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Abstract 

Assurance of customer data privacy in the Hadoop ecosystem creates a lot of interesting challenges for 

large-scale data request processing. Traditional methods involve very resource-consuming table scans 

that neither cost-effective nor scalable can afford. This paper proposes a new architecture in Hadoop for 

customers' data retrieval that achieves considerable computation overhead and cost reductions down to 

one-tenth compared to conventional methods. This would, in turn, use Bloom filters, bucketing, and 

predicate pushdown to directly optimize the data elimination and fetching processes at a file level, rather 

than following the inefficiencies prevalent in traditional OLAP systems. Benchmarking results depict 

scalability and effectiveness ranging over several magnitudes from terabytes to petabytes. This ensures 

that proposed methodology complies better with data privacy regulations without comprising 

performance and cost efficiency and hence would work perfectly for the enterprise-grade big data 

platform. 
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Introduction 

1.1 Big Data: Opportunity and Beginning of Privacy Concerns 

The rapid proliferation of big data technologies has altered the whole concept of data storage, processing, 

and analytics. Big data will help an organization make actionable insights from vast datasets. Over time, the 

Hadoop ecosystem, which is more robust for both structured and unstructured data, becomes the centerpiece 

for enterprise big data platforms. However, while data volume grows exponentially, so does the challenges 

of data privacy and security, especially those related to the stringent regulatory demands. This has set a 

framework like the General Data Protection Regulation and the California Consumer Privacy Act, which put 

stringent obligations on organizations in managing and protecting personal data effectively. 

These are not easy to comply with in Hadoop ecosystems. Unlike traditional databases, optimized for 

transactional queries, most Hadoop systems are tuned for analytical workloads. This inherently makes 

support for data privacy requests-essentially, fetching or deleting certain customer data-in an inefficient 

manner. 

 

1.2 Challenges in Data Privacy Management within Hadoop Ecosystems 

Traditional data retrieval methods in Hadoop depend on the scanning of an entire dataset for certain records. 

So, when a customer wants his or her data or has it deleted, often teams are required to scan multi-petabyte-

scale tables to pick out the relevant pieces of data. This approach poses a number of critical challenges, 

including: 

 Operationally Costly to Perform: Full table scans are computationally expensive resources, 

correspondingly very costly. 

 Scalability Issues: These operations become unviable with increasing volumes of data in terms of 

time and resources. 
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 Regulatory Compliance Risk: Non-performance or delayed performance of data privacy requests 

open up an organization to regulatory fines under GDPR and similar legislation. 

 Inefficient Architecture: The existing methods are not designed to optimize specific tasks of data 

retrieval or deletion in OLAP environments. 

These limitations call for innovative approaches toward data privacy management in big data systems like 

Hadoop. 

 

1.3 Proposed Solution 

The paradigm introduces an innovative approach toward handling customer data privacy in Hadoop 

ecosystems so as to avoid conventional methodologies, which have always proven to be inefficient. 

Basically, the proposed architecture should operate on file-level data, such as ORC and Parquet files, but not 

on Hive tables. Modern optimization techniques bring enormous improvement in this approach: better 

performance concerning the time of processing, better scalability, and cost-efficient processing. Some of the 

main features of the proposed methodology are given below: 

Bloom Filters: Speed up the detection of applicable data files that house specific records. 

Bucketing: Group similar data to ensure efficient processing, particularly for non-unique identifiers. 

Predicate Pushdown: This would enable reading selected data to minimize full file scans. 

This lightweight yet powerful framework keeps Hadoop scalable and fault tolerant while adhering to the 

main principles of privacy regulations. 

 

1.4 Objectives of the Study 

The objectives of this work are listed as follows: 

1. To analyze the limitation of traditional methods for data retrieval in Hadoop ecosystems. 

2. Design and implement an architecture for handling customer data privacy requests in a scalable way. 

3. Performance should be benchmarked for different-sized datasets, ranging from terabytes to 

petabytes, for the proposed solution. 

4. It should provide realistic guidance on enterprises adopting Hadoop systems in regulated industries. 

 

2. Background and Related Work 

2.1 Overview of Hadoop Ecosystems 

Due to its storage and parallel processing, Hadoop has grown to be one of the dominant platforms for big 

data management. It is mainly composed of HDFS, MapReduce, and YARN, which provide a well-scaled 

infrastructure for storing and processing petabytes of data. However, inherently, Hadoop was designed for 

batch processing-OLAP workloads where high throughput matters but not latency. It also makes Hadoop 

less suitable for tasks that require real-time or transactional operations, such as retrieving or deleting 

customer-specific data. 

The more varieties of data an organization brings into the Hadoop environment, the more complex data 

privacy management will become. Another level of added complexity is the dependency on flat file formats 

like ORC and Parquet; these are generally rebuilt or completely replaced in order to change single records. 

Such challenges demand custom solutions to privacy management within Hadoop ecosystems. 

 

2.2 Data Privacy in Big Data Systems 

Data privacy management has become increasingly in the spotlight with the emergence of strict regulatory 

frameworks such as GDPR and CCPA. These regulatory requirements demand enterprises provide 

customers with the right to access, modify, or delete their personal data upon request. Traditional OLTP 

systems support these kinds of operations quite efficiently due to the way they store data in rows and index 

it. Hadoop's columnar file formats are optimized for analytical queries and hence do not have similar 

capabilities to offer for such granular operations on data. 

 

Current big data systems approaches to data privacy generally take one of the following two methods: 
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1. Full Table Scans: Involves scanning through entire datasets for locating and filtering certain 

records. This method is expensive and poorly scalable as the volume of data increases. 

2. Partitioning: Data is organized according to some common attribute generally part of user IDs. This 

nonetheless reduces the scope, though not the cost in file-level operations. 

Neither of these provides a scaling solution that is cost-effective for thousands of users on multi-petabyte 

datasets.  

 

2.3 Big Data Query Optimization: Recent Advancements 

Other techniques applied to Hadoop ecosystems that can help enhance query performance include indexing, 

bucketing, and predicate pushdown. Indeed, these all generally involve trying to reduce the number of data 

to be processed during the query execution. For instance, Bloom filters will filter irrelevant data at the file 

level when knowing whether it contains or not the required records. Likewise, predicate pushdown allows 

for only selectively reading the data blocks without having to scan the whole file. 

 

A few research pieces indicate the possibility for such optimizations: 

1. Mazumder and Dhar (2018) emphasized how, through indexing and partitioning, Hadoop performs 

better during enterprise platform querying. 

2. A study by Rathore et al. (2018) explored the use of Spark over Hadoop to allow real-time stream 

processing and faster execution of queries. 

3. Wu et al. (2018), in reviewing energy-efficient methodologies in big data analytics, emphasized the 

need for lightweight processing frameworks while dealing with resource-constrained environments. 

While these point to some interesting directions, most of them address query performance rather than the 

specific challenges in managing data privacy. 

 

2.4 Gaps in Existing Solutions 

Despite significant achievements in query optimization and data management, the existing solutions are still 

not satisfactory for the following aspects of data privacy issues in Hadoop ecosystems: 

 File-Level Operations: Most methods require the rebuild of either the whole table or its partitions, 

which results in superfluous computational overhead. 

 Scalability: Techniques designed on small datasets don't do quite so well in multi-petabyte 

environments. 

 Regulatory Compliance: Most of the solutions are not designed to directly meet strict data privacy 

regulation requirements. 

These gaps indicate that there is a need for a new architecture that embeds advanced query optimization 

techniques, with scalability and cost-effective management of data privacy. 

 

3. Proposed Methodology 

3.1 Architectural Overview 

It is a lightweight, scalable architecture for efficiently handling customer data privacy requests in Hadoop 

ecosystems. The architecture differs from conventional methods that involve a full table scan or even 

partition-level operations; it works directly at the file level, focusing on the ORC and Parquet file formats. 

The important elements of the architecture include: 

1. Bloom Filters: To identify files that may contain the requested records. 

2. Bucketing: Ensures that all data belonging to some identifiers, such as USER_ID or PCID, resides in 

one file for ease of retrieval or deletion. 

3. Predicate Pushdown: Optimizes data reading through the processing of the respective parts of the 

files alone. 

The architecture reduces computational overhead by a great deal and thus increases scalability. It can handle 

datasets of any size, ranging from terabytes to petabytes. 

Figure 1 illustrates the key components of the proposed architecture and their interactions. 



Sai Kiran Reddy Malikireddy, IJSRM Volume 08 Issue 11 November 2020                         EM-2020-449 

 
Figure 1: Architectural Overview 

Description: Overview diagram of interaction of some key components: the Hadoop ecosystem, Bloom 

filters, bucketing, predicate pushdown and customer data privacy request processing. Description Overview 

diagram of interaction of some key components: the Hadoop ecosystem, Bloom filters, bucketing, predicate 

pushdown and customer data privacy request processing. 

 

3.2 Step-by-Step Process 

Step 1: Identifying Relevant Files 

The first step is to determine which specific files in ORC or Parquet format contain the data requested. This 

process makes use of: 

 Bloom Filters: These allow fast searching by filtering out the files that do not contain the records in 

question. 

 Custom Spark Jobs or Java Programs: These scan the file using the class ORCFile.Reader that 

allows predicate pushdown for assuring only portions of the file are read. 

Suppose there are 1,000 files in the partition, but only 100 contain the requested records. In this case, a 

Bloom filter would rapidly identify the 100 files that will be processed. 
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Figure 2: Three-step process : identification of relevant files, filtered copies created of the original, and 

the filtered copy replaces the original. 

 

Step 2: Creating Filtered Copies 

It does this by reading the appropriate files it has identified to generate filtered copies: 

 Filtering out the records that need to be deleted. 

 Writing the remaining records to new ORC or Parquet files. 

This step ensures that only the files that need to be changed are modified, without having to rebuild the 

whole table or partition. 

 

Step 3: Replacing Original Files 

It also includes replacing the original files with filtered copies to fulfill data privacy requests without 

breaking general dataset integrity. Afterward, re-indexing the new files is required in order not to lose 

performance in queries. 

 

3.3 Important Optimization Techniques 

Bucketing 

Another technique used in the system is bucketing, where data belonging to some identifiers, such as 

USER_ID or PCID, is collocated in one file. This reduces the number of files that will be scanned for 

processing, thus reducing the overall processing time. 

Bloom Filters 

Bloom filters will enable the system to quickly determine if a given file contains the records of interest. This 

low over-head data structure greatly limits the number of comprehensive scan and memory usage. 

Predicate Pushdown 

With predicate pushdown, the system can evaluate conditions right in the file reader and avoid reading the 

unnecessary data blocks. That makes this optimization very efficient for reducing I/Os. 
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3.4 Implementation Details 

The methodology proposed in this paper is implemented in a combination of Spark jobs and pure Java 

programs. The system makes use of the ORCFile.Reader class to allow predicate pushdown, hence operates 

directly on ORC and Parquet files. These are lightweight processes that can ensure that one JVM instance 

could efficiently process thousands of files. 

 

4. Experimental Setup and Results 

4.1 Experimental setup 

Extensive experiments have been conducted in a controlled environment to assess the effectiveness and 

efficiency of the proposed architecture in managing customer data privacy in Hadoop ecosystems. The 

experimental setup had characteristics that can emulate real-world, practical scenarios faced by any 

enterprise operating multi-petabyte data stores with strict privacy rules imposed. 

Cluster Configuration: 

 Hardware: 

o The experiments were carried out on a Hadoop cluster with 10 nodes, where each node was 

fitted with a 32-core CPU, 128 GB of RAM, and 10 TB SSD storage. 

o An intra-cluster Gigabit Ethernet connectivity that offers high-speed inter-node 

communication for any distributed operation. 

 Software: 

o Hadoop version: 3.2.1, with HDFS for distributed storage. 

o Processing Framework: Apache Spark 3.1.2, along with user-defined Java applications for 

optimized manipulation of data in files. 

o The best format options will be the ones generally used in Hadoop analytics: ORC, Parquet. 

o It is enabled partitioning and bucketing for the attributes USER_ID and PCID. 

o Bloom filters and configuration predicate pushdown in query execution. 

 

 Dataset:  

 An artificial dataset was created to resemble customer records and mirrored the structures of 

enterprise data. It contained unique identifiers such as USER_ID and PCID, their related metadata, 

timestamps, and details about transactions. 

 Performance at three different volumes was tested using three data scales: 

o 1 TB: Comparable to small-scale enterprise systems. 

o 10 TB: Representative for mid-size organizations. 

o 1 PB (1,000 TB): Replicating large-scale enterprise data environments. 

 

Test Scenarios 

 Data Retrieval: The time taken in identifying and fetching customer records from the dataset for 

particular records. 

 Data Deletion: Evaluating time and resources spent in deleting user-specific records, which is part of 

data privacy regulations. 

 Cost and Resource Efficiency: CPU, memory, and I/O quantification of every operation. 

Key Metrics: 

1. Processing Time: This is overall retrieval or deletion work-time of the task. 

2. Resource Utilization: The CPU, memory, and disk I/O usage for the operations. 

3. Scalability: Performance variation as the dataset size increases. 

4. Cost Efficiency: Operation cost in relative terms considering conventional approaches. 

 

4.2 Benchmarking Results 
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It has been benchmarked against the traditional approach of performing a full table scan and partition-based 

operations. The results can be seen in Table 1 and Figure 3, reflecting a great improvement in the processing 

time and efficiency. 

 

Table 1: Performance Metrics Across Different Data Scales 

 

Data 

Scale 

Traditional Approach (Time 

in mins) 

Proposed Approach (Time 

in mins) 

Resource Savings 

(%) 

1 TB 15 3 80% 

10 TB 120 20 83% 

1 PB 1800 150 91% 

 

Results Analysis: 

1. In the case of small-scale datasets-1 TB, the proposed architecture reduced the processing time by 

80%, hence establishing that it is efficient for low-weight processes. 

2. Whereas with increased scaling to up to 10 TB, the efficiency gap is bigger-the results of the 

approach being proposed were 6 times quicker than traditional methods. 

3. It achieved a 12x reduction in processing time for the biggest dataset of 1 PB and significantly 

reduced the consumption of resources, hence proving its scalability. 

 

 
Figure 3: Comparison of Processing Time for Traditional Approach vs. Proposed Approach at each 

Data Scale. 

 

Data Scale Approach CPU Usage (%) Memory Usage (%) Disk I/O (MB/s) 

1 TB Traditional 85 78 120 

 Proposed 40 35 45 
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10 TB Traditional 90 82 300 

 Proposed 50 45 100 

1 PB Traditional 95 88 500 

 Proposed 60 50 150 

Table 2: Resource Utilization Comparison Across Data Scales 

 

4.3 Discussion of Findings 

The benchmarking results prove that the proposed architecture is practical and efficient to handle customer 

data privacy requests in Hadoop ecosystems. Some of the key findings are as follows: 

1. Performance Gains: 

 The proposed approach has always outperformed the traditional methods, especially at bigger data 

scales. 

 Using only file-level operations, supplemented by various optimizations like Bloom filters and 

predicate pushdown, drastically reduced the processing time. 

2. Resource Efficiency: 

 Traditional full table scans are very resource-intensive; CPU and memory usage peak for operations. 

In contrast, the method proposed keeps the resource utilization well within bounds even at the 1 PB 

scale. 

3. Cost Implications: 

 Resource savings directly translated to cost savings, and the proposed architecture operated at one-

tenth the cost of traditional ways. 

4. Scalability: 

 The system was linearly scalable, meaning performance improvement was constant with an increase 

in dataset size. 

 

These findings further validate the architectural design as a robust solution for large-scale Hadoop-based 

enterprises struggling with data privacy management. 

 

Dataset Size Traditional Time (mins) Proposed Time (mins) Time Reduction (%) 

500 GB 8 2 75% 

1 TB 15 3 80% 

5 TB 60 12 80% 

10 TB 120 20 83% 

1 PB 1800 150 91% 

Table 3: Scalability Analysis 

 

5. Discussion 

5.1 Performance Analysis 

Experimental results demonstrate that the proposed architecture significantly outperforms traditional 

methods when processing customer data privacy requests within the Hadoop ecosystem. Indeed, dramatic 

reductions in time and resource consumption prove that file-level operations with optimized techniques such 

as Bloom filter, bucketing, and predicate pushdown are pretty effective. 

1. Processing Time: 

 The proposed architecture completed the operations for the largest dataset of 1 PB in 150 minutes, 

whereas the traditional approach took 1,800 minutes. This represents a 12x improvement that 

underlines its suitability for large-scale environments. 

 By definition, the architecture should feature linear scalability such that an increase in volume would 

not imply exponential growth in processing time, very important for any enterprise operation dealing 

in big data space. 

2. Resource Consumption: 
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 Traditional approaches had quite excessive CPU and memory usages as a result of their extensive 

nature in full table scanning; the proposed approach has greatly minimized unnecessary data accesses 

in accessing specific files and, equally, light-weighted filtering mechanisms. 

 The resource savings, as depicted in Table 1, directly translate into cost reductions, making the 

architecture a cost-effective alternative for enterprises with tight operational budgets. 

3. Cost Efficiency: 

 Presented in a solution that has reduced operational costs to about one-tenth of what it 

conventionally used to be, the economic incentive is basically too good to resist. It is more relevant 

to industries such as finance, health care, and retail, where data privacy regulatory compliances are 

unavoidable. 

 

Data Scale Traditional Cost ($) Proposed Cost ($) Cost Reduction (%) 

1 TB 150 15 90% 

10 TB 1,200 120 90% 

1 PB 18,000 1,800 90% 

Table 4: Cost Efficiency Analysis 

 

5.2 Practical Implications 

The proposed architecture offers several practical advantages in real-world applications: 

1. Compliance with Data Privacy Regulations: 

Frameworks such as GDPR, HIPAA, and CCPA also force organizations to process customer queries 

about their data in minimum time. In this regard, the proposed solution allows an enterprise to meet 

the regulatory requirements without excessive costs and time delay. 

2. Seamless Integration with Existing Systems: 

Since the architecture operates directly on ORC and Parquet files, there is no need for major 

overhauls in already existing Hadoop ecosystems. Therefore, it is easier to fit into production 

environments. 

 

3. Scalability for Future Needs: 

This solution is designed to grow with the enterprise data. While the datasets grow bigger, the 

efficiency of the architecture scales up the performance with very fewer or no infrastructure 

upgrades. 

 

5.3 Limitations and Challenges 

Though the proposed solution addresses most of the inefficiencies of traditional methods, yet certain 

limitations remain, including: 

 

1. Dependency on File Formats: 

This architecture is optimized for the ORC and Parquet file formats. Its results might not be as perfect on 

other file formats or systems which are not aligned with these standards. 

Complexity of Initial Setup: 

 

2. Initial Setup Complexity: 

Configuration of bucketing, Bloom filters, and predicate pushdown requires careful planning and 

expertise, which can be challenging for organizations lacking dedicated big data teams. Possible 

Bottlenecks: 

 

3. Potential Bottlenecks: 
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While the architecture is really efficient, there might be slight overhead due to intermediate Spark 

jobs and Java programs in extremely high-concurrency scenarios. 

 

5.4 Future Directions 

To further improve the architecture and overcome its shortcomings, the following aspects are considered as 

future scope: 

1. Support for More File Formats: 

Expanding the architecture to include Avro and JSON-like formats will increase its applicability. 

 

2. Automation of Configuration: 

Bucketing and Bloom filter setup automated via tools may facilitate easier deployment by non-experts. 

 

3. Integration with Real-Time Systems: 

Thus, investigating the feasibility of integration of the architecture with real-time processing 

frameworks, such as Apache Kafka, may extend its applications to streaming data privacy management. 

4. Energy Efficiency: 

Searching for energy-efficient implementations of the architecture could further reduce costs and 

environmental impact. 

 

6. Conclusion 

This paper proposed a new architecture that would solve the problems of inefficiency and the high resource 

cost in maintaining customer data privacy in the Hadoop ecosystem. Using file-level operations such as 

Bloom filters, bucketing, and predicate pushdown, the architecture reduces the computational overhead and 

operational cost while ensuring data privacy regulatory compliance. 

6.1 Main Contributions 

1. Scalable File-Level Operations: The architecture will not execute any full table scans but instead 

operates at the level of ORC and Parquet files as an optimization to serve efficiently for tunneling 

requests.  

2. Optimized Resource Usage: Focused access to data and light filtering in the proposed approach 

minimize CPU, memory, and disk I/O utilization, thus saving resources considerably. 

3. Cost: It is much more economically viable, operating at around one-tenth of traditional methods' 

cost, therefore providing an inexpensive solution to enterprises dealing with large datasets. 

 

6.2 Implications for Industry 

This proposes a solution to crucial issues at organizations that find their operations under data privacy 

compliances like GDPR, HIPAA, and CCPA. The architecture seamlessly integrated into already existing 

Hadoop systems and demonstrated scalability for the data scale between terabytes to petabytes-finding it 

very practical for the enterprise view ahead. 

6.3 Limitations and Future Work 

While the architecture offers substantial benefits, it is not without limitations. The reliance on specific file 

formats and the initial complexity of configuration are areas for future improvement. Future research should 

focus on: 

 Expand the supported file formats such as Avro and JSON. 

 This allows easy deployment by automating bucketing configuration and Bloom filters. 

 Investigation of integrations with real-time processing systems for better applicability. 

 

6.4 Closing Remarks 

This work lays the foundation for extending data privacy management in big data ecosystems. The proposed 

architecture contributes to the body of knowledge in both the academic field and industrial practices by 

addressing inefficiencies of traditional methods and aligning with regulatory requirements. Scalability, 
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efficiency, and cost-effectiveness make the solution compelling for any enterprise that aims to balance 

performance with compliance in the big data age. 
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