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Abstract: 
This study examined the total, direct and indirect effects of climatic variables (temperature and 

precipitation) on crop yields (maize and millet) between regions located in close proximity to each other a 

spatial panel analysis of five administrative regions of Mali over a period of 30 years (1988-2017). Our 

results show that temperature and rainfall have direct, indirect and total effects on maize yield, while the 

direct effect on millet yield is not statistically significant. In other words, the effect on regions closely 

linked to region  where the change in temperature or rainfall occurred will be greater than the effect on 

more remote regions. In addition, the coefficient of variation of precipitation and the interaction between 

temperature and precipitation as well as area planted all have negative impacts on maize yield. However, 

millet yield is negatively correlated with drought in the study area. Based on these findings, decision-

makers need to take into account that conditions in surrounding areas can influence cereal crop yields and 

that spillover effects differ between crop types. Investments in agricultural research and development must be 

encouraged to counter the effects of climate change. 
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1.  Introduction 

The recent warming of the global average temperature has led to renewed interest in this study. These 

studies are often carried out on a large scale. And, according to the Intergovernmental Panel on Climate 

Change, the global average temperature at the earth's surface increased by about 0.8 ° C between 1880 and 

2012 (IPCC, 2013). This global warming would exceed 2 ° C on average at the end of the 21 th century 

compared to the reference period 1850-1900. More likely increases are still expected in many parts of the 

world according to IPCC simulation models. On the other hand, assessing the trend for rainfall is more 

complex because of the considerable variations between and within countries. Indeed, overall rainfall has 

tended to decline at least since the 1950s. In particular, West Africa and the tropical rainforest areas have 

experienced greater variability in rainfall and a resurgence of more intense and widespread droughts (IPCC, 

2013). 

In recent studies in West Africa, Roudier (2012) uses the M.S.C. approach with the Sarra-H model to assess 

the impact of climate change on three contrasting varieties of millet and three varieties of sorghum in West 

Africa. The author finds a "negative evolution of average yield mainly due to the increase in temperatures 

that rainfall can only mitigate or aggravate". He also finds that this impact is "more negative for short-cycle, 

constant-cycle varieties than for photoperiod-sensitive varieties". NELSON and al (2009), in their studies of 

the impact of climate change on agriculture and the costs of adaptation. The results of their studies show that 

agriculture and human well-being will be negatively affected by climate change. In addition, crop yields will 

decrease, production will be affected, crop and meat prices will increase and cereal consumption will 

decline, leading to a reduction in calorie intake and an increase in child malnutrition. 

For several decades, Mali, like other countries in the West African region, has been experiencing changes in 

rainfall patterns. Thus, the drought of 1972 and 1973 was marked as the first major climatic event in the 

Sahel. These climatic disturbances greatly affected economies as well as ecosystems (CILSS, 2006). 
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According to Wilkinson and al (2015), the case of drought in Mali highlights the complex and dynamic link 

between climate extremes, poverty and development. Thus Mali is an example of how recurrent droughts 

can entrench poverty and undermine resilience. Meanwhile, agriculture is a major economic sector in Mali, 

employing almost 80% of the population and accounting for more than 40% of GDP and 3/4 of exports, and 

is characterized by low productivity and a lack of modern agricultural technologies (Chauvin and al. 2012). 

Despite being an important sector of the national economy, as Mali's agriculture is essentially rain-fed, it is 

highly dependent on the climate and therefore vulnerable to climate change. 

In response to climate change and climate variability, two approaches with economic considerations have 

often been used in the literature to assess the impacts of climate change on agriculture: the production 

function or agronomic approach and the Ricardian approach. 

The first is an experimental approach that seeks to measure the direct impacts of climate change on different 

crops. This approach attempts to directly measure the response mechanism of crops to climatic hazards 

while simulating crop yields using agronomic models. Authors who have adopted this approach include 

Adams and al (1990), Kane and al (1991), Kaiser and al (1993), Reilly and al (1994), Rosenzweig and 

Iglesias (1994) and Rosenzweig and Parry (1994), Bassu and al (2014). In Mali, Chaisemartin and al (2010) 

use scenario simulations to estimate the economic losses that Mali will experience in 2030. They estimate 

that climate change could lead to losses of about US$300 million per year (about 15% of the value of 

agriculture and livestock) under the pessimistic scenario. These losses would be US$120 million per year 

(6% of the value of agriculture and livestock) under the optimistic scenario. These results are more alarmist 

than those previously found by Butt and al (2005) who predict that Mali will suffer economic losses of 

between US$ 96 and 116 million. They arrive at this result using projections of climate change induced by 

greenhouse gas emissions by 2030 and carried out using HADCM and CGCM climate models. Sissoko and 

al, 2018 adopts the production function approach to assess and compare the resilience of millet, sorghum 

and maize to climate variability in the regions of Sikasso and Segou. These authors find that the level of 

resistance of cereals to climate variability differs from one region to another due to the bioclimatic zoning of 

the study site. For example, cereals are more related to the climate in the Sikasso region than in the Ségou 

region. However, these models do not take into account the possibility for farmers to adapt to a new climatic 

condition (Mendelsohn, 1994). 

The second, the Ricardian approach is an alternative to estimates of production functions (Mendelsohn and 

al. 1994). It takes its name from the theory of the classical economist David Ricardo (1817) that, in a market 

of pure and perfect competition, ground rent is equal to profit. 

Despite the abundant literature on the subject of agriculture and climate change, there are still gaps in the 

literature to be filled. By using a spatial econometric framework, we take into account the spatial 

dependence and heterogeneity present in the data, which are not properly accounted for or completely 

ignored in the previous literature. 

Thus, the objective of this study is to assess the impact of climate change on agriculture in Mali. It is 

therefore a question of assessing the total, direct and indirect effects of rainfall and temperature, floods and 

droughts on the yields of the main cereal crops in Mali through spatial panel modelling. 

2. Materials and methods 

2.1. Study zone 

Situated between 10 and 25° north latitude, Mali has a dry tropical climate with 65% of its territory in semi-

desert and desert conditions. The national territory is currently divided into 10 administrative regions, which 

are themselves subdivided into circles and communes. The population, estimated at around 20 million 

inhabitants in 2020, with a growth rate of 3.65% per year, is unevenly distributed over the territory with a 

high demographic concentration in the southern part of the country.  

The country's climate is characterized by the alternation of two seasons: 
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 A dry season whose duration varies from seven (7) months in the North (November to May) to six 

(6) months in the South (November to April), characterized by hot and dry winds blowing from the 

North-East to the South-West, whose duration varies from 6 to 9 months; 

 And a wet or wintering season, May to October in the South, June to October in the North 

with more or less marked inter-seasons corresponding to months "neither rainy nor dry", dominated 

by humid winds from the Gulf of Guinea (the monsoon), blowing from the South-West to the 

North-East, bringing rains for 3 to 4 months depending on the zone (National Direction of 

Meteorology, 2016). 

In addition, there are four climatic zones (figure 1): 

 

- Saharan in the north (annual rainfall <200 mm);          

- Sahelian in the center (annual rainfall between 200 mm and 600 mm);          

- Sudanese (annual rainfall between 600 mm and 1000 mm) and          

- Sudano-Guinean in the south (rainfall> 1000 mm).       

Mali's geographical position places it in a Sudano-Sahelian zone that is particularly exposed to climate 

change, which makes agriculture, the country's main activity, precarious. Changes in climatic conditions, 

particularly since the droughts of 1970 and 1980, have led to a more arid climate throughout the country, a 

trend towards an overall decrease in useful rainfall of 20% and a 200 km southward displacement of 

isohyets, which has greatly weakened the agricultural sector, which is mainly food and rain-fed (DNM, 

2018). 

To quantify these future impacts due to climate change, projection scenarios have been developed. Thus, the 

IPCC modelling and the different scenarios developed in the third communication on climate change in 

Mali. The most plausible climate scenario foresees on average for the horizon 2100 an increase in 

temperature of 3°C and a decrease in rainfall of 22% compared to normal over the entire territory and an 

increase in extreme climate events (MEADD, 2018). 

2.2. Methodology 

a. Sampling 

The data on harvested area (in Hectare, Ha) and crop yields (in Kg / Ha) come from the Conjuncture 

Agricultural Survey (EAC) and are available from the Planning and Statistics Unit of the Rural 

Development Sector (CPS / SDR) of the Ministry of Agriculture. The data are annual and cover the period 

from 1988 to 2017. The EAC is a sample survey. It differs from a census in that not all farms are surveyed. 

It is carried out on a limited number of observation units (farms in rural areas, households in urban areas) 

selected from the larger set. The data on the sample must be multiplied by extrapolation coefficients in order 

to obtain data valid for all the regions of Mali. The crops covered by the survey are essentially cereals 
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(millet, sorghum, rice, maize, fonio, wheat, etc.), cowpea, voandzou, sesame, groundnuts, etc. The data on 

the sample should be multiplied by extrapolation coefficients in order to obtain data valid for all regions of 

Mali. This is how we selected cereals such as millet, maize and sorghum. In addition to rice, these cereals 

are the main staple of the Malian population's diet. 

The climate data come from the database of the National Meteorological Service of Mali (Mali 

Meteorological). These data include average monthly temperatures and average monthly rainfall for the 

period 1988 to 2017. 

b. Collection of data 

AEC data collection generally consists of: enumerating the holdings in the sample Enumeration Sections 

(ES) and drawing the 10 sample holdings; enumerating and measuring all plots on the sample holdings and 

drawing sample plots (1/3) by pure crop type or crop combination; placing yield squares; administering all 

questionnaires; harvesting the squares and weighing the products from the squares.  

2.3. Data analysis 

In this paper, the production function approach through spatial panel modelling is adopted to meet our main 

objective of assessing the impact of climate change on Malian agriculture. The choice of this approach was 

mainly based on issues related to data availability: more precisely, data were only available on an 

aggregated basis for the selected crops. In addition, we seek to measure the direct, indirect and total effect of 

weather conditions on yield without using intermediate variables. In addition, the absence of functional land 

markets in Mali makes it difficult to determine land values and therefore makes the Ricardian model 

inapplicable. 

The structure of our data guides us towards panel modelling. We estimate above all a standard linear panel 

data model, i.e. a model without spatial autocorrelation. This model can be used as a reference for the 

estimation results of spatial panel data models as well as for checking the robustness of these estimation 

results (Yang and al., 2017). According to Baltagi (2005), Baum and Christopher (2006), the standard linear 

regression model (SLM) is written: 

 

 

Where  is the variable explained, 𝑖 refers to individuals, and 𝑗 constitutes the regions
1
 (N=5).  is the 

dimension of the time series, i.e. 1988 to 2017.  is  observations of the explanatory variables and 

 is the  vector of indeterminate coefficients.  is an individual effect that cannot be directly observed 

and quantified and  is a term of disturbance that varies with the individual and over time. If  is related to 

, the panel data model model is a fixed-effect model; otherwise it is a random-effect model 

(Fotheringham and Rogerson, 2008, cited in Guliyev, 2020).    

c. Specification of the spatial panel model 

It is important to stress that before any exploratory spatial data analysis (ESDA), it is necessary to specify 

the spatial links that exist between the elements involved (districts, cities, regions, countries, etc.). Basically, 

the degree of spatial proximity between geographically located objects is obtained through the 

representation of a square matrix called a weighting matrix or spatial weighting matrix, noted W. According 

to Le Gallo (2002), two main categories can be distinguished of matrix: the adjacency matrices and the 

generalized weight matrices.  

Contiguity matrix 

To study the interactions between a large numbers of regions, the simple binary contiguity matrix is used, 

whose components take the value 1 when the regions share a common border and 0 otherwise. 
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For the same region, there can be no contiguity. In other words, a region is not contiguous to itself. In 

this case, 

 

To find out the number of regions contiguous to a region  the elements of the line must be added 

together. 𝑖 of the same contiguity matrix either:  

----------------------------- 
1  Mali is divided into ten administrative regions, including five northern regions namely Timbuktu, Gao, Kidal, Taoudéni and 

Ménaka. Since the security crisis in northern Mali in 2012, most meteorological stations have been sabotaged, leaving a lot of 

missing data on the series of climatic variables (temperature, precipitation, sunshine, etc.) and therefore we have excluded these 

northern regions in our analysis.  
 

 

- Generalized weight matrix          

or  

  is a distance decay parameter set a priori,  is the threshold value beyond which it is assumed that 

there is no direct interaction between the region 𝑖 and the region 𝑗.  

Contiguity matrix and the generalized weight matrices are often standardized s are equal to:  

With standardization, the weights are then between 0 and 1 and facilitates the comparison of spatial 

parameters in spatial processes between models. Harris and al (2011) point out, however, that the concept of 

distance is itself unclear, so in our study we will use the contiguity matrix. 

d. Spatial models 

Building on the seminal spatial econometrics paper by Manski (1993), Elhorst (2010) will establish a series 

of classifications of the main spatial econometrics models. These spatial models include the Spatial 

Autoregression Model (SAR), the Spatial Error Model (SEM), the Spatial Autocorrelation Model (SAC) and 

the Spatial Durbin Model (SDM). In this paper, grain yield was modelled using the Ordinary Least Squares 

(OLS) method (Standard Linear Regression Model (SLM)) and the principles of Maximum Likelihood 

(ML), depending on whether or not the spatial argument is included in the analysis. 

i. Spatial Autoregression Model (SAR) 

The SAR regression model follows a self-regression process, which is indicated by the presence of a 

dependency relationship between a set of observations or spatial units (Saputro et al, 2019). Therefore, its 

formula includes the term spatial shift of the dependent variable. Developed by Anselin and al (2008) then 

improved by Elhost (2010) in our case, the agricultural production of region i is explained by the exogenous 

variables specific to i, but it is also explained by the exogenous variables of i's neighbors. The model is also 

characterized by the presence of a spatial diffusion effect, this effect is based on the error process, a random 

is also explained by the exogenous variables of i's neighbors. The model is also characterized by the 

presence of a spatial diffusion effect, this effect is based on the error process, a random shock in region i 

disrupts the agricultural production of region i but also the production of neighboring regions. The model is 
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presented as an adjustment of the standard panel model with a fixed effect and a random effect, which can 

be written as follows: 

 

Where:  is the agricultural yield of the region 𝑖 on the date ,  represents the matrix of exogenous 

variables, the set of weights allows to build the weighting matrix , the value of 𝜌 reflects the degree of 

spatial dependence between the units observed (Gelfand and al., 2010),and is between 0 and 1. If  close to 

1 close to 1 then the degree of correlation is strong and therefore the agricultural production of the region 𝑖 is 

highly dependent on neighboring observations. Moreover, if  to statistical significance, it demonstrates the 

existence of a significant spatial dependence between the dependent variables, i.e. agricultural production in 

a region depends on contiguous regions, that is to say that the agricultural production in a region depends on 

the contiguous regions, β is the coefficient of spatial self-regression.  

 and  are the individual and temporal effects respectively. 

: the vector of model residuals subject to standard least square assumptions. 

ii. Spatial Error Model (SEM) 

In this case, the random ε term follows, as in the case of the variable explained in the model with spatial 

autoregression, a spatial autoregressive process. This model looks like this: 

 

 

With : matrix of spatial autocorrelation effects 

: Vector of independent random terms with zero expectation, E ( ) =0 and variance . 

iii. SAC model 

We consider a cross-sectional spatial autoregressive model with endogenous variables and spatial 

autoregressive perturbations (SAC) also called SARAR model, allowing a higher order spatial dependence 

in the dependent variable, exogenous variables and spatial errors. The model is: 

 

 

, , and  are n × 1 spatial shifts for the exogenous variable, the dependent variable and the error 

terms. , , and  are scalar parameters;  is an n × 1 vector of innovations. 

iv. Durbin Spatial Model (SDM) 

The SDM includes dependent spatial variables and explanatory variables. It uses the marginal effects of the 

explanatory variables of neighboring regions / states based on the SAR model. The common specification 

for SDM is as follows: 
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: The yield of food crops  in the region
2
  at the date   

: The yield of food crops in regions near to  

: Represents the explanatory variables of the region  

: The explanatory variables of the neighboring regions to  

: are the individual and temporal effects of the region  at the moment  

Under the hypothesis H0: γ = 0, the spatial Durbin model becomes a Spatial Autoregression Model 

(SAR). Similarly, if u = Y −X · β, we find the SEM model. This model is thus more robust to poor choice of 

specification even in the presence of spatially auto-correlated errors (SEM)
3
.  

Compared to standard linear panel data models, one of the peculiarities of spatial panel data models 

are their ability to take into account spatial effects, such as spatial dependence and spillover effects 

(Guliyev, 2020). Another advantage compared to the spatial model based on cross-sectional and temporal 

data is that the spatial panel data model can capture the individual heterogeneity of spatial units - i.e. 

individual effects - and can escape missing variables and estimation errors more efficiently (Elhorst, 2014). 

Variables and expected signs of the explanatory variables: The study used the following variables 

and the expected signs of the variables included depending on the nature of the variables used presented in 

table 1. 

--------------------- 
2 Malian agriculture is dominated by dry cereals (millet, sorghum, maize and rice), which constitute the staple of the diet. Rice is a 

special crop and is usually irrigated. Therefore, excluded in this part. 

 3 LE SAGE et al. 2009. 

Table 1: Description of variables  

 

Variable Description 

ln Rdt Crop yield in logarithm (Kg/Ha) 

lnSup Area in logarithm (Ha) 

lnTemp_moy Average temperature in logarithm (° C) 

lnTemp_sq Average temperature squared in logarithm (° C) 

lnPrec_moy Average rainfall in logarithm (mm) 

lnPrec_sq Average rainfall squared in logarithm (mm) 

lnTemp * Prec Temperature * Rainfall 

lnCVT Coefficient of Temperature Variation in 

logarithm 

lnCVP Coefficient of Rainfall Variation in logarithm 

Sech Drought 

Flood Flood 

Source : Author's calculation 

Temperature and precipitation data 

The average monthly temperature (Temp_moy) and average monthly rainfall (Prec_moy) are based on the 

growing season for cereals in the regions of Mali (June to October). We consider that rainfall and off-season 



 

Tiémoko Soumaoro, IJSRM Volume 09 Issue 01 January 2021 [www.ijsrm.in] AH-2021-320 

temperatures would not affect cereal production. The monthly average temperature and the monthly average 

rainfall value reflect inter-seasonal variability. 

Data on the seasonal variation coefficient of the temperature and of art rainfall 
The coefficient of seasonal variation of the temperature (CVT) and seasonal variation of rainfall  (CVP), 

captures seasonal variability s temperature and precipitation and taken as seasonal ratio the standard 

deviation to the mean of the temperature and rainfall, respectfully. 

Floods and droughts data 

Thanks to the SPI (Standardized Precipitation Index), it is possible to identify periods of drought and 

flooding (Blanc, 2012). In this study, droughts and floods begin when the SPI reaches values of –1.5 and 

+1.5, respectively, and end when the index returns to a positive and negative value, respectively. 

Excel 2010, GeoDa and STATA 14 software are used in data analysis. 

3. Results and discussion 

Table 2 presents the descriptive statistics (mean (Mean), standard error (St.Dev), minimum (Min) and 

maximum (Max)) of the study variables. 

Thus, the average maize yield value (Kg/Ha) is 1276.84 with a volatility of 607.36 (Kg/Ha). In addition, the 

minimum and maximum values of maize yield (Kg/Ha) are 377 and 3006.97 respectively.  

The average temperature fluctuates between 26.2 and 31.53°C. The coefficient of temperature variation has 

a standard deviation of 0.014 mm, which indicates that there is little year-to-year seasonal variation in 

temperature.  

As far as precipitation is concerned, the seasonal average value is 134.61 mm. It varies between 45.92 and 

252.62 mm with a variability of 44.01 mm. The coefficient of variation of precipitation has an average of 

0.570 mm and the minimum and maximum values are between 0.23 and 1.04. 

Table 2: Descriptive statistics of the control variables  
Variable Mean St. Dev. Min Max 

Rdt 1276,849 607.3619 377 3006,972 

Sup 57513.65 77567.95 4 446832 

Temp_avg 28.76 1.51 26.2 31.53 

Prec_moy 134.61 44.01 45.92 252.62 

CVT .0483559 .0149194 .0239784 .1081346 

CVP .5705424 .1661198 .2316991 1.049772 

Source: Author's calculation, data from CPS / Agricultural and Mali-Meteorological 

a. Spatial dependency test 

Standard linear panel data models assume that there is no cross-sectional correlation between observation 

units. Ignoring potential cross-sectional dependence can produce biased estimates (Le Sage and Pace, 2009). 

The interactions between administrative regions in Mali suggest that spatial spillovers may lead to a cross-

dependency of maize yields between these regions. 
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Figure 1 shows the distribution of average yields over the period 1988-2017: different colors identify the 

quartiles of the distribution, with darker areas corresponding to higher average yields. 

The average maize yields are concentrated in the Sikasso region, while the Mopti   particular has relatively 

lower average yields. 

To formally test cross-sectional dependence, we estimate linear fixed-effect (FE) and random-effect (RE) 

panel data models and perform the CD test of Pesaran (2004) for cross-sectional dependence. The results of 

the standard panel model are reported in Table 3 

Table 3. Panel data model results without spatial effects 

Variables Pooled 

OLS  

Fixed 

effects 

Random effects 

lnSup 0.139 *** 

(0.042) 

-0.137 * 

(0.073) 

0.139 *** 

(.045) 

lnTemp_moy 5.110 ** 

(2.003) 

6.794 *** 

(2.294) 

5.110 ** 

(2.272) 

lnTemp_sq -0.090 *** 

(0.035) 

-0.121 *** 

(0.039) 

-.089 *** 

(.040) 

lnPrec_moy 2,379 

(1,930) 

0.243  

(2.079) 

2.379 ** 

(.963) 

lnPrec_sq -0.107 

(0.100) 

-0.018 

(0.108) 

-0.107 ** 

(.047) 

lnTemp * Prec .018 

(.128) 

.0127 

(.043) 

.019 

(.086) 

lnCVT 0.027 

(4.519) 

-1.589 

(4.826) 

0.027 

(5.528) 

lnCVP 0.008 

(0.372) 

0.310 

(0.365) 

0.008 

(.311) 

Sech -0.352 

(0.242) 

-0.048 

(0.236) 

-.350 

(.284) 

Flood -0.152 

(0.220) 

-0.359 

(0.233) 

-0.152 

(.119) 

    Constant -79,597 *** -87,176 *** -79,597 *** 

Observation 150 150 150 

    R 2 _within   .6636   

Hausman Test, Chi2 (10) = 27.74, Prob> chi2 = 0.0020 

Peseran-CD test stat = 5.794, Pr = 0.0000 

Average absolute value of the off-diagonal elements = 0.340 

Standard errors in parentheses. * p <0.10, ** p <0.05, *** p <0.01 

In panel modelling, the choice of models is guided by tests. The Hausman test allows to arbitrate between a 

fixed effect model and a random effect model. And, according to the Hausman test, the hypothesis of the 

random effect model is strongly rejected (Prob>chi2= 0.0020<0.05). As we can also see, the CD test 

strongly rejects the null hypothesis of cross-sectional non-dependence (Pr = 0.0000). Moreover, the mean 

absolute value of the off-diagonal elements of the cross-correlation matrix of the residuals is 0.340, which 

indicates a possible cross-sectional dependence (De Hoyos and Sarafidis, 2006). Therefore, there is 

sufficient evidence to suggest the presence of cross-sectional dependence under a fixed-effect (FE) 

specification. 

To summarize, we controlled for fixed effects in the following spatial regression models. 
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b. Model estimation (SDM and SAR) 

The estimation of the models (SDM and SAR) reveals the spatially autoregressive coefficients (𝜌) positive 

and significant for the SAR model at the 1% threshold. In the case of the SDM model, it is negative and 

significant only at the 1% threshold. 

The opposite sign of 𝜌 for both results indicates that spatial interactions between regions vary considerably 

with climate. Furthermore, the SDM model reveals that spatial autocorrelation is significant for the 

explanatory variables, except for the variables coefficients of variation of temperature, precipitation, 

droughts and floods). 

On the other hand, autocorrelation is positive and has a significant impact on temperature and precipitation. 

Similarly, this coefficient is negative for area, precipitation, temperature squared and the interaction between 

temperature and precipitation. It follows that extremely high values are correlated with extremely low values 

in space. 

Table 4: Results of panel data models with spatial effects on maize yield  

  SAR SDM 

Variable Coefficient t-statistics p-Value Coefficient t-statistics p-Value 

lnSup .05912 .0502 0.239 -. 15060 .0640 0.019 

lnTemp_moy 7.7027 2.0617 0.000 5.5909 2.3478 0.017 

lnTemp_sq -1338 .03567 0.000 - .0992 .0407 0.015 

lnPrec_moy 1.2250 1.8563 0.509 - .3593 1.6134 0.824 

lnPrec_sq -.1320 .3894 0.735 .1162 .3332 0.727 

lnTemp * Prec -.0009 .0011 0.422       

lnCVT -.2350 .1115 0.035 - 6.056 3,613 0.094 

lnCVP -.1803 .2356 0.444 .3792 .3048 0.214 

Sech -.3246 .2306 0.159 - .2326 . 1844 0.207 

Flood -.4254 2432 0.080 - .1002 . 1884 0.595 

W * lnSup 

  

- .09173 .04179 0.028 

W * lnTemp_moy 5.6395 1,887 0.003 

W * lnTemp_sq - .0971 .0329 0.003 

W * lnPrec_moy - 4.7048 2.6446 0.075 

lnPrec_sq 1.0633 .5625 0.059 

W * lnTemp * Prec - .1047 .00019 0.068 

W * lnCVT - .1.9412 3.5213 0.581 

W * lnCVP .3784 .2812 0.178 

W * Sech -. 1865 .4529 0.680 

W * Flood .2147 .1750 0.220 

Ρ .0909  .0334  0.000 7 -. 2370 .04844 0.000 

σ ^ 2  .2573 .0676  0.000  .1314 .0277 0.000 

Observation 150 
  

150 
  

Log Likelihood -107.8246     -103.5653     
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Source : Author's calculation  

However, the interpretation of the coefficients of the spatial model remains delicate in the presence 

of a spatially shifted variable. 𝑊𝑌. These coefficients are not directly comparable to those of the non-spatial 

model. The effects of the explanatory variables can thus be distinguished according to two components: the 

direct effect and the indirect effect. Indeed, for a region 𝑖 if there is a direct effect of the effect of the direct 

effect on a variable, an explanatory variable X and a dependent variable Y, the direct effect can be 

interpreted as the impact on   following a variation of . In other words, the impact of a variation of X 

specific to the region  on the endogenous variable . On the other hand, the indirect effect is the impact 

on  the sum of the variations of X in neighboring regions . The indirect effect is the variation in  

following a variation of X in the neighboring regions j. It is sometimes referred to as the spillover effect. 

In order to highlight the direct and indirect effects, we can carry out Wald and likelihood ratio (LR) 

tests in order to select the most appropriate model.  

c. The choice of spatial models 

Regarding model selection, when testing H0: θ = 0 using the Wald and LR tests, the SAR is always rejected 

against the SDM for both results and also the SEM is rejected against the SDM (Table 5). Given this 

consistent evidence and considering that spatially shifted variables also control the relevant omitted 

variables, we focus on the SDM.  

Table 5: Wald tests and LR test to select the appropriate model   

WALD TEST 

SAR ( SDM( ) 17.70 (0.0388)  

SEM ( ) SDM( )  15.35 (0.0817)  

LR TEST (ML estimate) 

SAR SDM( ) 20.34  0.0091  

SEM ( ) SDM( ) 23.31  0.0030  

Source: Author’s calculation 

* Likelihood ratio tests: the nested model (SAR or SEM) versus the more general model (SDM). The 

asymptotic distribution of the test statistic is one (8) with degrees of freedom equal to the number of 

restrictions imposed by the corresponding nested model. The values in parentheses are the associated critical 

probabilities. 

d. Analysis of spatial effects 

In order to further investigate the possible sources of impact, we calculate direct, indirect and total effects. 

The average direct, indirect and total effects of our explanatory variables are presented in Table 6. 

The results show us that average seasonal temperature and rainfall have direct positive and significant 

effects on maize yield, while the area planted and the interaction between temperature and rainfall have 

direct negative and significant effects on maize yield. In other words, a 1% increase in temperature and 

rainfall over the region  leads respectively to a positive variation of 4.84% and 0.20% on the yield maize in 

our region . This can be explained by the fact that maize production in Mali is mainly concentrated in 

southern Mali, which remains the wettest region in the country, and also by the impact of the maize variety 

change project launched by the Institute of Rural Economy (IER) in the southern part of Mali since the 

1970s. In addition, a 1% increase in the area sown and the interaction between temperature and rainfall leads 

to a negative variation of 0.14% to 0.10% in maize yield in the region 𝑖 respectively.   

With regard to estimates of indirect impacts, average indirect effects can more fully reflect the actual effect 

of influencing factors (Guliyev, 2020). 
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The indirect effects of temperature is equal to 4.17 (prob<0.05), indicating that a 1% increase in the 

temperature of the regions around 𝑖 would result in a positive 4.2% change in maize yield in the region. 𝑖. 
However, the indirect effect of the precipitation variable is negative and significant at the 1% threshold. In 

other words, a 1% increase in rainfall in all other regions would decrease the maize yield in a typical region 

by 0.03%.  

Table 6: Estimates of direct, indirect and total effects on maize yield  

  SDM 

  Total Direct Indirect 

Variable 
Coefficient 

(t-Value) 

Coefficient 

(t-Value) 

Coefficient 

(t-Value) 

lnSup 
-.1952 *** 

(0.003) 

-.1435 ** 

(0.029) 

-.0516 

(0.208) 

lnTemp_moy 
9.018 ***  

(0.000) 

4.8468 * 

(0.057) 

4.1713 ** 

(0.033) 

lnTemp_sq 
-.1576 ***  

(0.000) 

-.08656 * 

(0.051) 

-.07113 ** 

(0.039) 

lnPrec_moy 
4.0123 * 

(0.099) 

.1982 ** 

(0.047) 

-.02586 *** 

(0.008) 

lnPrec_sq 
.9384 * 

(0.069) 

-1411 

(0.694) 

1.0795 * 

(0.056) 

lnTemp * Prec -.0716 *** 

(0.002) 

-.1047 * 

(0.068) 

-.29461 

(0.324) 

lnCVT 
-6.3786 

(0.014) 

-5.7215 

(0.135) 

-6.3786 

(0.114) 

lnCVP 
.62035 * 

(0.073) 

.3098 

(0.344) 

.6203 * 

(0.073) 

Sech 
-.3714 

(0.375) 

-.2108 

(0.269) 

-.24622 *** 

(0.017) 

Flood 
.1042 

0.652 

-.1404 

(0.450) 

-.3713 

(0.375) 

Source : Author’s calculation 

Associated probability in parentheses 

* p <0.10, ** p <0.05, *** p <0.01  

The analysis of the indirect effect of the drought variable (Sech), we note that the elasticity of the 

explanatory variable (Sech) at the expected and significant sign. 

The inter-seasonal variation in rainfall (VSC) is significant at the 5% level and is negatively related to the 

effects of maize. However, an increase in seasonal rainfall variability (lnCVP) of 1% from one season to the 

next over the region 𝑖 would reduce maize yields by about 0.62% of a kilogram per hectare in all other 

regions. This indirect impact takes into account the fact that the inter-seasonal variation in rainfall (lnCVP) 
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has a negative impact on the yield in other regions, which in turn negatively influences the yield in our 

typical region due to the presence of a positive spatial dependence on yields in neighboring regions. 

We also find that the direct and total effect of temperature and rainfall are significantly positive. The 

increase in temperature or rainfall will significantly increase maize yield in region  and subsequently 

increase maize yield in all regions. In other words, a 1% increase in temperature would result in an increase 

in maize yield in region  of 4.84% and regional yield of 9.01%. Similarly, a 1% increase in rainfall would 

increase maize yields in the region  of 0.20% and the regional yield of 4.01%. This proves that temperature 

and rainfall are beneficial for maize cultivation up to a certain threshold, above which temperature and 

rainfall can have adverse effects on the average maize yield. 

Second, the Coefficient of Variation in rainfall (lnCVP) has the expected positive effect, while the area sown 

and the interaction between temperature and rainfall have a negative impact on maize yield. In addition, the 

intra-seasonal temperature variability has a considerable overall effect on maize yield. 

Table 7: Estimates of direct, indirect and total effects on millet yield  

  SDM 

  Total Direct Indirect 

Variable 
Coefficient 

(t-Value) 

Coefficient 

(t-Value) 

Coefficient 

(t-Value) 

lnSup 
.059 

(0.651) 

-.013 

(0.774) 

.072 

(0.230) 

lnTemp_moy 
4.627 ** 

(0.028) 

.842 2 

(0.304) 

2.462 * 

(0.083) 

lnTemp_sq 
-.078 ** 

(0.032) 

.042 

(0.324) 

-.042 ** 

(0.089) 

lnPrec_moy 
. 433 * 

(0.0 57) 

2 .165 ** 

(0.029) 

0.137 * 

(0.0 95) 

lnPrec_sq 
.043 

(0.657) 

-.036 

(0.033) 

1.0795 * 

(0.056) 

lnTemp * Prec -.056 

(0.973) 

* .013 

(0.094) 

-.0023 ** 

(0.033) 

lnCVT 
-2.473 

(0.334) 

1.385 

(0.535) 

-3.858 * 

(0.054) 

lnCVP 
.0654 

(0.768) 

.081 

(0.617) 

-.015 

(0.920) 

Sech 
-.228 * 

(0.080) 

-.249 *** 

(0.004) 

.022 

(0.831) 

Flood 
-.285 

(0.113) 

-.256 

(0.012) 

-.028 

(0.785) 

Source : Author's calculation  
Associated probability in parentheses 
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* p <0.10, ** p <0.05, *** p <0.01 

The direct effect of temperature is positive, but it did not pass the significance test, indicating that the 

positive effect of temperature on millet yield in the area is not obvious. The indirect and the total effects of 

temperature are significantly positive. The increase in temperature will significantly increase millet yield in 

adjacent (near) areas, and subsequently increase millet yield in all five study areas. 

The direct, indirect and total effects of the rainfall variable are significantly positive. Increased rainfall will 

increase millet yields in the region  by 2.165 percentage points, increases the millet yield in adjacent 

(nearby) regions by 2.165 percentage points  by 0.137 percentage points and then increases millet yields in 

all regions by 0.433 percentage point. 

Droughts had a direct and total negative impact on millet yield. This is all the more true as the problem of 

drought is a well-known phenomenon in the study areas and in all regions of Mali. After the major droughts 

of 1973/74, the government of Mali reacted and tried to integrate this threat into daily life as if it was now 

part of Malian life and not to see it as an external risk factor (Clot and all, 2008). 

From these estimates we see the somewhat surprising result that taking into account the direct positive effect 

of the interaction between temperature and rainfall as well as the indirect negative effect leads to a total 

effect that is not significantly different from zero. This means that increasing the interaction between 

temperature and rain for all regions would probably not have a significant total effect on millet yield over 

the region . 

4. Conclusion and policy implications 

This article assessed the impacts of climate change on the yield of staple food crops with a focus on maize 

and millet. It was therefore a question of evaluating the total, direct and indirect effects of precipitation and 

temperature, floods, droughts and the coefficients of variation of temperatures and precipitation on maize 

and millet yields through modeling in spatial panel to take into account in a more efficient and finer way the 

spatial effects, the individual and temporal effects of spatial autocorrelation. To do this, we used panel data 

from five regions of Mali (excluding the northern regions of Mali: Timbuktu, Gao, Kidal, Ménaka and 

Taoudéni) during the period 1988 to 2017.   

Pesaran's (2006) cross-sectional dependency test was carried out even before comparing spatial panel 

models in order to take into account the spatial interactions that may exist between regional units. We thus 

found a transversal dependency between regions. We test spatial models (spatial autoregressive models 

(SAR), spatial error models (SEM) and spatial durbin models (SDM) using the Wald and LR tests that 

capture spatial effects. These tests guide us in selecting the appropriate specification and the one that 

appears to be best suited to our data. Thus, the most appropriate and consistent was the SDM (Spatial Durbin 

Model) among the spatial panel data models provided for interpretation. 

We then estimate our SDM model by looking at spatial spillovers (the effects of changes in independent 

variables on the dependent variable). As suggested by Pace and Le Sage (2006), the effects of the 

independent variables were divided into total, indirect (spatial spillover effects) and direct effects in order to 

improve the identification of the actual impacts and spatial interactions of the factor components on the 

average yield of maize and millet. 

Following the regression results, it can be seen that the average total impacts of temperature and seasonal 

average rainfall have positive and significant effects on average maize yield and millet yield, while the 

interaction between temperature and rainfall have negative and significant effects on average maize yield, 

and droughts are negatively and significantly correlated with millet yield at the 10% threshold. 

Average direct impacts, temperature and seasonal average rainfall have direct positive and significant effects 

on maize yield, while the area planted and the interaction between temperature and rainfall have direct 

negative and significant effects on maize yield. In other words, a 1% increase in temperature and rainfall 

over the region 𝑖 leads respectively to a positive variation of 4.84% and 0.20% on the yield of maize in our 
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region. 𝑖. However, the direct effect of temperature is positive, but it did not pass the test of significance, 

indicating that the positive effect of temperature on millet yield in the region is not obvious. 

The average indirect impacts, temperature has positive effects on maize yield in the neighboring region. In 

other words, a 1% increase in temperature leads to a positive 4.2% change in maize yield in the neighboring 

region. However, the effect of rainfall is negative and significant at the 1% threshold. In other words, a 1% 

increase in rainfall would decrease maize yield in neighboring regions by 0.03%. In addition, the direct, 

indirect and total effects of the precipitation variable are significantly positive. Increased rainfall will 

increase millet yields in the region. 𝑖 by 2.165 percentage points, increases the millet yield in adjacent 

(nearby) regions by 2.165 percentage points. 𝑖 by 0.137 percentage points and then increases millet yields in 

all regions by 0.433 percentage points. Second, the droughts had a direct and total negative impact on millet 

yield. 

Overall, our results indicate that when assessing the impacts of climate change on food crop yields (maize 

and millet) in Mali, policy makers need to take into account that conditions in surrounding areas can 

influence food crop yields and that the effects of spillover effects differ between crop types. 

From a political point of view, two main recommendations can be made. On the one hand, the use of tolerant 

seeds should be promoted in order to reduce the expected adverse effects of climate change and climate 

variability. On the other hand, the adoption of any policy to improve maize or millet production in regions 

with rainfall deficits or high temperature rises must not only take into consideration the amount of water 

available in the dams and water tables of region i, but also integrate all regions neighboring region i in a 

collective manner depending on the region.  
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