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Abstract

The purpose of this paper is to study the characteristics of blood flow through the multi stenosed

artery under the influence of periodic body acceleration in the presence of magnetic field. A math-

ematical model has been developed by considering blood as an incompressible Casson fluid and

the small blood vessel as a circular tube. The non-linear equations governing the flow are solved

and the effects of magnetic field, the body acceleration of blood on velocity, the volumetric flow

rate in stenotic region and the wall shear stress on the surface of stenosis are obtained by applying

perturbation method. The results are discussed in detail with the help of graphs for the variation

of different flow parameters. Some obtained results of blood flow through a multi stenosed artery

are of appreciable importance in Medical Science.

Keywords: Multi-stenosed artery, Casson fluid, Magnetic field, Body acceleration, Perturbation

method.

Introduction

Stenosis is one of the serious cardiovascular diseases which causes abnormal blood flow in coronary

arteries. Accumulation of fat, cholesterol and cellular waste products on an inner side of the blood

vessels causes the path very narrow which makes blood flow through the blood vessels very difficult.

This is a general reason for cardiovascular diseases especially heart attack, stroke,etc.

A good number of studies have been performed by Lee and Fung[8], Mehrotra et al.[10], Misra and

Chakravarty[11], Young[23] by considering blood as a Newtonian fluid. Various mathematical mod-

els [21] have been developed to possess blood flow in stenosed artery by considering blood as both

Newtonian and non-Newtonian fluid. A mathematical model on pulsatile flow of Herchel-Bulkey fluid
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analyzed by Shankar and Hemalatha[17]. Siddiqui et al.[19] conducted the experiments and suggested

that the behaviour of blood at low shear rate can be described by Casson model. To explain the effects

of stenosis on blood flow in an artery so many investigations have been made by Misra and Verma[12],

Shukla et al.[18]. Pulsatile flow of Casson fluid flow discussed by Chaturani and Samy[3], by treating

the blood as a non-Newtonian fluid. Several researchers have considered blood as a Newtonian fluid

but some have taken it as non-Newtonian, since blood is a suspension of red cells in non magnetic

colourless liquid part Plasma. Halder and Ghosh[7] have investigated Newtonian blood flow through

indented artery under the effect of magnetic field in the presence of erythrocytes. Shah [16] presented a

numerical model to determine the effect of magnetic field on blood flow in an axially non-symmetric but

radially symmetric stenosed artery. Tanwar et al.[20] analyzed the magnetic field effect on oscillatory

arterial blood flow in mild stenosis.

According to physiological importance of body acceleration many investigations have been developed

for blood flow under the influence of body acceleration with and without stenosis. Belardinelli et al.[1]

proposed mathematical models for the various forms of body acceleration. Chaturani and Palanisamy[2]

analyzed the pulsatile blood flow under periodic body acceleration by assuming blood as a Casson fluid.

Elshehawey et al.[6] studied the effect of body acceleration pulsatile flow through porous medium by

treating blood a Newtonian fluid by applying transform method. Then El-Shahed[5] developed this

research to a stenosed porous medium. Nagarani and Sarojamma[13] analyzed the effect of body accel-

eration on pulsatile casson fluid flow through a mild stenosed artery. Mandal et al.[9] developed a two

dimensional mathematical model to explain the effect of extremely imposed periodic body acceleration

on non-Newtonian blood flow through an elastic stenosed artery by assuming blood characterized power

law model. The effect of magnetic field and body acceleration on axial velocity of pulsatile blood flow

in inclined circular tube have been discussed by Sanyal et al.[15]. Das and Saha[4] analyzed about

arterial MHD pulsatile blood flow under periodic body acceleration. Pulsatile flow of couple stress fluid

through porous medium with periodic body acceleration and magnetic field has discussed by Rathod

and Tanveer[14]. Varshney and Agarwal[22] worked on MHD pulsatile couple stress fluid flow through

inclined circular tube with periodic body acceleration.

In view of the above, a mathematical model is developed to study the characteristics of blood flow

through a multi-stenosed artery under the influence of periodic body acceleration in the presence of

magnetic field. The blood is modeled as a casson fluid and the small blood vessel as a circular tube.

By applying perturbation method, the effect of magnetic field, the body acceleration of blood on veloc-

ity, the volumetric flow rate in stenotic region and the wall shear stress on the surface of stenosis are

obtained and shown graphically for the variations of different flow parameters.

Mathematical Formulation
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Let us consider the motion of blood in a multi-stenosed artery under the influence of periodic body

acceleration in the presence of external magnetic field. The geometry of stenosis in dimensionless form

is as shown in Fig(1), which is given by

R(z) = 1− c[Ls−1
0 {(z − d)− (z − d)s}]; d ≤ z ≤ d+ L0 (1)

= 1 otherwise;

where, L0 is the length of stenosis, d denotes the position of stenosis, and c is a parameter which is

given by

c =
δ

R0(L0)s
(2)

where, s is a parameter determining the shape of stenosis, R0 is the radius of normal artery and δ be

the maximum height of the stenosis at

z = d+
L0

s
1

s−1

(3)

such that δ
R0

<< 1. To develope this mathematical model, let us assume that the blood flow is

axially symmetric and fully developed flow which is flowing along z-direction only in a circular tube of

uniform cross section. Since the red blood cell is a major biomagnetic substance, considering the blood

as a magnetic fluid and hence the magnetization will form a rotational motion related to magnetic field

with magnetic fluid particles.
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Figure 1: Geometry of Artery with multiple stenoses
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The periodic body acceleration and the pressure gradient in axial direction are respectively given by

F (t′) = a0 cos(ωb.t
′) (4)

and

−∂p′

∂z′
= A0 +A1 cos(ωp.t

′) +B1 sin(ωp.t
′) (5)

where, A0 and A1 are the steady component of pressure gradient and amplitude of oscillatory part

respectively. Both A0 and A1 are the functions of z. ωp = 2 π fp; ωb = 2 π fb , where fp and fb

represents frequency of pulse and body acceleration respectively. Also, a0 is it’s amplitude.

The specified momentum equation for the flow in cylindrical polar co-ordinate system is given by

ρ′ · ∂u
′

∂t′
= −∂p′

∂z′
+

1

r′
· ∂

∂r′
(r′τ ′c) + F (t′) + µ0M

∂H ′

∂z′
(6)

∂p′

∂r′
= 0 (7)

where, r′ and z′ denote the radial and axial co-ordinates respectively. ρ′ denote density, p′ pressure

and τ ′c is the shear stress. µ magnetic permeability, M magnetization, H ′ magnetic field intensity,

u′ axial velocity of blood, and t′ is the time. For Casson fluid the relation between shear stress and

shear rate is given by

τ
′
1

2

c = τ
′
1

2

0 +

[

µ (−∂u′

∂r′
)

]
1

2

if τ ′c ≥ τ ′0 (8)

∂u′

∂r′
= 0 if τ ′c ≤ τ ′0 (9)

where, τ ′0 represents the yield stress and µ is the viscosity of blood.

The boundary conditions are

u′ = 0 at r′ = R′(z) (10)

τ ′c is finite at r′ = 0 (11)

In core region, u′ = u′

c at r′ = R′

c (12)

Introducing the dimensionless quantities as follows:

u′ =
A0R

2
0u

4µ
; z′ = zR0; r′ = rR0; R′ = RR0; δ′ = δR0; t′ =

t

ωp

; ω =
ωb

ωp

; (13)

B =
a0

A0
; e1 =

A1

A0
; e2 =

B1

A0
; H ′ = HH0; τ ′c =

A0R0τc

2
; and α2 =

ρR2
0ωp

µ
.

Here, α is called Womersley parameter.

The dimensionless momentum equation (6) becomes

α2 ∂u

∂t
= 4[1 + e1cost+ e2sint+Bcos(ωt)] +

2

r

∂

∂r
(rτc) +

4µ0MH0

A0R0
· ∂H
∂z

(14)
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Equation (8) and (9) can be written as

τ
1

2

c = τ
1

2

0 +
1√
2
(−∂u

∂r
)

1

2 if τc ≥ τ0 (15)

∂u

∂r
= 0 if τc ≤ τ0 (16)

The boundary conditions (10),(11) and (12) reduce to

u = 0 at r = R(z) (17)

τc is finite at r = 0 (18)

In core region, u = uc at r = Rc (19)

Method of Solution

Applying perturbation method, the velocity u, and shear stress τ are expanded as follows:

u(z, r, t) = u0(z, r, t) + α2u1(z, r, t) (20)

τc(z, r, t) = τc0(z, r, t) + α2τc1(z, r, t) (21)

Substituting the equations (20) and (21) in equation (14) and equating the constant terms and

α2 terms, we get

∂

∂r
(r · τc0) = −2f(t) · r − 2µ0MH0

A0R0
· ∂H
∂z

· r (22)

∂u0

∂t
=

2

r

∂

∂r
(r · τc1) (23)

where, f(t) = 1 + e1cost+ e2sint+Bcos(ωt).

Integrating equation (22) and applying the boundary condition (17), we get the relationship

τc0 = −g(t) · r (24)

where, g(t) = 1 + e1cost+ e2sint+Bcos(ωt) + F · ∂H
∂z

(25)

Substituting the equations (20) and (21) in equation (15) and equating the constant terms and α2

terms, we get

−∂u0

∂r
= 2τc0 + 2τ0 − 4

√
τc0 · τ0 (26)

−∂u1

∂r
= 2τc1

[

1−
√

τ0

τc0

]

(27)

Integrating the equation (26), using the relation (24) and applying the boundary condition (17), we get

u0 = g(t)R2

[

1− (
r

R
)2 − 8k

3
√
R

{

1− (
r

R
)
}

3

2

+
2k2

R

{

1− (
r

R
)
}

]

(28)
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where, k2 =
τ0

g(t)
and R denotes R(z). (29)

The plug core velocity u0p can be obtained from equation (28) as

u0p = g(t)R2

[

1− (
R0p

R
)2 − 8k

3
√
R

{

1− (
R0p

R
)

}
3

2

+
2k2

R

{

1− (
R0p

R
)

}]

(30)

Similarly, the solution for u1 becomes by integrating the equation (27) and applying the boundary

condition(17) as follows:

u1 =
g′(t)R4

16

[

(
r

R
)4 − 4(

r

R
)2 + 3 +

k√
R

{

16

3
(
r

R
)2 − 424

147
(
r

R
)

7

2 +
16

3
(
r

R
)

3

2 − 1144

147

}

(31)

+
k2

R

{

128

63
(
r

R
)3 − 64

9
(
r

R
)

3

2 +
320

63

}]

From the equation (20), the velocity expression becomes

u = g(t)R2

[

1− (
r

R
)2 − 8k

3
√
R

{

1− (
r

R
)
}

3

2

+
2k2

R

{

1− (
r

R
)
}

+
α2R2c

16

(

(
r

R
)4 − 4(

r

R
)2 + 3 (32)

+
k√
R

{

16

3
(
r

R
)2 − 424

147
(
r

R
)

7

2 +
16

3
(
r

R
)

3

2 − 1144

147

}

+
k2

R

{

128

63
(
r

R
)3 − 64

9
(
r

R
)

3

2 +
320

63

})]

where, c = g′(t)
g(t)

On applying perturbation method in the equations (26) and (27) using the boundary condition (18),

the wall shear stress can be written as

τc = g(t)R

{

1 +
α2R2c

8
(1− 8k

7
√
R
)

}

(33)

The volumetric flow rate Q is given by the equation

Q = 4

∫

r · u(z, r, t) dr (34)

Integrating the equation (34) and applying the boundary condition (18), the volumetric flow rate Q can

be written as

Q = g(t)R4

[

1

4
− 4

7
(

k√
R
) +

1

3
(

k√
R
)2 +

α2R2c

16

{

2

3
+

120

77
(

k√
R
) +

32

35
(

k√
R
)2
}]

(35)

Numerical Results and Discussion

The objective of this investigation is to study the blood flow through a multi-stenosed artery under

the action of periodic body acceleration as well as an external magnetic field by modeling blood as

a Casson fluid. The relevant computational work has been performed for some specific cases using

available experimental data.

7



 


-
2


-
1


0


1


2


3


4


5


0
 0.2
 0.4
 0.6
 0.8
 1
 1.2


u


z


Velocity Profile


B=0


B=1


B=2


Figure 2: Variation of axial velocity along z-axis for different values of body acceleration B
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Figure 3: Variation of axial velocity along z-axis for different values of magnetic field gradient H
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Figure 4: Variation of axial velocity along z-axis for different values of time t
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The axial velocity profile is computed by using the velocity expression (32) for different values of

periodic body acceleration B, the induced magnetic field gradient H = dH

dz
and the variation of time

t. Hence, we can control the process of flow. From Figures (2) and (3), we notice that when the body

acceleration and the magnetic field gradient increases, the amplitude of axial velocity also increases.

Figure (4) shows that by increasing time t, the amplitude of axial velocity decreases.
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Figure 5: Variation of volumetric flow rate along z-axis for different values of magnetic field gradient H
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Figure 6: Variation of volumetric flow rate along z-axis for different values of time t
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Figure 7: Variation of wall shear stress along z-axis for different values of magnetic field gradient H
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Figure 8: Variation of wall shear stress along z-axis for different values of time t
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Figure 9: Variation of axial velocity along z-axis for different values of height of stenosis

The volumetric flow rate Q of blood has been computed by applying the equation (35) for different

values of magnetic field gradient H and the variation of time t. From figures (5) and (6), it is observed

that the volumetric flow rate along z-axis increases by increasing the magnetic field gradient H whereas

it decreases with increasing of time t.

The wall shear stress τc has been computed by using the equation (33) for different values of magnetic

field gradient H and the variation of time t. From figures (7) and (8), we notice that the wall shear stress

τc along z-axis increases by increasing magnetic field gradient H whereas it decreases by increasing time

t like the effect of volumetric flow rate.

Figure 9 illustrates that when the height of stenosis is greater than the length of the stenosis then

flow of blood decreases and when δ = 0.4 which is nearly half the radius of the tube, then there is a

reverse flow of blood. From Fig.10, we notice that when the length of the stenosis is greater than the

height of the stenosis then flow of blood increases and when L0 = 0.5, there is a reverse flow of blood.
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Figure 10: Variation of axial velocity along z-axis for different values of length of stenosis

Conclusion

The non-linear equations governing the flow are solved by applying perturbation method. We can

conclude that

• The amplitude of axial velocity increases by increasing periodic body acceleration B.

• By increasing the induced magnetic field gradient H, the amplitude of axial velocity also increases.

But decreases by increasing the time t.

• The volumetric flow rate and wall shear stress of stenotic region increases by increasing the

magnetic field gradient and shows a decrease by increasing time t.

. The results obtained in this paper can be applied to the pathological situations of blood flow in

stenosed arteries when fatty plaques of cholestrol and artery blocking blood clots are formed in the

lumen of the coronary artery.
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