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Abstract 

Industry 4.0 technologies may provide great improvements in the productive environment of continuous 

chemical industries. For example, the availability of real-time data management improves unit operations 

integration in process intensification. This improvements provide increased profitability, safety, 

sustainability and fault prediction capability. However, the sector presents specific obstacles in deploying 

4.0 technologies because of its intrinsic complexity. This paper objective is to identify the sector-specific 

difficulties and Critical Success Factors when implementing Industry 4.0 technologies. A comprehensive 

systematic literature review with content analysis was carried out . Among the emerging necessities 

identified, the need to simplify complex systems and intensify operations is highlighted. The literature also 

converges on the urgency for developing reliable systems for adverse event management and assessment 

models for health, safety and environmental management. This paper is therefore both a tool for managers 

who seek information when implementing 4.0 technologies and researchers who may be looking for new 

topics in this area. Future research opportunities in the area are also presented. 

 

Keywords: Industry 4.0; Chemical Industry; Continuous Processes; Critical Success Factors; 
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1. Introduction 

The fourth industrial revolution is much more than a trend for automation. It is a set of new manufacturing 

practices that utilize the higher communication capacity and storage of large amounts of data, enabled by 

current technological advances. Industry 4.0 aims to develop models, methods and tools appropriate to the 

manufacturing industries (TIGOR et al., 2020;THOBEN et al., 2017) [1], [2] and is, therefore, characterized 

by the advancement of interactions between people, machines and resources, and the subsequent process 

decentralization (NGUYEN et al., 2020; MARTINS et al., 2018; HERMANN et al., 2016) [3],[4], [5].  

 The new technologies that follows Industry 4.0 are based on network communication and data management. 

Information can be obtained from a more volumous, fast and heterogeneous data (Big Data) to generate a 

virtual copy of the production facilities  (PICCIONE et al., 2021) [6]. Cyber-physical systems (CPS) 

monitor the physical processes in real time, through sensors, actuators and simulators, increasing the process 

efficiency through decentralized decision-making (AITHAL, 2020; HERMANN et al., 2016; SHEVTSOVA 

et al., (2020) [5], [7], [8].  In addition, there is a integration of the production systems communicative 

elements (called the Internet of Things, or IoT) synchronized with the data processing generated by the CPS 

(SHEVTSOVA et al., 2020; KAGERMANN et al., 2013) [7], [9]. Industry 4.0 therefore proposes the 

adoption of an infrastructure capable of integrating a manufacturing production line intelligence in real time 

(NGUYEN et al., 2020; KUMAR et al., 2015) [4], [10]. Although Industry 4.0 still needs to better prove its 

benefits to society [11] (KOTYNKOVA, 2017), the number of recent publications on the subject is a 

indicator of its acceptance in the industry. This also shows the academia‟s interest in this promising 

evolution of the industrial environment. Deploying Industry 4.0, however, is often a complex project, 

presenting several obstacles that are characteristic of each manufacturing sector (CHIANG et al., 2017)[12] .  

The continuous chemical industry presents great potential for improvements in the new perspectives of 

Industry 4.0. For example, safe and efficient plant operation requires constant monitoring of thousands of 

process variables that nowadays are still attributed to human operators (SHU et al., 2016) [13]. Industry 4.0 

technologies may help in reducing accidents and preserve the environment (CHRISTOFIDES et al., 2007) 
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[14]. Recent works, like Chiang et al. (2017) [12] and Ji et al. (2016) [15] prove other specific benefits to the 

sector by using Big Data and CPS. Given current optimistic projections, it may seem surprising that there is 

still a lack of literature reconciling these new technologies to the chemical industry (CHIANG et al., 2017) 

[12]. However, this is partially explained obstacles in supply chain interfaces, which limit Industry 4.0 

implementation (SCHLÖGL, 2017) [16]. To improve the field‟s current state-of-art, this article is guided by 

the following research question: "What are the difficulties and Critical Success Factors related to the 

deployment of Industry 4.0 technologies in the continuous process chemical industry?". This paper objective 

is to identify sector-specific difficulties and Critical Success Factors when implementing Industry 4.0 

technologies. For this purpose, a comprehensive systematic literature review with content analysis was 

carried out, showing the sector evolution in the face of Industry 4.0 innovations. The study is therefore both 

a tool for managers to help implementing 4.0 technologies and a research agenda for academics who may be 

looking for new topics in this area.  

 

2. Research Design 

In order to perform our research, we had chosen Google Scholar and Scopus as scientific indexes due to 

their wider coverage. All searches were limited to English, Portuguese and Spanish language filtering, with 

no timespan specification. The definition of the search terms was based on the proposed theme, associating 

each segment of the continuous process chemical industry with industry 4.0 technologies. We constructed 

each search string by combining the main search term "Chemical Industry" and crossing 25 chemical 

industry segments with 19 terms commonly related to Industry 4.0 technologies, resulting in 475 search 

combinations. Table 1 shows the search terms used in the research. 

 

 Table 1: Search terms used in the research. 

Main Search Term Segments Technologies 

 “Fertilizers” 

 

“Industrial gas” 

 

“Petrochemical” 

 

“Plastic industry”  

 

“Resins”  

 

“Rubber” 

 

“Elastomer” 

 

“Synthetic fiber” 

 

“Artificial fiber” 

 

“Big Data” 

 

“Internet of Things” 

 

“Industrial Internet of 

Things” 

 

“Internet of Services” 

 

“Cloud Computing” 

 

“Cyber-Physical 

Systems” 

 

“Additive 

Manufacturing” 

 

“Machine Learning” 

 

“Chemical 

Industry” 

“Pesticides” 

 

“Soap” 

 

“Detergents” 

 

“Cleaning products” 

 

“Cosmetics” 

 

“Augmented Reality” 

 

“Virtual Factory” 

 

“Digital Twins” 

 

“Machine-to-

Machine” 

 

“Human Machine 
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“Perfume” 

 

“Hygiene” 

 

“Paints” 

 

“Varnish” 

 

“Polishes” 

 

“Adhesive” 

 

“Explosive” 

 

“Solvent” 

 

“Dye” 

 

“Chlorine” 

 

“Alkali” 

Interaction” 

 

“Radio Frequency 

Identification” 

 

“Smart Cyber 

Security” 

 

“Blockchain" 

 

“Smart 

Manufacturing” 

 

“Industry 4.0” 

 

“Smart Factory” 

 

 The next steps taken to construct the final sample of articles considered in the systematic literature 

review and the content analysis are summarized in Figure 1. 

 

 
Figure 1: Systematic literature review and content analysis procedures  

 

From the two scientific indexes, a total of 10,173 documents were considered for alignment analysis. From 

this initial sample, papers whose language was incompatible with the adopted criterion were disregarded. 

We also excluded publications whose title and abstract were not related to the theme. As a result, 40 papers 

were obtained that effectively related Industry 4.0 technologies to the continuous chemical industry. These 

papers were then subjected to the "snowball" procedure, which is a form of sample construction using 

bibliographic reference chains and is especially useful for studying certain areas that are difficult to access 

Document search in the indexes, in accordance with the established criteria 

(n = 10,173) 

Alignment analysis to check theme pertinency and language filtering 

(n = 40) 

Sample expasion by "snowball" technique 

(n = 80) 

Classification, organization and content analysis  

(43 theoretical researches, 37 empirical researches) 
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(VINUTO, 2014) [17]. Thus, it was possible to gather a final selection of 80 articles relevant to the theme. 

From this final sample, each publication was read in order to answer the proposed research question. 

3. Results and Discussion 

 From the collected sample we identified both theoretical and empirical researches relating the 

perspectives of Industry 4.0 in the continuous chemical industry. For each article (whether theoretical or 

empirical), we conducted a content analysis searching for Industry 4.0 technologies related to the sector. 

This study revealed a greater trend of publications mentioning Big Data, the Internet of Things, Cloud 

Computing and Cyber-Physical Systems (see Figure 2). Together, these four technologies account for 67% 

of the occurrences.  

 

 

 

Figure 2: Frequency of industry technologies 4.0 within the sample 

 

To understand the role of these technologies in the sector we first discuss the development of Industry 4.0 by 

theoretical articles‟ perspective. Then, we analyse empirical cases to provide a more realistic view on the 

sector particular needs. Next, we compare general and specific challenges when deploying 4.0 technologies. 

Finally, the general and sector-specific Critical Success Factors are investigated. 

3.1 Theoretical Researches  

The analysis of theoretical publications reaffirmed the importance of the four technologies identified in 

Figure 1. For this sector, the need for new computational resources dedicated to the control process was 

already predicted by Ydstie (2002) [18] , who believed that standardization in the communication system 

and simulation as a predictive analytical tool would be fundamental for the new information technologies. In 

this paper the author is firstly identified the integration of physics and communication networks as a 

futuristic perspective in chemical processes control. Following this publication, the number of theoretical 

publications exponentially increases, which can be understood as Industry 4.0 technologies gaining notoriety 

in the sector. Three years after the work of Ydstie, Grossmann (2005) [19] published an article that reached 

a greater visualization of the academic environment. The author identified the benefits to companies 

emerging from the interface of chemical engineering with operational research. Moreover, he asserted that 

the global market scenario would require new manufacturing technologies to preserve competitiveness.  

With reference to both works, Christofides et al. (2007) [14] continued the research in collaboration with 

James Davis, who would become one of the most influent researchers in this area in the next few years. In 

23% 

19% 

14% 

11% 

7% 

7% 

4% 

4% 

4% 
2% 1% 1% 1% 1% 

Big Data

Internet of Things

Cloud Computing

Cyber-Physical Systems

Industrial Internet of Things

Machine Learning

Radio Frequency Identification

Machine-to-Machine

Cyber Security

Human Machine Interaction

Internet of Services

Virtual Factory

Augmented Reality

Additive Manufacturing

Digital Twins
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"Smart Plant Operations: Vision, Progress and Challenges" the authors identified recent developments in 

process control, optimization and monitoring systems. In their conclusions, the authors emphasized the need 

for a coordinated research plan in this area and highlighted the lack of collaboration between academia and 

industry. In 2008, a workshop on manufacturing processes was held, sponsored by the National Science 

Foundation (NSF) and the Smart Process Manufacturing Engineering Virtual Organization (SPM-EVO). 

The workshop purpose was to foster further collaboration, focusing on the study of Industry 4.0 and creating 

a rationale for further research (EDGAR and DAVIS, 2009) [20]. After a period of few specific publications 

on Chemical Industry 4.0, Davis published "Smart manufacturing, manufacturing intelligence and demand-

dynamic performance" with the help of other collaborators (DAVIS et al. 2012) [21]. Over 30% of the 

subsequent work relating Industry 4.0 and the chemical industry cited this article as a reference. It presented 

more mature conceptualizations and definitions, with a greater knowledge about the potential and limitations 

of the emerging communication technologies in manufacturing environments. Davis and Swink (2012) [22] 

also addressed systems that encompass commercial dimensions in comprehensive systems. With the help of 

other collaborators, the authors published an annual review on chemical and biomolecular engineering in 

2015, focusing on the architecture and development of information technology infrastructure sought by 

Industry 4.0 [23]. This article is widely referenced by more recent publications.  

Hao et al. (2015) [24] elaborate on a platform for integrating information on IoT and Cloud Computing 

technologies in the chemical industry. Thieven et al. (2016) [25] evaluated Industry 4.0's main applications 

in the different stages of chemical production. Inaba (2014) [26] presented an integration analysis of a 

refinery in a petrochemical complex. The study concluded on the need for a Big Data and IoT system to 

improve productivity and efficiency. García et al. (2017) [27] proposed vertical integration, which would 

allow access to data at lower cost. Khare and Chin (2017) [28] published the first identified work that used 

the term "Smart Chemical Industry". In the paper, the authors discussed the benefits of using efficient data 

collection as a source of knowledge. Wang et al. (2017) [29] focused on oil and gas storage and 

transportation facilities. The authors researched risk analysis and created a new management model from 

Big Data monitoring. Ge et al. (2017) provided a review of data mining and analysis applications in the 

process industry over the last few decades. He et al. (2017) [30] reviewed the state-of-the-art technology of 

cyber-physical systems. In addition, the authors explored the potential of sensors and IoTs for fabrication 

3.2 Empirical Researches 

In addition to the theoretical researches already presented we identified cases of practical application of 

Industry 4.0 technologies in equipment, simulations or whole industrial plants in the chemical sector. A 

content analysis of the sample showed the interplay between practical approaches of the technologies and 

each chemical segment, shown in Figure 3. 

 

 
Figure 3: Interplay between industry 4.0 empirical studies and chemical sector segments  

 

Big Data technology is the one with the greatest number of industrial applications. This is partially 

explained by companies need to manage a large number of physico-chemical variables, which is a 

characteristic of the sector. It is possible to observe a predominance in the use of Big Data, Machine 
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Learning and IoT by the petrochemical segment. Cloud Computing and Machine-to-Machine association 

with the production of industrial gases is also highlighted. CPS technology has applications in both of these 

segments. Big Data and Cloud Computing are also widely used by different segments. Other less frequent 

technologies, such as RFID and HMI, have already been applied in the industrial saponaceous 

manufacturing segment. The predominance of practical applications of Big Data, IoT, Cloud Computing and 

CPS technologies is consistent with the results presented with Figure 1. This is evidence of the sectors need 

to develop computational tools for data management. Following we discuss the role of each paper in this 

evolution. 

In 2009, Greg Martin published the first work related to the chemical industry's application of 4.0 

technologies: an analysis of the advantages of wireless internet technology in the petrochemical industry. 

The use of wireless internet allows availability of real-time information, new maintenance tools for 

equipment and improvements in security through remote access (MARTIN, 2009) [31]. The next application 

is found in Chang et al. (2011) [32] that implement a human-machine interface based on a small scale 

microprocessor and programmable logic, used in a biomass process, providing excellent supervision 

capacity.  Davis et al. (2012) [21] also provides examples of applications of intelligent manufacturing in 

processes and supply chains. One of these examples was ExxonMobil, which built an outstanding 

information infrastructure in several of its units. Focusing on communication, management and security, the 

company made gains in planning its product portfolio. Natarajan et al. (2012) [33] et al. (2012) proposed a 

system called OntoSafe, that provides the possibility of managing abnormal situations. In 2014, the authors 

brought forward a proposal to apply this multi-agent architecture for the supervision of large-scale plants 

[54]. Another work in the context of management of abnormal situations in the chemical industry was that 

of Rathinasabapathy et al. (2016) [34], which developed a qualitative diagnostic methodology called the 

Causal Link Assessment (CLA).  

More recent publications include Belaud et al. (2014) [35], which introduced a platform for the simulation, 

engineering, 3D visualization and management of Big Data for the chemical industry. Qin (2014) [36] is 

widely cited and proposes a definition of Big Data technology, describing its use and providing perspectives 

for the chemical process industry. Blackburn et al. (2015) [37] proposed a model for demand forecasting 

based on Big Data which proves to be superior to statistical methods, based on historical data from the 

BASF chemical industry. Squire and Song (2014) [38] presented two cases of successful implementation of 

cyber-physical systems in the chemical industry. Responding to technological progress, Ji et al. (2016) [15] 

discussed an intelligent chemical industry model based on CPS. Zhang et al. (2018) [39] presented a strategy 

to improve the operational agility of a refinery from Big Data and Fuzzy Logic. 

Works regarding the petrochemical industry segment, in particular, were published in 2016 and 2017. Yuan 

et al. (2017) [40] and Hassani et al. (2017) [41] provided different views on the application of 4.0 

technologies. Yuan et al. (2017) [40] gave examples of their application and Hassani et al. (2017) [41] 

identified the impact of technological innovation on the oil industry (such as cost reduction, time wasting 

reduction and efficiency gains). Hamzeh (2016) [42] investigated different methods of Big Data analysis 

used in the oil and gas industry, such as Hadoop®, Microsoft® MURA, IBM® InfoSphere® and 

Oracle®.Also noteworthy is Kumar's doctoral thesis (2016) on methane reform, it being a complete work, in 

theory and experimentation. The work arises from Korambath et al. (2014) [43], where the authors 

developed a test prototype for a furnace temperature control model, by combining Cloud Computing and 

online service technologies. In Kumar's thesis (2016) [44], a control survey was presented on the 

temperature profile in an industrial methane reforming furnace. Infrared sensors that produce a large amount 

of data were used for this purpose. The management and utilization of this Big Data provided several 

positive results, including the implementation and monitoring of an Industry 4.0 computing infrastructure. 

The dissemination of his work with the collaboration of other researchers (mainly Michael Baldea and 

Thomas Edgar) inspired the publication of other articles on the subject. These resulted in a framework of 

sensors and models of Computational Fluid Dynamics (CFD) for the control of hydrogen production trials 

(KUMAR et al., 2016a) [45], a prediction model of furnace temperature distribution based on fuel (KUMAR 

et al., 2016b) [46] , the configuration design formulations for the improvement of furnace temperature 

distribution and valve actuation (KUMAR et al., 2016c) [47] and a multi-resolution model for plantwide 

operational optimization (KUMAR et al., 2016d) [48]. The technologies studied in his work concern Big 

Data, Cloud Computing, M2M, and a Virtual Factory. Korambath et al. (2016) [49] and Kumar et al. (2017) 

[50] were also published regarding the reduction of the energy cost of the process.   
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Two papers stand out in environmental sustainability research. Pan et al. (2015) [51] proposed the 

implementation of Industry 4.0 in the design and optimization of Juron Island's eco-industrial park in 

Singapore. Kleinelanghorst (2017) [52] introduced J-Park Simulator (JPS), an eco-industrial virtualization 

that combines Machine-to-Machine (M2M) and mathematical modeling concepts to generate a design 

platform for eco-industrial parks. Sikorski, Haughton and Kraft (2017) [53] are the only authors to explore 

blockchain technology applications, proposing de-centralization as a safety measure for Machine-to-

Machine (M2M) interactions. Through the literature, it is possible to identify cases of the application of Big 

Data with Machine Learning technology (KUMAR et al., 2015) [10]. This is justified by the need for the 

continuous process chemical industry to automate the management of the large amount of physico-chemical 

data collected during the process. In addition, the two technologies can be used to ensure better safety 

protocols for adverse events (NATARAJAN and SRINIVASAN, 2014) [54]. 

The empirical papers and the respective Industry 4.0 technologies is shown in Table 3. 

 

Table 3: 4.0 industry technologies in the continuous processes chemical industry. 

Technology Author/ Year 

Internet of Things  

 

 

 

 

 

 

Big Data 

 

 

 

 

 

 

 

 

 

 

Cyber-Physical Systems 

 

 

 

 

 

Cloud Computing 

 

 

 

 

Radio-Frequency Identification 

 

 

Human Machine Interface 

 

 

Machine Learning 

 

 

Martin, 2009; Wassick, 2009; Zuehlke, 2010; 

Davis et al., 2012; Chung et al., 2014; Kumar et 

al, 2015-2017; Kleinelanghorst et al., 2017; 

Yuan et al., 2017; Hassani et al., 2017; Liu et al., 

2017García et al., 2017; Sikorski et al., 2017 

 

 

Wassick, 2009; Gao et al., 2009; Davis et al., 

2012; Natarajan et al., 2012; Belaud et al., 2014; 

Blackburn et al., 2014; Windmann et al., 2015; 

Pan et al., 2015; Kumar et al., 2015, 2016 (a; b; 

c; d), 2017; Ji et al., 2016; Shu et al., 2016; 

Hamzeh, 2016; Rathinasabapathy, 2016; 

Korambath et al., 2016; Yuan et al., 2017; 

Hassani, et al. 2017; Chiang, et al., 2017; Geng 

et al., 2017; Leeuw, 2017; Zhang et al., 2018 

 

 

Wassick, 2009; Davis et al., 2012; Natarajan et 

al., 2012; Natarajan; Srinivasan, 2014; Squire; 

Song, 2014; Pan et al., 2015; Kumar et al., 2015, 

2016 (a; b; c; d), 2017; Ji et al., 2016; Garcia et 

al., 2017 

 

 

Belaud et al., 2014; Kumar et al., 2015, 2016 (a; 

b; c; d), 2017; Shu et al., 2016; Korambath et al, 

2016; Yuan et al. 2017; Chiang et al., 2017; 

Leeuw, 2017; Luo et al., 2017 

 

Zuehlke, 2010; Chung et al., 2014; Luo et al., 

2017 

 

Zuehlke, 2010; Chang et al., 2011; Chung et al., 

2014; Rathinasabapathy, 2016 

 

Gao et al., 2009; Natarajan et al., 2012; 

Natarajan; Srinivasan, 2014; Windmann et al., 
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Machine-to-Machine 

 

 

 

Virtual Factory 

 

 

Blockchain 

2015; Kumar et al., 2015, 2016 (a; b; c; d), 2017; 

Kleinelanghorst et al., 2017; Korambath et al., 

2016; Geng et al., 2017; Zhang et al., 2018; 

Ragab et al., 2018 

  

Kumar et al., 2015, 2016 (a; b; c; d), 2017; 

Kleinelanghorst et al., 2017; Garcia et al., 2017; 

Sikorski et al., 2017; Ragab et al., 2018 

 

Kumar et al., 2015, 2016 (a; b; c; d), 2017; 

Korambath et al., 2016; Kleinelanghorst et al., 

2017 

 

Sikorski; Haughton; Kraft, 2017 

 

   

In order to better understand the processes of implementing those technologies, we compare in the next 

sections general and specific difficulties in the continuous chemical industry. 

3.3 General Difficulties in Implementing Industry 4.0 Technologies 

According to Piccione (2021) and Helu et al. (2015) [6], [55], the implementation difficulties of Industry 4.0 

technologies can be grouped around resource and training requirements, cyber security risks, physical 

characteristics of the manufacturing environment, and standardization of software interfaces. For von Knop 

(2016) [56], Gezdur and Bhattacharjya (2017) [57] and Nguyen et al. (2020) [4], the deployment of 4.0 

technologies demands cost, time and effort. Bogle (2017) [58], Yuan et al. (2017) [40], and Reitze et al. 

(2018) [59] affirmed that Industry 4.0 should be flexible regarding the market and its demand. Von Knop 

(2016) [56], Gezdur and Bhattacharjya (2017) [57], Isaksson et al. (2018) [60] and Bogle (2017) [58] add to 

this the need to adapt production to consumer desires. In this way, the companies' need to adapt their 

business models was confirmed (identified by Ydstie (2002) [18], Edgar and Davis (2009) [20] and Squire 

and Song (2014) [38]). 

The literature is unanimous in identifying difficulties in managing, analyzing, and using the large amount of 

Industry 4.0 data. For many authors, this difficulty lies in obtaining robustness and reliability of the 

communicative systems (ZHOU et al., 2017; LIU et al., 2017; ISAKSSON et al., 2018) [60], [61], [62]. For 

Zhang et al. (2018) [39] , Yang (2018) [63] and Joly et al. (2018), the challenge was to ensure that the 

system responded in real time. In this sense, Yan et al. (2017) [64]added that another limiting factor is the 

communication capacity of the system, with band availability being a fundamental factor. Chiang et al. 

(2017) [12], Zhang et al. (2018) [39] and Joly et al. (2018) [65] confirmed the need for companies to have 

computational efficiency and broadband availability. Hermann et al. (2016) [5] and Qian et al. (2017) [66] 

further claimed that new technologies require the development of Human-Machine interfaces that facilitate 

user operation. Tigor et al. (2020) [1], Khare and Ching (2017) [28] and von Knop (2016)  [56] and Chiang 

et al. (2017) [12] state that in order for this to happen, the development of specialized labor and technical 

assistance compatible with these innovations is necessary. According to the authors, given the complexity of 

the technologies of Industry 4.0, the required interdisciplinarity of the team must be high. 

Another difficulty, identified by several authors, is coordination with the supply chain (BOGLE, 

2017 [58] ; LEEUW, 2017 [67]; BALDEA et al., 2017 [68]   ; ISAKSSON et al., 2018 [60]) [58], [60]. For 

this, it is necessary to ensure the connection and integration of the operations and software used by suppliers 

and customers (von KNOP, 2016 [56]; BALDEA et al., 2018 [68]). Thoben et al. (2017) [2] and Kusiak 

(2018) [69] agree that the standardizations required for machine connectivity and data integration are the 

major challenges encountered. In addition, the authors stated that ensuring cybersecurity is a continuing 

challenge. In this sense, the guaranteeing of cybersecurity was also identified by Christofides et al. (2007) 

[14]  , Squire and Song (2014), Hermann et al. (2016) [5] and Bogle (2017) [58] and is a concern that 

accompanies the evolution of the fourth industrial revolution.  

 

3.4 Specific Difficulties for the Sector 
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While there are similar challenges across many manufacturing sectors, there are specific difficulties for the 

continuous chemical industry (BOGLE, 2017) [58]. Ydstie (2002) [18] already predicted difficulties of 

technological innovation in the sector, the modeling and transcription of complex systems and the 

integration of control methods with the new information systems. Christofides et al. (2007) [14] identified 

the challenges as comprising the connectivity of the control elements, the real-time response, and the fault-

response system. In agreement with the authors, Bogle (2017) [58] affirmed that the technical challenges 

that confront the development of 4.0 technologies are related to robustness and security, the prediction of the 

properties of the mixtures, and new paradigms of modeling the chemical processes. Detailed modeling and 

transcription of systems should be done where possible and the development of new unit operations, 

products and measurement systems simplify complex systems, allowing process adaptation in the event of 

unavailability of data. The difficulties of 4.0 technology implementation were identified through content 

analysis and are shown in Table 4. 

 

Table 4 - Difficulties in implementing Industry 4.0 technologies in the continuous processes chemical 

industry 

Difficulties Authors / Year 

Model and transcribe 

complex systems 

Ydstie, 2002; Grossmann, 2005; Venkatasubramanian, 2008; 

Wassick, 2009; Zuehlke, 2010; Natarajan et al., 2012; Qin, 2014; 

Windmann et al., 2015; Kumar et al. 2015; Kumar et al., 2016; Li, 

2016; Dai et al., 2016; Shu et. al., 2016; Bogle, 2017; Ge et al., 

2017; Sun et al., 2017; Chiang et al., 2017; Yuan et al., 2017; Zhou 

et al., 2017; García et al., 2017; Liu et al., 2017; Zhang et al., 2018; 

Ragab et al., 2018; Baldea et al., 2018; Joly et al., 2018 

  

Adapt classical 

control methods to 

new information 

systems 

Ydstie, 2002; Natarajan et al., 2012; Korambath et al., 2014; 

Rathinasabapathy et al., 2016; Yuan et al., 2017; Chiang et al., 2017; 

Baldea et al., 2017; Joly et al., 2018; Reitze et al., 2018 

  

Develop reliable fault 

response system for 

high risk processes 

Christofides et al., 2007; Gao et al., 2009; Wassick, 2009; Li; Liu, 

2010; Natarajan et al., 2012; Davis et al., 2012; Qin, 2014; Squire; 

Song, 2014; Luo et al., 2017; Windmann et al., 2015; Dai et al., 

2016; Shu et. al., 2016; Rathinasabapathy et al. 2016; Chen et al., 

2016; Bogle, 2017; Leeuw, 2017; Yuan et al., 2017; He et al., 2017; 

Liu et al., 2017; Yang, 2018; Ragab et al., 2018; Baldea et al., 2018 

  

Create health, safety 

and environmental 

assessment models 

 

Plant modifications 

and production 

interruptions 

Christofides et al., 2007; Edgar, Davis; 2009; Natarajan et al., 2012; 

Belaud et al., 2014; Squire; Song, 2014; Luo et al., 2017; Dai et al., 

2016; Li, 2016; Shu et. al., 2016; Bogle, 2017; Leeuw, 2017; Yuan 

et al., 2017; Khare; Chin, 2017; Qian et al., 2017; Liu et al., 2017; 

Edgar, Davis; 2009; Natarajan et al., 2012; Natarajan; et al., 2014; 

Squire; Song, 2014; Dai et al., 2016; von Knop, 2016; Leeuw, 2017; 

Khare; Chin, 2017; Baldea et al., 2018; Reitze et al., 2018; Isaksson 

et al., 2018; 

  

Develop new 

synthesis processes, 

intensify operations 

and adapt products 

 

Venkatasubramanian, 2008; Baldea et al., 2017; Bogle, 2017; 

Leeuw, 2017; Baldea et al., 2018; Reitze et al., 2018 

Lack of deployment 

success cases 

Christofides et al., 2007; Edgar, Davis; 2009; Montanus, 2016. He et 

al., 2017 
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Modeling and transcribing complex systems: For Yuan et al. (2017) [40], the first challenge was to obtain 

reliable models for chemical processing units, especially for complex reactors. The complexity of mixtures 

and chemical reactions require the ability of mathematical models to consider numerous physicochemical 

properties (BOGLE, 2017) [58]. García et al. (2017) [27] confirmed that converting complex Big Data into 

operational decisions requires new data manipulation and analysis capabilities. Yuan et al. (2017) [40] also 

question whether the industry will trust and adopt the results of improvements. The reliability models of 

chemical systems have limitations under complex conditions. The large volume of data can overwhelm the 

capacity of the analysis system and adversely affect the efficiency of information processing (CHIANG et 

al., 2017) [12]. In addition to this, with the evolution of modern chemical processes, the information 

required for process supervision is distributed from several different sources, which requires effort in data 

management integration (NATARAJAN et al., 2012) [33].  

Adapt classical control methods to new information systems: new control methods need to be developed and 

integrated into real operations at different scales under the effect of different physical phenomena in the 

chemical industry (YDSTIE, 2002) [18]. The combination of different data sources, to draw meaningful 

conclusions through Big Data analysis, is a difficult task (CHIANG et al., 2017) [12]. Korambath et al. 

(2014) [43] stated that the interaction between manufacturing operations and the various alternatives for the 

use of such information is an example of the challenges associated with deploying 4.0 technologies in the 

chemical industry. The industry requires new scalable digital platforms that upgrade the technology levels of 

current instrumentation (Yuan et al., 2017) [40]. 

Develop reliable fault response system for high risk processes: the diagnosis of industrial chemical plants is 

a difficult but necessary task (RATHINASABAPATHY et al. 2016) [34]. The challenge is to analyze the 

process data accurately and quickly so that corrective action can be taken in a timely manner 

(RATHINASABAPATHY et al. 2016). According to Bogle (2017) [58], hazard detection must be 

incorporated directly into the systems because operating close to ideal conditions often overloads the 

operations, resulting in a higher probability of failure. For Khare and Chin (2017) [28], the most important 

aspect in the chemical industry is safety. He et al. (2017) [30] argued that extracting useful information from 

Big Data is a significant challenge for monitoring process failure. Shu et al. (2016) [13] argued that although 

the concept of process failure diagnosis is an old research question, there are still only a few systems 

satisfactorily being applied in actual chemical processes. 

Create health, safety and environmental assessment models: according to Mohan et al. (2021) and 

Liu et al. (2017)  [62], [70], online health, safety and environmental management (HSE) is one of the most 

important requirements of Industry 4.0, as the consumer is increasingly interested in the industry's 

sustainability policies. The authors stated that system reliability is essential in the chemical industry. Shu et 

al. (2016) [13] reaffirmed that timely, reliable and automatic decision-making (which supports operations in 

abnormal situations in chemical processes), is an indispensable cognitive function for the chemical industry 

4.0. According to Natarajan et al. (2012) [33], system reliability is one of the most important factors in 

assessing the health, safety and environmental state of the chemical industry as well as the likelihood of 

completing assigned tasks under certain conditions without failure. For Bogle (2017) [58], specific processes 

that are linked to health, safety, and the environment are critical, and must be properly modeled.  

Modifications to plants and production interruption: The most important aspect in a continuous chemical 

industry is the maintenance of its maximum possible capacity (KHARE and CHIN, 2017) [28]. Natarajan et 

al. (2012) [33] mentioned that despite this, the physical structure of the continuous plant is constantly 

changeable. For example, certain sections of a plant may be removed for weeks or months for routine 

maintenance. Thus, mathematical models must be able to adapt to such changes (NATARAJAN et al., 2012) 

[33]. Edgar and Edgar (2009) [20] identified the main difficulty of the implementation of Industry 4.0 as 

being the interruption of production, which needs to be avoided in continuous processes. Since there is only 

rare quantitative evidence of the economic benefits of deploying 4.0 technologies, the authors also identified 

the need for research in phased deployment, where production disruption is minimized. Thus, change 

management needs to be maintained and documented, especially when it involves industry safety factors 

(SQUIRE and SONG, 2014) [38].  

Unavailability of data: manufacturers face the challenge of improving the existing plants‟ capacity while 

reducing maintenance costs (KHARE and CHIN, 2017) [28]. According to Khare and Chin, both challenges 

have the need to obtain data through instrumentation and to analyse the ata available in real time in 
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common. In addition, for complex systems which has data available on a smaller scale, reliability 

assessment models are vulnerable to system instability (LIU et al., 2017) [62]. Li and Liu (2010) [71] cited 

the low level of availability of information in the logistics of the chemical industry as an example. Hamzeh 

(2016)  [42] added the difficulty of companies working with data from different sources.  

Develop new synthesis processes, intensify operations and adapt products: Bogle (2017) [58] stated that one 

requirement of Industry 4.0 is the industry-to-consumer approach. In this sense, with the advancement of 

chemical process technology, there are possibilities of combining multiple operations in compact unit 

operations, intensifying the operational processes (BOGLE, 2017). Venkatasubramanian (2009) [72] 

identified opportunities for contributing to the fields of new chemical design, creation of specific 

infrastructures, data extraction systems, knowledge management environments and visualization of chemical 

processes.  

Lack of successful deployment cases: the application of the Internet of Things to large numbers of sensors 

and data has not attracted much attention from researchers and industry professionals. One possible reason is 

that the benefits of such applications have not been recognized or tested (HE et al., 2017) [30]. Due to the 

novelty of Industry 4.0 and the lack of proven cases of usage, the operational and monetary benefits of the 

adoption of the elements of Industry 4.0 are still unclear (MONTANUS, 2016) [73]. 

 

3.5 General Critical Success Factors in Implementing Industry 4.0 Technologies 

Critical Success Factors identification allows strategic focus on prospective and corrective actions that 

guarantee the development of a project (COLAUTO et al., 2004) [74]. For Gezdur and Bhattacharjya (2017) 

[57] it must take into account that digital transformation projects can require considerable time and effort.  

Critical Success Factors related to Industry 4.0 implementation includes the need for software connectivity 

and the standardization of communication between machines, integrated with the supply chain (YAN et al., 

2017; IVEZIC et al., 2014 [75]; HELU and HEDBERG Jr, 2015; THOBEN et al., 2017) [2], [64], [75], [76]. 

Another important Critical Success Factors is the computational efficiency and availability of broadband 

(JUNG et al., 2015; LU, 2017) [77]–[79]. Since technologies are dependent on a digital platform and the 

wireless internet, real-time data transmission is dependent on this infrastructure. In relation to data 

management, the literature is convergent in affirming that there is a need to de-centralize analysis and the 

use of Big Data (LU, 2017; JUNG et al., 2015; O'DONOVAN et al., 2015; HELU et al., 2015) [55], [77], 

[79], [80]. In addition, the data store must be protected by a reliable cyber security system (HELU et al., 

2015; KUSIAK, 2018) [55], [69]. 

As far as human resources are concerned, the deployment of 4.0 technologies are also dependent on trained 

and committed employees (HELU et al. 2015; CHOI et al., 2015; THOBEN et al., 2017 [2]; O'DONOVAN 

et al., 2015) [2], [55], [80], [81]. Jung et al. (2015) [77] and Lu (2017) [79] argued that a user-friendly 

interface between digital vehicles and operators is still required. Lu (2017) [79] and Helu and Hedberg 

(2015) [76] stated that there is a paradigm shift of production 4.0, focusing on consumer desire and 

demanding process flexibility in both market and demand. 

  

3.6 Specific Critical Success Factors for the Sector 

The general Critical Success Factors also applies for the chemical industry. Based on the development of 

Industry 4.0, Li (2016) [82] proposed the necessary resources in the petrochemical industry for the new 

industry: data management, real-time response, cyber security, specialized manpower and evolution of the 

Human-Machine interface. Qian, Zhong and Du (2017) [66] presented the three major critical factors within 

China's chemical industrial processes: describe the production process using accurate mathematical models, 

process optimization of a mixed, multi-objective approach, and a method for the optimization of production 

and management decision-making. For Hermann et al. (2016) [5], design principles for Industry 4.0 are: 

interconnection, information transparency, de-centralized decisions and technical assistance.  

 Besides those Critical Success Factors already mentioned, the content analysis conducted points to 

specific factors related to the sector, listed on Table 5 and discussed in sequence.  

 

Table 5 – Specific Critical success factors for the continuous chemical industry 

Critical Success Factor Authors / Year 
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Minimization of plant modifications or 

interruptions in the unplanned production 

process. 

 

 

 

Infrastructure and facilities compatible with the 

requirements of new technologies. 

 

 

 

Reliable adverse event management systems for 

high risk processes. 

 

 

 

 

 

 

Health, safety and environmental assessment 

models. 

 

 

 

Investment in research and development to 

simplify complex systems and intensify 

operations, adapting the process in case of 

unavailability of data. 

 

Reliable data measurement, transmission and data 

collection systems. 

 

 

Detailed modeling and transcription of systems 

where possible. 

 

Natarajan et al., 2012; Natarajan et al., 

2014; Squire and Song, 2014; Leeuw, 

2017; Baldea et al., 2018; Reitze et al., 

2018; Isaksson et al., 2018 

 

Natarajan et al., 2012; Rathinasabapathy 

et al., 2016; Yuan et al., 2017; Chiang et 

al. 2017; Baldea et al., 2017 

 

 

Gao et al., 2009; Wassick, 2009; 

Natarajan et al., 2012; Davis et al., 2012; 

Squire and Song, 2014; Windmann et al., 

2015; Shu et. al., 2016; 

Rathinasabapathy et al. 2016; Chen et 

al., 2016; Leeuw, 2017; Yuan et al., 

2017; Liu et al., 2017; Ragab et al., 

2018; Baldea et al., 2018 

 

Belaud et al., 2014; Squire and Song, 

2014; Leeuw, 2017; Yuan et al., 2017; 

Liu et al., 2017 

 

Baldea et al., 2017; Leeuw, 2017; Baldea 

et al., 2018; Reitze et al., 2018 

 

 

Kumar et al. 2015; Hamzeh, 2016; 

Rathinasabapathy et al. 2016; Chen et 

al., 2016; Liu et al., 2018; Isaksson et al., 

2018 

 

Wassick, 2009; Zuehlke, 2010; 

Natarajan; et al., 2012; Windmann et al., 

2015; Kumar et al. 2015; Kumar et al., 

2016; Shu et. al., 2016; Zhou et al., 

2017; Chiang et al., 2017; Yuan et al., 

2017; García et al., 2017; Liu et al., 

2017; Zhang et al., 2018;  

  

Minimization of plant modifications or interruptions in the unplanned production process: Liu et al. (2017) 

stated that the causes of many major accidents, such as those at Flixborough, Piper Alpha, and Petrobras®, 

originated from changes in the process flow chart, equipment specification, and other key process 

descriptors. Thus, since the continuous chemical industry is under constant modification, the factory's 

control and safety systems must be constantly updated. Dai et al. (2016) concluded that any changes during 

operations should be reflected for the supervision of production in real time. Such change management, 

whether for specialization or reconfiguration of the chemical industry (or even its supply chain) requires an 

additional effort from companies, according to von Knop (2016) [56]. Baldea et al. (2017) [68]affirmed that 

process variability is inevitable and coordination between process control and production scheduling is 

indispensable, utilizing available technology to maximize the production of systems operating in parallel. 

Infrastructure and facilities compatible with the requirements of the new technology: according to Bogle 

(2017), computational methods manipulate multiple stages within the chemical industry supply chain and it 

is necessary to consider the technical constraints of flexible manufacturing at each stage. In this sense, it is 

necessary to incorporate the capacity to deal with uncertainty in demand and production. To this end, the 
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evolution of measurement, transmission and data collection systems should focus on cyber security, data 

quality and speed of its transmission and use (Yuan, Qin e Zhao, 2017 [64]; CHIANG et al., 2017) [12], 

[40]. Baldea et al. (2017) [68] further stated that one of the main ideas in the continuous intelligent chemical 

industry is the connection of operations in parallel. 

Reliable adverse event management systems for high risk processes: for Yuan et al. (2017) [40], within the 

context of Big Data, alarm management, process monitoring, equipment fault diagnosis and human 

behavior, monitoring must be integrated to achieve a reliable and scalable platform. Natarajan et al. (2012) 

[33] confirmed that the detection of abnormalities in the process is essential in order for corrective actions to 

be effective and to maintain the quality of the product, avoid a halt in production and prevent accidents. Li 

and Liu (2010) [71] provided an example of the logistics of safety management of the chemical industry, 

which must necessarily be reliable as it deals with flammable, explosive, toxic and corrosive products. For 

Dai et al. (2016) [83], the goal of new technologies should include the significant reduction of security 

incidents. The need for a robust fault detection system and the minimization of accidents is a consensus 

among the authors, since this is the Critical Success Factor most commonly identified in the literature. 

Health, safety and environmental assessment models: Squire and Song‟s (2014) [38] safety statistics suggest 

that most injuries are the result of violent incidents in the workplace. For Qian et al. (2017) [66], the goal for 

optimal manufacturing in the industrial chemical process is to promote efficient, green and safe production. 

Since Industry 4.0 depends on reliable systems, the health, safety and environmental assessment models 

should be incorporated into the conventional control system (BOGLE, 2017) [58]. Bogle further argued that 

since chemical processes are often at high risk, it is a key aspect to correct mathematical modeling where 

health, safety and environmental issues require accurate predictions. Christofides et al. (2007) [14] argued 

that such measures can also bring great economic benefits, since abnormal situations cause billions of 

dollars in losses annually. Yuan et al. (2017) pointed out that risk assessment should be the first step in 

managing abnormal situations. To this end, Baldea et al. (2017) [68] cited the use of intensification of 

chemical processes in distributed modules as a tool to reduce risks.  

Investment in research and development to simplify complex systems and intensify operations, adapting the 

process in case of unavailability of data: Zhang et al. (2018) considered that Big Data technology offers the 

opportunity to bypass data unavailability and the difficulty of modeling complex systems through the history 

of empirical data. Shu et al. (2016) argued that because of the increasing size and complexity of modern 

chemical processes and the amount of historical data available, historical-based methods show great 

advances in fault diagnosis. For Ge et al. (2017), the modeling, monitoring, prediction and control of data-

driven processes has proven feasible through the use of Machine Learning techniques. Another alternative to 

circumvent the unavailability of data is the design of distributed production modules, through the 

intensification of processes. For Baldea et al. (2017) [68], process intensification also allows the transition 

from batch processes to continuous operation, minimizing process variability and ensuring quality through 

automated systems. 

Reliable data measurement, transmission and data collection systems: for Sun et al. (2017) [84], 

extracting more knowledge and production data information allows an increase in the understanding of the 

dynamics of the system and supports the best operation of the equipment efficiently. Montanus (2016) [73] 

confirmed that this gives rise to opportunities for more efficient and intelligent analyses and better control of 

industrial systems, and may even cause disruptive changes in the way these systems are designed and used. 

However, according to Bogle (2017) [58], although a considerable amount of historical trend data is 

collected in operations, the chemical industry does not incorporate large demand databases directly into its 

control systems. In this sense, Rathinasabapathy et al. (2016) [34] argued that qualitative models have the 

advantage of being rigorous even when there is insufficient data or information, replacing advanced 

instrumentation systems. 

Detailed modeling and transcription of systems where possible: correct descriptions of the productive 

processes are mathematical prerequisites for developing the models (NATARAJAN et al., 2012) [33]. The 

work of Liu et al. (2017) [62] is an example of how mathematical modeling is capable of decreasing the 

complexity of variables in the continuous chemical industry, including human factors, equipment, materials, 

and environmental data. Zhou et al. (2017) [61] saw that the creation of a virtual representation of the 

physical world, through a digital communication platform was a prerequisite for the deployment of 4.0 

technologies. For Windmann et al. (2015) [85], it is fundamental to develop self-learning assistance systems 

that identify relevant relationships by observing the complex manufacturing processes. The authors believe 
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that the Machine Learning technology helps in the detailed modeling of systems in order to automatically 

detect failures, anomalies and the need for optimization. 

  

Conclusions 

This paper objective was to identify sector-specific difficulties and Critical Success Factors when 

implementing Industry 4.0 technologies. For this purpose, a comprehensive systematic literature review with 

content analysis was carried out. This study revealed a greater trend of publications mentioning Big Data, 

the Internet of Things, Cloud Computing and Cyber-Physical Systems. Also, empirical studies are more 

frequent in the segments of petrochemical and industrial gas production.  

Specific difficulties of the sector can be listed as “model and transcribe complex systems”; “adapt classical 

control methods to new information systems”; “develop reliable fault response system for high risk 

processes”; “create health, safety and environmental assessment models”; “plant modifications and 

production interruptions”; “develop new synthesis processes, intensify operations and adapt products”; “lack 

of deployment success cases”.  

Specific Critical Success Factors identified are “minimization of plant modifications or interruptions in the 

unplanned production process”; “infrastructure and facilities compatible with the requirements of new 

technologies”; “reliable adverse event management systems for high risk processes”; “health, safety and 

environmental assessment models”; “investment in research and development to simplify complex systems 

and intensify operations, adapting the process in case of unavailability of data”; “reliable data measurement, 

transmission and data collection systems”; and “detailed modeling and transcription of systems where 

possible”. 

By analyzing the literature, it is also possible to identify several research gaps and the need for future 

studies. The research on retrieval and extraction of useful information associated with Big Data, aiming 

optimization, and control and management, are the topics most widely approached by the publications 

studied. Several authors agree that future research should focus on data quality assessment methods, 

extracted from the process and Big Data cleaning techniques. For complex chemical systems, the data are 

often unavailable. In this sense, it is also necessary to develop models that utilize the history of empirical 

data to overcome the instability of production systems, as well as Big Data storage systems. More recent 

publications claim that the development of enhanced process modules is a promising path for the continuous 

process chemical industry in this new industrial revolution. Research on sensor networks design and 

updating, communication between machines on larger scales, Machine Learning studies updating and the 

development of Blockchain technology has barely been explored, despite having great potential for the 4.0 

revolution. Fault diagnosis is a recurring theme and the study of its application in the chemical industry is 

essential, particularly with regards to the origin of failures. New HSE assessment models, the research of the 

integration of the technologies (before the supply chain) and cybersecurity techniques also should be 

included in this research agenda. The biggest challenge for the development of Industry 4.0 in the chemical 

industry is the need for the scientific community to work in a multidisciplinary way, bringing together 

advances in computer science in data management, production engineering tools, mathematical modeling 

and technical engineering knowledge of chemical processes.  
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