 

The equations (27) and (29) satisfy the equation (18). The impulse responses are illustrated in Fig. 1. As the 

plant model reaches a value in       , the UPM reaches the same value in          

The free time between the plant model (27) of MPC and the UPM (29) of UMPC are                 at 

each             If the UPM (23) of UMPC is dilated by                 at each             , it is 

equated to plant model (27) of the original MPC with             

 

                                      (a)                                                   (b)   

Fig.2 Equivalent MPC Controller Block Structures (a), Original MPC Block Structure (b), UMPC Block 

Structure 

3. Nominal UMPC 

We establish a nominal or standard predictive control algorithm based on the UPM and call it as the Orginal 

MPC. Assume the plant (1) or (12) must be controlled by it, which has the plant model (12) at the online 

optimization sampling period    and does not have an error between the plant and the plant model. We want 

to speed response (rise time, settling time and prediction) of the original MPC up. For this aim, the original 
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MPC algorithm is reformulated based on the UPM (15) instead of the plant model (12) and the online 

optimization sampling period becomes   . This MPC approach is called as Upsampled MPC. The MPC and 

UMPC block diagrams are illustrated in Fig. 2. 

The prediction UPM for the UPM (15) with    is 

 

                                
                
                          

 (30) 

where    is the measured or estimated initial state value from the plant (1) and then sampled by    at   and 

                     denotes the control increments or the input rate. These forms of control 

laws contain automatic integral action in feedback loop and are used for minimum over - shoot and settling 

time in the online optimization process. Note that integral action rejects constant additive disturbances in the 

steady state. The computations are realized over state prediction    and control prediction    horizons as 

                    at each discrete time instant             . Assume        . 

The state prediction equation at   is found as 

                   (31) 

where 
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 (32) 

          
       

          (33) 

 

              

 [

      

          
    
   

         
         

]         (34) 

The prediction UPM (30) is subject to the linear state and input rate prediction constraints with    

 
                    

                 
 (35) 

We can now express the following UMPC problem with    instead of the original MPC problem with    for 

controlling the plant (1) [25]. 
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 ∑     
      

                   
      

              
                

           

                    

                                                                                             
                 

                                                                                           

                               

                                                                                           

                            

                                                                                           
                       

 (36) 

where               is the objective function,   
      is the optimal cost value, the weighted matrices   , 

(or       ),    and    are the positive definite. This problem for the plant model (12) is the original 

MPC problem. The state feedback gain   is computed on the infinite horizon and unconstrained form 

(Linear Quadratic Optimal Control Problem) of the UMPC algorithm (36). The following conditions must 

be satisfied to be able to ensure closed-loop stability: 

• If the pair (       ) is stabilizable (controllable), the pair (      ) is observable and    is positive-

definite, the state feedback gain        is found offline by the following discrete-time Algebric 

Ricatti Equation  

        
                     (37) 

where the unique and positive matrix    is found by the following matrix equation 

 
      

         
     

           
               

       (38) 

The weighted matrices are given by 

   
  [

     
    
     
     

]         (39) 

    [

     
    
     
     

]         (40) 

• The positive definite matrix    of the terminal cost function                 must be found 

offline by the following unique Lyapunov Matrix Equation 

 
                          

         
 (41) 

• The minimum horizon   of the terminal constraints for recursively feasibility is found offline by the 

following linear programs 
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and 

 

           
 

                

    
                         

           

 (43) 

where any state      and             of the input        . 

The constraints at   are written in terms of     
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 (44) 

The constraint (44) is converted in the following compact inequality form 

           (45) 

All the matrices in the inequality constraint (45) are 
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]                       (47) 
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        (64) 

 

                                                        (65) 

 

The matrices   and   are computed offline. 

The UMPC problem at   is converted to the following QP in terms of     

 

  
         

      
               

    
               

         
    

           

         

 (66) 

where       ,         

The matrices in the QP (66) are given by 

 

          

       

          

 (67) 

 

    [

     
    
     
     

]         (68) 

 

    [

     
    
     
     

]         (69) 

The Lagrangian cost function for the QP (66) is 

 
               

               
         

   
                    

 (70) 

where       and                       are the Lagrange multiplier and the slack variable, respectively. 

The minimum of the Lagrangian cost function (70) is found by the following Karush-Kuhn-Tucker (KKK) 

conditions. 

 
  

    
                      (71) 

 
  

  
                (72) 

      (73) 

      (74) 

        (75) 
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The conditions (71-72) and (73-75) are called as feasibility and complementarity conditions, respectively. 

Since the QP (70) has the convex cost function and the linear constraints, the computations in KKK 

conditions (71-75) are concluded the global minimum with the feasible initial state. Thus, we can generally 

write the plant model optimal control law vector    
     as 

 

   
           

      
             

 
 

     

 (76) 

over the horizon   at time instant  .    
  is computed online using the improved QP solvers and the 

nonlinear control laws are computed over the horizon   for any  . If the UMPC problem is written for plant 

model (12), it is the original MPC problem and is converted to the following QP with    at   

 

  
         

      
               

    
               

         

   
    

           

         

 (77) 

where       ,         . 

The plant optimal control law vector    
     is 

 

   
              

      
             

 
 

     

 (78) 

over the horizon   at  . The QPs (66) and (77) are the same but instead of    
     at  , which must be 

implemented to the plant (1) or (12),    
     is implemented and it is more compatible to microprocessors, 

which operate fast and parallel. 

Thus, we can write the time-shifted relationship between the control laws of MPC and UMPC algorithms for 

any   as 

    
          

                         (79) 

and using                        

                      
         

                                (80) 

is computed.   should be selected for the desired      . The values of    
       are dilated by the free 

time       by saving its values in registers of microprocessor and then implemented to the plant at     until 

next value         at each sampling instant  . Thus,    
       can be used instead of    

      . 

Finally, we achieve fast response and free times using UMPC algorithm instead of the original MPC 

algorithm. The predicted responses in the original MPC and UMPC at     are illustrated for controlling 

plant (1) or (12) in Fig. 3. This process is repeated till the reference function on receding horizon  . 

Our analysis leads to the algorithm in the Algorithm 1. 

UMPC Algorithm 

1. Measure the state    at     

2. Compute    
       and   

       at      

3. If    
         Then ’Problem Infeasible’ Stop 



Baris Dundar, IJSRM Volume 08 Issue 03 March 2020 [www.ijsrm.in]                                EC-2020-345 

4. Wait or Improve MPC Algorithm in                  

5. Implement the first element of   
       to the plant at             

6. Wait for the new sampling time                     Go to 1   

 

 Fig. 3 The plant control using Original MPC and UMPC (a), The Predicted Plant State Response at    

(   ) (b), The Predicted Input Response at    (   ) using Original MPC (c), The Fast Predicted 

Input Response at    (   ) using UMPC 

3.1 Selecting time scaling factor   

In this article, we state that the plant must be controlled at   , which is selected according to the Nyquist-

Shannon Sampling Theorem [26]. In the UMPC algorithm, we claim the maximum   (i.e. the minimum    

instead   ). 

In real time,   depends on the physical constrains (such as speeds of microprocessors, integrated circuits, 

ADC and DAC , etc.).  

If a microprocessor or integrated circuit operates at the sampling period    , maximum   can be selected as 

the following proportion 

                                         (81) 

The sufficient condition for the above proportion is that sampled values at    must be taken at    from the 

plant, as well. Thus, the constraint for maximum   can be selected as    . Hence, the maximum online 

optimization sampling period for the UMPC algorithm can be selected as 

                                       (82) 

Besides, the sampling period of the plant model (12) can be selected as 
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                              (83) 

This equation provides sufficient condition to use the previously computed sequence of the optimal control 

law   
  at current time. In this article, the sampling period of the plant model (1) is assumed as   

    . 

4. Simulation results and discussion 

The plant (26) or its discrete-time form (27) must be controlled at             using the original MPC 

(   ) with the plant model (27). The MPC and UMPC systems in Fig.4 are established to illustrate the 

application of proposed method on the plant (27). The Fig.4(a) and (b) represent the original MPC and 

UMPC systems. For the application of method using Model Predictive Control Toolbox on MATLAB 

Simulink Platform, the UPMs and UMPCs are established and the clocks (  ) of them are set for   
         . The control law data computed in the UMPCs are stored for up to each       in the 

“UMPCData” block and applied to the plant as open-loop instead the original MPC block in the Fig.4(a). 

Thus, the equations (66 and 77) are satisfied. 

   depends on the clock speed of MATLAB software installed at Intel(R) Core(TM) i5-3210M 

microprocessor with 2.50 GHz and 4 GB RAM. The QPs (66 and 77) are run using MATLAB KWIK 

algorithm. Note that UMPC controllers with higher   can be simulated using MATLAB [27]. 

For the horizon     , the matrices     ,      , the pitch reference value       , the altitude 

reference value         and   in the MPC and UMPC blocks, the responses and optimal control laws of 

them are illustrated in Fig. 5. 

It proves that UMPCs settle faster than the original MPC to the reference values and there exist the free 

sampling periods                  and            between them and when an improvement for the 

control is not made, the free time periods mean the energy efficiency for the UMPCs according to the 

original MPC. 

 

(a) 
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(b) 

Fig.4 The Establishment on Simulink for the Control of Cessna Aircraft (a) Original MPC  System 

(   )  and the Implementation of the Control Law Data computed in the UMPC Systems (b) UMPC 

Systems (           )   
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Fig.5 The Control Laws and Responses of Original MPC and UMPC for               (a), The 

Altitude Responses of MPC and UMPC (b), The Pitch Responses of MPC and UMPC (c), The Control 

Laws of MPC and UMPC 

Table 1: Original MPC and UMPC Responses 

Controller 
Scaling Factor 

M 

Number of 

Iterations 

Pitch / Altitude 

Rise Time (sec) 

Pitch / Altitude 

Setting Time 

(sec) 

Original MPC 1 170 1.810 / 6.813 34 

UMPC 1 10 170 0.1810 / 0.6813 3.4 

UMPC 2 25 170 0.0724 / 0.2722 1.36 

UMPC 3 100 170 0.0181 / 0.0681 0.34 

Table 2: Original MPC and UMPC Control Laws 

Controller 

Free Time 

Sampling 

Period (sec) 

Number of 

Iterations 

Total Free Time 

until Settling 

Time (sec) 

Control Energy 

Original MPC 0 170 0 1.9502 

UMPC 1 0.18 170 30.6 0.1950 

UMPC 2 0.192 170 32.64 0.0780 

UMPC 3 0.198 170 33.66 0.0195 

The performances of the controllers are compared in Table 1 and 2. For each   and 170 iterations, the Table 

1 shows the rise and settling time responses of the controllers and Table 2 shows the free times and the 

energy values of the control signals. Energy value   of a signal      is computed by the following equation 

   ∫  
 

  
          (84) 

In the tables, adapting MPC algorithm (i.e. UMPC) by the selected scaling factors depending on the speed of 

the microprocessor, the controller energy and settling time decreases dramatically. As illustrated in Fig. 5, 

the first value of the computed optimal control law vector at     for each UMPC controller is dilated by 

       by saving its first value. Thus, the desired fast - response UMPC can be used instead of the original 

MPC. 
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Since the UMPC is compatible with the microprocessor and origin of speed of the UMPC is microprocessor, 

slow operation issue of MPC algorithms is solved for different time scaling factors by this method without 

reducing computation load of online optimization of used MPC algorithms. We used the standard MPC 

problem as the original MPC and compared it with the UMPC. The method can be applied to the methods in 

the References section and nonlinear dynamical systems, as well. For example, the method can be applied to 

Time Scaling Seperation method in the reference [22]. For study, a high-scaled plant is separated into slow 

and fast dynamics. These dynamics are converted to slow and fast UPMs by scaling and sampling using a 

time scaling factor. Then, UMPCs are obtained based on UPMs. The UMPCs settle to desired output faster 

than the original slow and fast MPCs and have free times and lower control energies. 

5. Conclusion 

 In this article, we introduce the UMPC method for the LTI dynamical systems. In the method, the original 

MPC strategy is contracted by using a time scaling factor based on the speed of the microprocessor in time 

domain. The original MPC is transformed to the UMPC. Therefore, the QPs of the original MPC and UMPC 

is the same except the online optimization sampling periods. The results prove that UMPC is settled to the 

reference values faster than the original MPC and provides lower control energy. In addition, since there 

exist free time periods between the original MPC and UMPC online optimization sampling periods, the first 

values of computed control law vectors in the UMPC are dilated to be able to equate it to the optimization 

sampling periods of the original MPC by the free time periods and then are applied to the plant at the 

original optimization sampling periods. 

In addition, in free times, the UMPC algorithm can be improved by 

 • compensating modelling errors and disturbances by online system identification, 

 • increasing control capabilities using different control scenarios (such as optimization computations on 

varying horizon, 

 • incorporating with other control strategies (such as adaptive control and artificial intelligence 

algorithms).  
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