
International Journal of scientific research and management (IJSRM)
||Volume||3||Issue||3||Pages|| 2236-2238||2015|| \
Website: www.ijsrm.in ISSN (e): 2321-3418

Ms.G.S.Dhurgalakshmi
1
 IJSRM volume 3 issue 3 March 2015 [www.ijsrm.in] Page 2236

Model Based Reverse Engineering With Restructuring Algorithm
Ms.G.S.Dhurgalakshmi

1
, Ms.P.Ramya

2

1Department of Computer Science and Technology,

Sona College of Technology

Salem - 636005

ammusrinivasan1992@gmail.com

2Department of Computer Science and Technology,

Sona College of Technology

Salem-636005

shriramyabe@gmail.com

Abstract: GUI testing represents a significant amount of the overall testing efforts. Performing software testing through GUI in order to

find defects in the application. In GUI it is more difficult than testing the application through its API because it requires additional

programming effort to simulate user actions to observe the output produced and to check its correctness. The incorrect behavior of

Graphical User Interfaces can compromise the effective use of the overall software application. One way to discover defects and increase

the quality of GUIs is through testing. Test cases can be created manually or produced automatically from a model of the GUI. The size and

complexity of GUIs makes it unpractical to do extensive manual testing. The GUI is exercised by a combination of manual and automatic

exploration, and information about its structure and some of its behavior is automatically extracted, resulting in an incomplete GUI model.

Keywords: Refactoring approach, GUI testing, Test generation and execution.

1. Introduction

Reverse engineering is the process of extracting knowledge or

design information from anything man-made. The process often

involves disassembling something (a mechanical device,

electronic component, computer program, or biological,

chemical, or organic matter) and analyzing its components and

workings in detail. The reasons and goals for obtaining such

information vary widely from every day or socially beneficial

actions, to criminal actions, depending upon the situation.

Often no-one’s intellectual property rights are breached, such

as when a person or business cannot recollect how something

was done, or what something does, and needs to reverse

engineer it to work it out for themselves.

Reverse engineering is also beneficial in crime prevention,

where suspected malware is reverse engineered to understand

what it does, and how to detect and remove it, and to allow

computers and devices to work together ("interoperate") and to

allow saved files on obsolete systems to be used in newer

systems. Used harmfully, reverse engineering can be used

to "crack" software and media to remove their copy protection,

or to create a (possibly improved) copy or even a knockoff; this

is usually the goal of a competitor.

Reverse engineering has its origins in the analysis of hardware

for commercial or military advantage. However, the reverse

engineering process in itself is not concerned with creating a

copy or changing the artifact in some way; it is only

an analysis in order to deduce design features from products

with little or no additional knowledge about the procedures

involved in their original production. In some cases, the goal of

the reverse engineering process can simply be a re-

documentation of legacy systems. Even when the product

reverse engineered is that of a competitor, the goal may not be

to copy them, but to perform competitor analysis.

2. Related Work

In Tomi Raty et.al This paper propose to reduce the required

manual effort and expertise in creating the models for MBGT

by using dynamic reverse engineering to automate a significant

part of the modeling process. In this paper we compare various

approaches for automated GUI modeling and present the

results of an empirical tool study, propose a GUI component

classification suitable for GUI automation and present some

examples of GUI automation strategies for efficient modeling

of GUI applications.

In Paul Strooper et.al This paper proposes the Action-Event

framework (AEF), another PAM-based approach. It is a two-

layer approach. At the top layer is an action model which

defines abstract actions. At the bottom layer is a mapping

model, which maps abstract actions to sequences of concrete

GUI events that implement the actions. An example of an

abstract action in MS WordPad is opening a file which can be

implemented as a sequence of GUI events such as click on

menu File, click on menu item Open, and so on. As there are

far fewer abstract actions than GUI events, the effort for

defining an action model is also less than for defining an event

model.

In Wei Yang et.al The model design is inspired by the UI

design principles espoused by the Android team. The Android

User Experience Team suggests that developers should make

places in the app look distinct" to give users confidence that

they know their way around the app. In other words, different

screens of the app should and typically do have stark structural

differences not just minor stylistic ones. In addition, we would

like to capture and reflect important differences such as a

button being enabled or disabled. Such differences are reflected

in the attributes of GUI components that support user actions.

http://en.wikipedia.org/wiki/Process_(engineering)
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Intellectual_property_rights
http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Anti-virus
http://en.wikipedia.org/wiki/Software_cracking
http://en.wikipedia.org/wiki/Copy_protection
http://en.wikipedia.org/wiki/Copying
http://en.wikipedia.org/wiki/Knockoff
http://en.wikipedia.org/wiki/Competitor
http://en.wikipedia.org/wiki/Analysis
http://en.wikipedia.org/wiki/Deductive_reasoning
http://en.wikipedia.org/w/index.php?title=Redocumentation&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Redocumentation&action=edit&redlink=1
http://en.wikipedia.org/wiki/Legacy_system
http://en.wikipedia.org/wiki/Competitor_analysis

Ms.G.S.Dhurgalakshmi
1
 IJSRM volume 3 issue 3 March 2015 [www.ijsrm.in] Page 2237

In Qing Xie et al. The primary goal of this paper is to develop

efficient model-based GUI testing techniques that provide the

best combination of fault detection effectiveness and cost. The

characteristics of proposed framework are it will be automated

so that the tester’s work is simplified. The GUI model will be

obtained automatically. Each module will use the model for

automated testing. It will be efficient so that practitioners can

use the framework even in the presence of tight deadlines. It

will be extensible so that new techniques can be implemented

and packaged as new modules of the framework. It will be

general enough to be applicable to a wide range of GUIs.

3. Formal Models for GUI Testing

Reverse engineering approaches can be roughly divided into

two categories:

1. Static approaches

2. Dynamic approaches

In static approaches the source code or other static

representation of the system is analysed without executing the

system. In dynamic approaches the system is executed and its

external behaviour is analysed. Approaches for static source

code analysis are already available in many software

engineering tools.

Static approaches are well-suited for extracting information

about the internal structure of the system and dependencies

among structural elements, but require access to the source

code of the system. The dynamic nature of object-oriented

programs makes it very difficult to understand the behaviour by

just examining the source code. However there are some

approaches for static analysis of GUI software and presents an

approach and GUI Surfer tool for reverse engineering source

code of GUI applications written in Java or Haskell, and

creating finite state machine (FSM) models representing the

behaviour of the GUI. First an Abstract Syntax Tree (AST) is

created by parsing the source code. Then code slicing is used to

extract the GUI related parts of the code and a FSM model of

the GUI is automatically created. Although the generated GUI

models are not used for automated testing, the goal is that these

models might be used to reason about the quality of the system.

4. Reverse engineering and Restructuring

process

To implement the level of GUI automation that is required for

dynamic reverse engineering of GUI applications, the analyzed

GUI widgets have to be classified. The classification enables a

different kind of handling for different types of widgets and

using more advanced strategies in choosing in which order the

enabled GUI widgets should be selected for interaction and

introduces two different classification examples for abstracting

GUI widgets to create platform-independent user interface

specifications. Because neither of them was well suited for

dynamic GUI reverse engineering, a new GUI widget

classification was required.

We divided GUI widgets into four groups:

1. GUI controls,

2. GUI options,

3. GUI inputs, and

4. GUI infos.

GUI controls are widgets that the user selects or presses and a

state transition, i.e., a change of GUI state is usually expected.

For example buttons and menus belong to GUI controls. In

some applications the user has to double-click a control to

activate the corresponding action, and usually selecting a menu

opens a list of menu items and another selection is required

from the user to trigger the action from a menu item.

GUI options are widgets that are used to make a selection from

a list of choices, such as a group of radio buttons, a list of

items, a combo box or a pop-up box, or simply an on/off

switch, such as a check box. Usually selecting an option does

not trigger a change of GUI state. However, sometimes the

selection of an item on a list enables a button or changes the

values of other widgets shown on the GUI.

Figure 1: Reverse engineering, Testing and Refactoring

process

5. Conclusion

Automated GUI testing has become tremendously important as

GUIs become progressively more complex and popular. One

way to automate and systematize more the GUI testing process

is to generate automatically test cases from GUI models.

However, the manual construction of these models requires a

lot of effort. We have presented a new technique that, through a

reverse engineering process, allows obtaining a model of a

GUI. This model is kept in a XML file from which a Spec#

specification is generated for testing purposes. However, it is

possible to translate the XML file to another language if

desirable. The reverse engineering process proposed combines

automatic with manual exploration which solves some of the

“blocking problems” found in the approaches described in the

state of the art section. In our experiments, by using the REGUI

tool, 50% of the Specification model was generated

automatically. In the future, it is our intention to implement

new algorithms to extend the set of dependencies among GUI

controls that can be found automatically and translated into

Specification.

References

Ms.G.S.Dhurgalakshmi
1
 IJSRM volume 3 issue 3 March 2015 [www.ijsrm.in] Page 2238

[1] Microsoft. UI Automation. msdn 2009 [cited 2009;

Available from: http://msdn.microsoft.com/en-

us/accessibility/bb892133.aspx

[2] Paul Hamill, “Unit Test Frameworks”, O’Reilly Media,

p216, November 2004, ISBN: 9780596006891.

[3] Hendrickson, E., “Making the Right Choice” in

Software Testing & Quality Engineering. 1999. p. 21-

25

[4] Nyman, N., “Using Monkey Test Tools”, in Software

Testing & Quality Engineering. 2000. p. 18-21

[5] Memon, A.M., M.L. Soffa, and M.E. Pollack,

“Coverage criteria for GUI testing”, in Proceedings of

the 8th European software engineering conference held

jointly with 9th ACM SIGSOFT international

symposium on Foundations of software engineering.

2001, ACM: Vienna, Austria

[6] Memon, A.M., M.E. Pollack, and M.L. Soffa, “Using a

goal-driven approach to generate test cases for GUIs”,

in Proceedings of the 21st international conference on

Software engineering. 1999, ACM: Los Angeles,

California, United States

[7] Paiva, A.C.R., et al. “A Model-to-implementation

Mapping Tool for Automated Model-based GUI

Testing”. in ICFEM'05. 2005

[8] Chikofsky, E.J. and J.H. Cross II, “Reverse Engineering

and Design Recovery: A Taxonomy”, in Software,

IEEE. 1990. p. 13-17

[9] Moore, M.M. “Rule-based detection for reverse

engineering user interfaces.” in Proceedings of the

Third Working Conference on Reverse Engineering.

1996

[10] Mori, G., F. Paterno, and C. Santoro, “CTTE: support

for developing and analyzing task models for

interactive system design.” Software Engineering,

IEEE Transactions on, 2002. 28(8): p. 797-813

Author Profile

<Author Photo>

G.S.DHURGALAKSHMI received the B.Tech degree in

Information Technology from Sona College of Technology in 2013

respectively. Now I am doing M.E. Software Engineering in Sona

College Of Technology.

	PointTmp

