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Abstract 

This work presents a study on the duplex stainless steels UNS S32101 and UNS S32205 when subjected to 

cathodic hydrogenation, to ascertain their behavior under the action of hydrogen. It was evaluated for 

embrittlement and phase transformations induced by hydrogen, in order to check whether nickel and 

molybdenum contents would improve resistance to the harmful effects of hydrogen. With the aid of optical 

(MO) and scanning electron microscopy (SEM), both hydrogen embrittlement in both steels after 

hydrogenation and degassing was evidenced, as well as pitting corrosion on UNS S32101 duplex stainless 

steel. It appears that hydrogen can induce the transformation of the austenitic phase () into the martensitic 

phase (α') in the two duplex stainless steels analyzed and it is verified that hydrogen can lead to the 

formation of sigma phase at room temperature in duplex stainless steel UNS type S32101.  
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I. Introduction 

Firstly, due to the increase in the price of nickel, studies on duplex stainless steels have intensified since the 

1990s [1-3]. In this way, the growth of scientific interest in the field of materials promoted discussion about 

the microstructure and the combination of properties, such are usually obtained by increasing the levels of 

chromium, molybdenum and nitrogen when compared with austenitic stainless steels [4]. Thus justifying the 

price increase identified since 1990. 

Following, it is highlighted that there is a considerable risk of catastrophic failures caused by hydrogen in 

the operations of extraction, production and refining of oil. Since, microstructural analyzes show that 

hydrogen induces phase transformations, that is, austenite becomes unstable giving rise to two martensitic 

phases, one called the  phase, and the other called the ’phase [5-7]. As well as the formation of 

precipitates of type Cr23C6 in ferritic grains during hydrogenation and high energy in the disappearance of 

these during degassing, sufficient for the formation of the sigma phase (σ) in stainless steel UNS S32101 

[8]. It is worth mentioning that hydrogen also induces the appearance of delayed fracture, as a consequence 

of the appearance of numerous surface cracks, which occur during degassing at room temperature. 

Mechanical tests reveal that: hydrogen drastically reduces the ductility of a material, causing it to break with 

a fragile characteristic when subjected to tensile tests; and it also reduces the fatigue life of the material 

[9,10]. Therefore, the appropriate choice of material to work in hydrogenated environments must be very 

careful, as it is extremely necessary to know the mechanical-metallurgical behavior in environments rich in 

hydrogen. 

Thus, the objective of this study is to analyze hydrogen embrittlement, as well as the phase transformations 

induced by it in the duplex stainless steels UNS S32101 and UNS S32205, when subjected to cathodic 

hydrogenation. 

 

Experimental Procedure 

For broad understanding, UNS S2101 and UNS S2205 duplex stainless steels were machined until they 

acquired a smooth surface. Then, with a cutting disc, 1.0 cm2 samples were cut, then the samples were 
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embedded, mechanically sanded in paper sandpaper (with 220 m and 1200 m grain sizes), polished with 

felt cloth and aluminum alumina. granulometry 0.30 m, in the sequence neoprene cloth and 0.1 µm 

colloidal silica, to guarantee (smooth) surfaces that can be analyzed through optical microscopy, electron 

microscopy and X-ray diffraction. After polishing, the samples of the duplex steels were subjected to 

cathodic hydrogenation for four hours at a temperature of 30 ° C. 

The solution was prepared as follows: dilution of 1g of As2O3 in 1L of distilled water at 80°C. The 

hydrogenation solution: consisted of diluting 100 ml of the arsenic trioxide solution in a 0.5 mol L-1 

solution of H2SO4. 27ml of H2SO4 was applied in 1 liter of solution. In this solution, arsenic trioxide was 

applied to avoid loss of hydrogen to the atmosphere. A platinum anode and a current density of 1000 A/m2 

were used. Figure 1 presents a representative diagram of the hydrogenation process. 

  

 

 
 

Figure 1: Schematic of the hydrogenation process. Source: the author. 

 

The samples were kept at room temperature after the hydrogenation was interrupted to degass and 

subsequently observed for damage caused by hydrogen. The damage caused by optical microscopy and 

scanning electron microscopy was evaluated, as well as analyzed by X-ray diffraction. 

 

II. Results And Discussions 

In order to verify the microcracks, generated in the degassing process after cathodic hydrogenation, optical 

microscopy (OM) images were sought. Since this hydrogen embrittlement in this type of steel was expected, 

especially in austenitic grains, as, as already discussed in other studies, there is an intense surface cracking 

of austenitic stainless steel after hydrogenation [11-13, 16]. 

Therefore, in order to visualize the damages caused during the hydrogenation and degassing process, optical 

microscopy and scanning electron microscopy were used. Thus, it can be seen that in figures 2 and 3 are 

optical micrographs of duplex stainless steel of the UNS S32101 type. Figure 2 of this steel is only sanded, 

polished and attacked (Murakami) to reveal the ferritic () and austenitic () grains. Figure 3 is the UNS 

S32101 duplex stainless steel sanded, polished, hydrogenated for 4 hours and degassed for a week. 
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Figure 2: optical microscopy image of UNS S32101 sanded, polished, duplex stainless steel with Murakami 

attack to reveal austenitic () and ferritic () grains, with 200x magnification. 

 

Figure 3 shows the difference, as the ferritic grains appear darker, showing the damage caused by the entry 

and exit of hydrogen in the steel. In sequence, in figures 4 and 5, the optical micrographs of the duplex 

stainless steel of the UNS S32205 type are shown. Figure 4 is an optical microscopy image of the UNS 

S32205 duplex stainless steel sanded, polished, without hydrogenation, with Murakami attack to reveal the 

austenitic and ferritic grains. While in figure 5 is the micrograph of the UNS S32205 duplex stainless steel 

sanded, polished, hydrogenated for 4 hours and degassed for seven days. 

 

 
 

Figure 4: optical microscopy image of sanded, polished, UNS S32205 duplex stainless steel with Murakami 

attack to reveal austenitic () and ferritic () grains, with a 200x magnification. Source: the author. 
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Figure 5: optical microscopy image of UNS S32205 duplex stainless steel sanded, polished, hydrogenated   

for 4h and degassed for 7 days, with a 500x magnification. Source: the author. 

 

It is observed, in hydrogenated samples of duplex stainless steel of type UNS S32205 (figure 5), by means 

of micrographs, that the ferritic grains did not darken, as occurred in hydrogenated samples of duplex 

stainless steel of type UNS S32101 (figure 3).  

Due to the limitations of optical microscopy, scanning electron microscopy images were sought to better 

clarify the damage caused by the entry and exit of hydrogen from the material. Figures 6 and 7 are SEM 

images of duplex stainless steels of the type UNS S32101 and UNS S32205 respectively, hydrogenated for 

4h and degassed for a week. Thus, it can be seen that in figure 6, the microcracks in the austenitic and 

ferritic grains were evidenced, and in addition to these the presence of corrosion - by pites - located in the 

ferritic grains. Since, such corrosion is characterized by small pits that form in the material and these 

normally penetrate into the metal from the surface. This type of corrosion, being below the surface, is almost 

imperceptible, as it is often left undetected until the failure occurs. In the image of figure 7 of the UNS 

S32205 duplex stainless steel, several cracks are noted, both in austenitic grains and in ferritic grains. In the 

image of figure 7 of the UNS S32205 duplex stainless steel, several cracks are noted, both in austenitic 

grains and in ferritic grains. However, no localized corrosion is observed as seen in figure 6 of UNS S32101 

duplex stainless steel. 

 

 
 

Figure 6: Scanning electron microscopy image of UNS S32101 duplex stainless steel sanded, polished, 

hydrogenated for 4h and degassed for 7 days, with a 3000x magnification. Source: the author. 
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Figure 7: Scanning electron microscopy image of UNS S32205 duplex stainless steel sanded, polished, 

hydrogenated for 4h and degassed for 7 days, with a 3000x magnification. Source: the author. 

 

At first, it is noteworthy that the X-ray diffraction technique was used to verify which phases are present in 

the material before and after hydrogenation. For this purpose, a diffractometer with Bragg-Bretano geometry 

was used which uses a monochromator at the beam outlet, with copper tube. Thus, graph 1 shows the 

comparison of UNS S32101 duplex stainless steel without hydrogenation (black curve), hydrogenated for 4 

hours and degassed for seven days (red curve). Graph 2 is a comparison of UNS S32205 duplex stainless 

steel in the same conditions, where the black curve is without hydrogenation and the red curve after 

hydrogenation and degassing. In these it is possible, clearly, to observe the phase transformation of such 

steels after the entry and exit of hydrogen. 
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Graph 1: X-ray diffractogram of UNS S32101 duplex stainless steel without hydrogenation (black curve) and 

hydrogenated for 4 hours, after seven days of degassing (red curve), showing the peaks of phases ,  and possibly  

and ' present in steel. Source: the author. 
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Graph 2: X-ray diffractogram of UNS S32205 duplex stainless steel without hydrogenation (black curve) and 

hydrogenated for 4 hours, after seven days of degassing (red curve), showing the peaks of phases ,  and ' present in 
the steel. Source: the author. 
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It is noteworthy that in the samples of duplex stainless steels before hydrogenation, only the  and 

confirmou phases were confirmed. It is evident that the transformation of the phase ’ phase 

(transformation from austenite to martensite - '    was expected, due to a percentage of 

approximately 50% of austenitic phase in the UNS S32101 duplex stainless steel [11,12]. According to these 

authors, the  phase is a stacking failure that arises during hydrogenation. And over time the phase  would 

become martensite ’. However, according to the literature the ' peak is approximately 45.95° and the  

peak is approximately 48° and the peak shown in graph 1 of the UNS S32101 duplex stainless steel samples 

is approximately 46.18°. This peak coincides with the sigma phase peak () according to [8, 13-15].  

It is known that hydrogen induces the formation of Cr23C6 precipitates in the ferritic grains [8], these 

ferritic grains are inconsistent with the austenitic grains, but are highly stressed due to the precipitates that 

have arisen, so that there is a sufficient high interfacial energy for the σ phase formation. Padilha and Rios 

[16] guarantee that both carbon and nitrogen are insoluble in the σ-phase and, as a consequence, the σ-phase 

is precipitated commonly after the precipitation of carbides and /or nitrides, and the formation of this favors 

corrosion by pites. Therefore, explaining the localized corrosion that appears in figure 6. It is clear that 

hydrogen induces the formation of precipitates of the Cr23C6 type [8].  

 Graph 2, referring to the UNS S32205 duplex stainless steel, shows the peaks of the ,  phases and a 

peak at approximately 45.96° which is transformation of the austenitic phase  into the martensitic structure 

’ [17-19]. However, the peak at 46.18° for phase  is not evident as in UNS S32101 duplex stainless steel. 

The fact that the peak of phase  is not detected explains the absence of pitting-type localized corrosion. 

Since, the decrease in corrosion resistance is related to the formation of phase  [20]. This corrosion 

resistance is related to the fact that in UNS S32205 duplex stainless steel contains 3% molybdenum on 

average and in UNS S32101 duplex stainless steel the molybdenum content is 0.5%, that is, UNS steel 

S32205 contains six times more molybdenum than UNS S32101 steel [21]. 

 

III. Conclusions 

Finally, it was possible to state, after the study, that hydrogen can induce the formation of the sigma phase 

() at room temperature in UNS S32101 duplex stainless steel. And as initially predicted, this duplex 

stainless steel was more susceptible to the deleterious effects of hydrogen, when compared to UNS S32205 

duplex stainless steel under similar conditions.  

Likewise, it was determined that in UNS S32101 duplex stainless steel, after hydrogenation, there was an 

intense surface cracking, as well as pitting corrosion. This is due to the formation of the sigma phase (), a 

phase that favors pitting corrosion. In the duplex stainless steel of the UNS S32205 type, numerous cracks 

also arose due to the embrittlement by hydrogen and in addition there was a transformation from the 

austenitic () to martensitic (α') phase, as predicted. However, it did not form a sigma phase () and did not 

show pitting corrosion, this is probably due to the fact that this steel contains a higher molybdenum content 

than UNS S32101 duplex stainless steel. 
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