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Abstract: 

This study aimed to investigate the spatial autocorrelation between precipitation and vegetation indices in 

the Bandar Abbas basin. For this purpose, the vegetation indices of DVI, EVI, IPVI, NDVI, NDWI, 

RVI,SAVI, TCI, VCI, and VHI were derived from Landsat satellite images over 20 years were studied. 

Precipitation data corresponding to rain gauge stations was extracted. The Pearson correlation coefficient 

and the GI * and I indices were used to investigate the relationship between precipitation and spatial auto 

correlation. Moreover, the Pearson correlation coefficient was used to investigate the relationship between 

precipitation and vegetation indices, and the GI * and I indices was used to correlate spatial 

autocorrelation patterns. The results showed that SAVI, VHI, VCI, and NDWI were most correlated with 

precipitation among the Bandar Abbas basin's vegetation indices, with the SAVI index being more close 

lycorrelated than the others. However, precipitation had the least impact on the TCI index. The spatial 

autocorrelation of rainfall with the vegetation indices, except for the IPVI index, had a scattered pattern in 

the study area’s southern and eastern parts. Of the indices studied in terms of spatial pattern, the IPVI and 

NDWI indices formed a positive spatial correlation pattern with precipitation over a greater spatial range.  

 

Keywords: Vegetation indices, spatial autocorrelation pattern, GI * and I indices, Pearson correlation 

coefficient, Bandar Abbass 

Introduction 

In the international approaches to vegetation to estimate agricultural production at regional and national 

levels is the use of remote sensing technology. According to Carvalho et al, (2008), remotely sensed data is 

a regular source of information and it is important for the systematic monitoring of the vegetation dynamics. 

The results of the findings suggest that climate change, especially rainfall reduction and increasing 

temperatures around the world, has led to the loss of forest cover (Azizi et al. 2015; Thiele et al. 2017). One 

of the important parts of land cover is Vegetation, which plays a very important role in conserving soil, 

regulating the atmosphere, and maintaining the stability of the ecological system. (Ding, 2016; Liu and Fu, 

2013). Remote sensing serves as an ideal tool for this purpose. The Normalized Difference Vegetation Index 

(NDVI), derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data, can capture the 

surface vegetation greenness and coverage (Yengoh et al, 2015), and therefore has been widely used in 

vegetation dynamics monitoring (Bing et al, 2014; Lin et al, 2020). The satellite Landsat-8 has been 

equipped with two sensors: The Operational Land Imager (OLI), designed in order to operate in continuity 

with TM and ETM+; and the Thermal Infrared Sensor (TIRS), which features two bands in the thermal 

infrared region. The OLI sensor includes enhanced bands due to new linear detector arrays which collect 

images in a push-broom scanner mode providing a better signal with a high signal-to-noise ratio, compared 

to the previous whiskbroom scanner-based sensor (Irons et al, 2012). The main differences between OLI and 
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previous TM and ETM+ sensors refer not only to the overall image quality but also to the different number 

of spectral bands, their width and their spatial resolutions (USGS, 2019). In general, in order to access 

vegetation information, it is possible to combine at least two bands in satellite images and create a composite 

index called vegetation index. Vegetation indices are widely used as criteria for analyzing land cover 

changes including vegetation and other factors (Kazeminia 2018). Mokarm et al. (2017) investigated 

changes in vegetation cover in different seasons using satellite imagery and its relationship with temperature 

changes. The vegetation indices NDVI, RVI, SS, and VIN were used to examine the study area's vegetation. 

Regression analysis was used to investigate the relationship between the vegetation indices and temperature. 

The correlation and linear regression results showed a significant relationship between the vegetation indices 

and temperature almost in the entire study area (above 90%). The vegetation indices decreased by increasing 

temperature. The results also showed that among the vegetation indices, NDVI was more accurate in 

predicting vegetation cover. Karimi et al. 2020, analyzed the performance of plant indicators in agricultural 

drought using remote sensing method in the Karkheh basin. For this purpose, used of NDVI, EVI and VCI 

vegetation indices in agricultural drought identification and analysis. The results showed that the changes of 

NDVI, EVI and VCI in the studied stations were approximately the same during the statistical period. Then, 

in order to validation of the results, the vegetation indices with the ZSI index were evaluated. Pearson 

correlation between mean vegetation indices of NDVI, EVI and VCI with mean ZSI was 0. 766, 0. 725 and 

0. 776, respectively, and all vegetation indices with ZSI index are significant at 0. 99% confidence level. As 

seen, according to the results, the ZSI index confirms the results of NDVI, EVI, and VCI. So, according to 

the results, there is no conformity of meteorological and agricultural droughts in all years, Therefore, in 

addition to other precipitation, climate variables should also be considered. The difference vegetation index 

is used to distinguish between soil and vegetation; however, it does not take into account the effect of 

atmosphere reflectance or shadows (Naji 2018). VHI is a widely used remote sensing-based drought index 

designed as the weighted sum of two components: The Vegetation Condition Index (VCI) and the Thermal 

Condition Index (TCI). The first component characterizes moisture conditions and is typically based on 

information from the visible and near infra-red windows of the electromagnetic spectrum, whereas the latter 

characterizes the thermal condition and is based on information from the thermal infra-red window. The 

Normalized Difference Vegetation Index (NDVI) and LST (or TOA brightness temperature) are commonly 

used to estimate VCI and TCI, respectively. The optimum weights that are to be attributed to VCI and TCI 

are usually not known and VHI is typically estimated by assuming equal weights of 0.5 to both components 

(Virgílio et al, 2018). The NDWI, based on the combination of the green band with NIR or SWIR, is a good 

indicator for vegetation liquid water content and in the same time is less sensitive to atmospheric scattering 

effects than NDVI (Gao, 1996). Its usefulness for drought monitoring and early warning has been 

demonstrated in different studies (Gu et al, 2007; Ceccato et al, 2002). The EVI (Enhanced Vegetation 

Index) represents an improvement of NDVI, showing a reduced saturation in high vegetation cover regions, 

a reduction in atmospheric influences and a de-coupling of the canopy background signal (Xiao et al, 2006). 

These improvements are based on the introduction of the blue band to reduce the effects of the atmospheric 

aerosols in the red band, and on some correction coefficients to reduce the effect of soil reflectance. 

According to these differences, the NDVI is more sensitive to the chlorophyll content, whilst the EVI is 

more sensitive to the structural characteristics of the vegetation cover (Solano et al, 2010). Thus, it has been 

widely used for Land Cover and Land Use/Land Cover Change detection (Wardlow et al, 2007), for the 

evaluation of vegetation bio-physical parameterization (Houborg et al, 2007), phenology (Ahl et al, 2006), 

evapotranspiration (Nagler et al, 2005), biodiversity assessment (Waring et al, 2006), and gross primary 

production (Sims et al, 2008). The SAVI (Soil-Adjusted Vegetation Index), proposed by Huete (Huete et al, 

1996) reduces the effects of soil on vegetation reflectance (Miura et al, 2000). The DVI index ranges from 1 

to 0 for marine and non-vegetated areas and from 0 to 0.07 for unhealthy vegetation and from 0.07 to higher 

value (often 1) for areas with healthy plants (Vani, Mandla 2017). SAVI index solves this problem in the 

NDVI index. This index uses a factor called L to moderate the effect of background soil. The amplitude of 

changes in the SAVI index for aquatic and non-vegetated areas is the same as for the NDVI index from 1 to 

0, for areas with unhealthy vegetation from 0 to 0.15 and for areas with healthy vegetation from 0.15 to 1; 

by the way, L factor is set at 0.5 (Vani, Mandla 2017). This parameter reduces the field-effect index and 

reflects a lower plant cover percentage (Ghavidel et al, 2021). The normalized difference index vegetation 

indicates how many green leaves exist (Robinson et al. 2017). The NDVI index ranges for aquatic or non-

vegetated areas (mountains or boulders) from –1 to 0, for areas with unhealthy or contaminated vegetation 
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from 0 to 0.33 and for areas with healthy plants from 0.33 up to 1 (GIS Geography 2019). The main 

objectives of this study analyzes vegetation dynamics and their responses to precipitation in time series of 

NDVI derived from Landsat TM, ETM +, and OLI satellite data from 1998 to 2017. It has two major 

objectives: (1) analyze the temporal variation and spatial heterogeneity of precipitation in the Bandar abbass 

from 1998 to 2017; (2) Quantitatively analyze the response of vegetation to precipitation and the difference 

in vegetation response.  

 
Data and methodology 

Study area 

The Bandar Abbas area with an area of 1405.5 km2 is the Hormozgan capital city, (Figure 1). Characterized 

by a typically arid continental monsoon climate, Rainfall distribution in the study area is not uniform and is 

a schema with 152.9 mm of average annual rainfall data, that more than 77% occurs in the rainy season 

(autumn and winter) causing severe soil erosion. the location of the case study showed in figure 1. 

 

 

Fig 1: View of study area in Iran country and Hormozgan province 

 

Methodology 

In this study, to prepare satellite images from regions covered, the Earth Explorer 

(https://earthexplorer.usgs.gov/) and the images taken from Landsat 8 satellite with a spatial resolution of 

less than 30 m were used. In this study, images taken from 1998 to 2017 were used. It is reported that with 

the transformation of grey to high atmosphere reflectance, the quality level for water and soil classification 

could be promoted dramatically (Maglione et al. 2013). In this study, the radiometric detection of the Land 

sat 8 satellite was performed by converting the grey level of each image pixel to high atmosphere reflectance 

values using metadata. To determine the mean value of each index at the area level, the histogram was used. 

Also, the area for each class was calculated using pixel number multiplication. Finally, we used the ArcMap 

software (https://desktop .arcgis.com /en/ arcmap/) to get the job done. (Safari et al. 2018). Hence in this study, 

used Rainfall data for 30 rain gauge stations and Landsat TM, ETM +, and OLI satellite data from 1998 to 

https://desktop/
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2017 to investigate the spatial autocorrelation relationship between precipitation and vegetation indices in 

the Bandar Abbas-Sadiq basin. 

Vegetation Indices 

The ETM+ and OLI derived vegetation indices used for the comparative analysis are reported in Table 1. 

Therefore, extracted the vegetation indices DVI, EVI, IPVI, NDVI, NDWI, RVI, SAVI, TCI, VCI, and VHI 

corresponding to the 30 rain gauge stations over 20 years from 1998 to 2017. In this study, according to the 

necessity of studying the vegetation cover for determining the of the studied areas, the following indices 

difference vegetation index (DVI), normalized difference vegetation index (NDVI), soil adjusted vegetation 

index (SAVI), Enhanced Vegetation Index (EVI), and plant health index (PHI) were used. Table 1 gives the 

general explanation of these indices. These indices have their own biologically motivated definitions, for 

example NDVI for a given pixel always results in a number that ranges from –1 to +1; in which no green 

leaves give a value close to zero. A zero means no vegetation, however a high NDVI value, +1 (0.8‒0.9) 

indicates healthy vegetation and a low NDVI value, –1 indicates less or no vegetation. These indices would 

help to develop a method for measuring plants in different conditions (Ghavidel et al, 2021). 

Table 1: The vegetation indices used in the study 

Vegetation 

index name 

Abbrevi

ation 

Presenter The year of 

introduction 

Formula 

Normalized 

Difference 

Vegetation 

Index 

NDVI Rouse 1972 
     

       

       
 

Enhanced 

Vegetation 

Index 

EVI Huete and  

Justice 

1999 
    

         

                    
  

    

Soil Adjusted 

Vegetation 

Index 

SAVI Huete 1988 
     

     

       
      

Ratio 

Vegetation 

Index 

RVI Jordan 1969 
    

   

   
 

Normalized 

Difference 

Water Index 

NDWI Gao and Bo-

Cai 

1996 
     

        

        
 

Difference 

Vegetation 

Index 

DVI Richardson and 

Everitt 

1992             

Infrared 

Percentage 

Vegetation 

Index 

IPVI Crippen 1990 
     

        

 
 

   

        
 

Temperature 

Condition 

Index 

TCI Kogan 1997 
     

       

         

     

Vegetation 

Condition 

Index 

VCI Kogan 1997 
    

               

                 
     

Vegetation 

Health Index 

VHI Kogan 1997 
    

 

 
    

 

 
    



Mehran Safa, IJSRM Volume 09 Issue 12 December 2021 [www.ijsrm.in] FE-2021-203 

 

After preparing a database of precipitation and vegetation indices, the Pearson correlation coefficient was 

used to evaluate the degree of correlation (invariance), and the Hotspot Spatial Autocorrelation Index (GI *) 

and the Moran’s Index (I) were used to correlate the spatial pattern. The GI * index measures the degree of 

correlation resulting from the concentration of well-proportioned points (or the area by well-proportioned 

points) and all well-proportioned points within the radius d of the turning point. This index is an 

appropriate criterion to assess the dependence of points. In 1992, Gates and Ord proposed the G and G * 

statistics to measure spatial correlation in multiple states. The Gi (d) statistic is calculated using the 

following equation (Gates & Ord, 1995): 

(1)       
∑          

∑    
         

Where wij (d) is proportional to the spatial weight matrix of one or zero. The expression will be one if the 

point is within the interval distance (d) intended for the point i. In the G index, the relation of each point to 

itself is considered zero. The sum of weights is written as follows: 

(2)     ∑       
   

 

The sigma counter operator in the equation (1) is the sum of all xj within the radius d of the point i. It 

should be noted that xi itself is not considered. In the denominator, the resulting fraction is the sum of all xj, 

regardless of xi. The mean and diffraction for the point i will be obtained using the following equations: 

(3)  
      

∑   
  

     
   ̅       ̅  

∑    

     
 

Moreover, Gi diffraction can be obtained using the following equation: 

(4) 
        

          

           
[
    

 ̅   
]
 

 

G and G * values are standardized using the statistical method Wi/(n-1) and its second root diffraction 

calculation. 

(5) 
      

∑              ̅   

    {[(        )    
 ]      }

 
 

      

If we consider the weight of the point i (wii≠0), the standardized G * statistic will be obtained using the 

following equation (Fischer and Wang, 2011): 

(6) 
  

     
∑             

  ̅

    {      
     

         }
 
 

      

In the equations (6) and (7),   
         and     ∑    

 
 , where j ≠ i and    

  ∑    
 

  where j = i, 

  ̅and s
2
 represent the mean and diffraction of the sample, respectively. The standardized G and G * values 

are interpreted based on the Z-score table. The G * index was used in this study (Ord & Gates, 1995). 

Spatial autocorrelation analysis can reveal the correlation between a certain regional unit in terms of 

common geographic features or attribute values (Syed et al, 2004; Diouf and Lambin, 2001) and can be 

analyzed from global and local perspectives. The commonly used spatial autocorrelation measure indexes 

are Moran’s I value and Local indication of spatial association (LISA) value. Global Moran’s I can reveal 

the global spatial correlation of vegetation coverage. Local Moran’s I index can reveal the local spatial 

aggregation characteristics of vegetation coverage in the case study. Its essence is that the index is high, 

indicating similar spatial unit aggregation; otherwise, it indicates different spatial unit aggregation (Jian et 

al, 2015; Jiang et al, 2014). This analysis evaluates the pattern of distribution in space with simultaneous 

consideration of locations and features. The analysis results show whether the effects have random, 

dispersed, or clustered distribution in space. The tool calculates the Moran’s index and evaluates the 
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significance of the calculated index using the standard scores of Z and P values. Table 2 according to 

significance levels classified z score and p-value. The Moran's index for spatial autocorrelation is calculated 

as follows (Anselin, 1995): 

(7) 
   

    ̅

  
 ∑              ̅ 

 

       

 

Where xi is the amount of precipitation on the cell i, x is the mean rainfall on the cell, and the cells are 

adjacent to the cell d.  

Table 2 Critical z-scores, p-values, and significance levels. 

z-score p-value Confidence level 

z-score < −1.65 or z-score > +1.65 <0.10 90% 

z-score < −1.96 or z-score > +1.96 <0.05 95% 

z-score < −2.58 or z-score > +2.58 <0.01 99% 

 

In this study, distance (d) was considered 14 km, and wi,j is the cell's spatial weight between i and j. Also,   
  

is calculated using the equation (8): 

(8) 
  

  
∑       

 
       

   
  

 
 

Where n is equal to the number of cells in the interval d. The standard zIi score is obtained using the 

equation (9): 

(9) 
    

   

√     
 

In the above equation, V[Ii] is calculated using the following equation: 

(10) 
      

∑   
       

   
             

       
      

Results  

In the first, Geometric corrections and necessary radiometric and atmospheric corrections were applied to 

the corresponding images, and then the indices’ time series were generated, as shown in Figure 2. 



Mehran Safa, IJSRM Volume 09 Issue 12 December 2021 [www.ijsrm.in] FE-2021-205 

 

Fig 2: The vegetation indices in the study area 

 

The results of how the correlation between precipitation and the vegetation indices is spatially distributed 

shown in figure 3. According to these results, Precipitation was poorly correlated with the vegetation indices 

DVI and EVI, except for a limited range elsewhere. For example, the correlation coefficient between 

precipitation and the vegetation index DVI was between 0.26 and 0.36 in 17.7% of the study area (Table 3). 

A survey of precipitation variability with the EVI indicated that 27% of the study area, comprising mainly 

the east and small parts of the southwest, had a correlation coefficient between 0.28 and 0.38. The spatial 

variability of precipitation with the vegetation index IPVI showed that unlike the vegetation indices DVI and 

EVI that had the highest relationship with precipitation in the eastern and southern regions of the study area, 

the vegetation index IPVI had the highest relationship with precipitation in the northern. In this index, about 

57% of the study area had a correlation coefficient between 0.2 and 0.4. Moreover, 19.5% of the study area, 

covering mainly the northern region, had a correlation coefficient between 0.4 and 0.5 (Table 3). In the 

vegetation index NDVI, the coefficient of interchangeability of precipitation with this index was weak in all 

regions of the study area, except in the southeast. 
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Fig 3: The spatial distribution of the correlation between precipitation and the vegetation indices 

In the vegetation index NDVI, most of the study area had a correlation coefficient between 0.1 to 0.16. The 

spatial variability of precipitation with the vegetation index NDWI was approximately similar to that with 

the vegetation index DVI, with the difference that the coefficient of precipitation variability was higher with 

the vegetation index NDWI than with the other index. The range of variability of precipitation with this 

index was from 0.1 to 0.56 (Fig 3). However, in the vegetation index NDWI, most of the area (59.2%), 

which covers mainly the Northern half of the study area, had a correlation coefficient between 0.11 and 

0.26. The spatial distribution of the correlation between precipitation and the RVI index indicated that the 

spatial variability of precipitation with this index was mainly related to the southeast and west of the study 

area. In this index, 40.4% of the study area had a coefficient between 0.22 and 0.32, while only 3.9% of the 

study area had a correlation coefficient above 0.42 (Table 3). 

Table 3: Classes of the correlation coefficient between precipitation and the vegetation indices 

indeice    class   Percentage indeice           class Percentage 

IPVI 0-0.1 7 RVI 0.02-0.12 8.9 

0.1-0.2 15.1 0.12-0.22 36.1 

0.2-0.3 29.8 0.22-0.32 40.4 

0.3-0.4 28.5 0.32-0.42 10.7 

0.4-0.5 19.5 0.42< 3.9 

EVI 0.02-08 10 NDWI 0.04-0.11 18.4 

0.08-0.18 28.2 0.11-0.26 59.2 

0.18-0.28 28.5 0.26-0.41 17.6 
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0.28-0.38 27 0.41-0.56 4.7 

0.36< 6.2 0.56< 0.1 

DVI 0.04-06 10.4 NDVI 0.04-0.06 6.9 

0.06-0.16 34.8 0.06-0.16 37 

0.16-0.26 35.5 0.16-0.26 35 

0.26-0.36 17.7 0.26-0.38 10.7 

0.36< 1.6 0.38< 9.9 

TCI 0.01-0.11 57.4 SAVI 0.02-0.15 9.2 

0.11-0.21 31.4 0.15-0.35 23.9 

0.21< 11.2 0.35-0.55 28.6 

  0.55-> 38.4 

VHI 0-0.15 33.7 VCI 0.-0.2 15.3 

0.15-0.3 19.9 0.2-0.4 43.6 

0.3-0.45 21.9 0.4-0.6 34.5 

0.45< 24.4 0.6< 6.6 

 

Among the vegetation indices, SAVI had the highest correlation coefficient with precipitation. In this index, 

38.4% of the study area, mainly covering the northern region, experienced a correlation coefficient above 

0.55. Moreover, 28.6% of the study area had a correlation coefficient between 0.35 and 0.55. However, TCI 

among the vegetation indices had the lowest correlation coefficient with precipitation, which had the highest 

correlation coefficient with 0.21 in the south of the study area. Following SAVI, VCI experienced the 

highest coefficient of variability with precipitation.  In this index, 34.5% of the study area, mainly covering 

the eastern region, had a positive correlation coefficient from 0.4 to 6.6. At this point, only small spots in the 

eastern region of the study area had a correlation coefficient of 0.6. The variability of precipitation with the 

vegetation index VHI was almost similar to that with the vegetation index VCI, except that the correlation 

coefficient was reduced in VHI. 

 
Continued from Fig 3: The spatial distribution of the correlation between precipitation and the vegetation indices 

The spatial autocorrelation model with the indices based on the spatial indices GI * and I are given in Figure 

4 to investigate more precisely the relationship between precipitation and the vegetation indices. The spatial 

pattern between precipitation and DVI was investigated. It was observed that based on both GI * and I 

indices, precipitation and DVI had a positive spatial autocorrelation pattern (table 5) in the eastern and 

southern regions of the study area. It was also realized that precipitation and DVI had a negative spatial 

autocorrelation pattern in the western and northern regions of the study area. This situation indicated that 
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DVI was mainly affected by precipitation in the southern region of the province. However, according to the 

GI * index, approximately 19% of the study area had a positive spatial autocorrelation pattern with DVI. 

However, 44.36% of the study area had a random pattern (Table 4). 

 

Fig 4: The spatial distribution of the spatial pattern of precipitation with the vegetation indices 

The spatial autocorrelation with EVI based on the GI* and I indices were almost similar to that with DVI 

(table 5).  However, in this index, the positive autocorrelation pattern was mainly observed in the eastern 

region of the study area and only had a small cluster pattern in the southern region of the study area. The 

high cluster pattern based on the I index had a positive spatial autocorrelation pattern in approximately 

12.954% of the study area. However, according to the GI * index, approximately 14% of the study area 

formed a high cluster pattern. Therefore, the identification of the high cluster pattern may differ in terms of 

the percentage of coverage. However, these two indices had minimal differences in terms of location. The 

reason is that in the GI* index, distribution patterns were examined at three levels of 99%, 95%, and 90%, 

and thus, they may differ in terms of the extent covered by the positive spatial autocorrelation pattern. 

Unlike the vegetation indices DVI and EVI, precipitation and IPVI had a positive spatial autocorrelation 

pattern in the northern region of the study area. Conversely, precipitation and IPVI had a negative spatial 

autocorrelation pattern in the southern region and parts of the southeast region of the study area. The 

positive spatial autocorrelation based on the GI * and I indices was 30.16% and 20.791%, respectively. 
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However, the low-cluster pattern between IPVI and precipitation based on the GI *and I indices was 23.52% 

and 18.204%, respectively. The effects of the spatial pattern of precipitation with NDVI as the core were 

observed more in the eastern region of the study area. The spatial autocorrelation between precipitation and 

NDVI based on the GI* and I indices had a positive spatial autocorrelation pattern in 12.25% and 10.22% of 

the study area, respectively. However, 33.53% and 20.64% of the study area, mainly covering the northern 

region, had a negative spatial autocorrelation pattern based on the GI* and I indices, respectively. 

The distribution of the spatial autocorrelation pattern of precipitation with NDWI in terms of positive cluster 

pattern experienced a similar situation to the DVI index (table 5). However, the positive autocorrelation 

pattern of precipitation with NDWI was observed only in the southern and western regions of the study area. 
Based on the GI* and I indices, the positive spatial autocorrelation pattern covered 26.26% and 22.69% of 

the study area, respectively, However, the negative spatial autocorrelation pattern only covered 13.03% and 

8.98% of the northwest and southeast regions in the study area based on the GI* and I indices, respectively 

(Fig 4). Among the vegetation indices, the positive spatial autocorrelation pattern of precipitation with RVI 

had a more scattered distribution. Small nuclei spread throughout the study area according to the GI* and I 

indices. 

 

Continued from Fig 4: The distribution of the spatial precipitation pattern with the vegetation indices 



Mehran Safa, IJSRM Volume 09 Issue 12 December 2021 [www.ijsrm.in] FE-2021-210 

The spatial distribution of the spatial autocorrelation pattern of precipitation with SAVI experienced a 

similar situation to the IPVI index, although the range of the positive spatial autocorrelation pattern was 

narrower. For example, based on the GI* and I indices, the spatial autocorrelation pattern of precipitation 

with SAVI was 22.35% and 11.66%, while it was 32.4% and 25.96% for the negative spatial autocorrelation 

pattern, respectively. Precipitation and TCI, like most other indices, had a high cluster pattern in the 

southern region of the study area, but a low cluster pattern in the northern and central regions of the study 

area. 

 

Continued from Fig 4: The distribution of the spatial precipitation pattern with the vegetation indices 

The spatial autocorrelation pattern of precipitation with VCI and VHI based on the GI* and I indices 

experienced a similar situation. The positive spatial autocorrelation pattern in both indices was related to the 

eastern region of the study area, while the negative spatial autocorrelation pattern formed more in the 

western region of the study area. However, VCI and VHI based on the GI* and I indices had the lowest 

positive spatial autocorrelation pattern among the vegetation indices, respectively. For example, the positive 

spatial autocorrelation pattern based on the GI* and I indices was 7.47% and 6.391% for VCI, and 9.37% 

and 6.538% for VHI, respectively (Fig 4). 

Table 4: Percentage covered by the spatial autocorrelation pattern of precipitation with the vegetation 

indices based on the GI* index 

Pattern DVI EVI IPVI NDVI NDWI 

Negative spatial autocorrelation pattern 99% 13.08 18.40 15.13 12.69 6.73 

Negative spatial autocorrelation pattern 95% 17.57 9.86 4.49 12.59 3.47 

Negative spatial autocorrelation pattern 90% 5.71 5.12 3.90 8.25 2.83 

No pattern 44.36 52.73 46.32 54.22 60.71 

Positive spatial autocorrelation pattern 90% 0.44 0.24 0.63 0.20 0.54 

Positive spatial autocorrelation pattern 95% 3.37 8.49 8.74 2.05 2.78 

Positive spatial autocorrelation pattern 99% 15.47 6.15 20.79 10.00 22.94 

Pattern RVI Savi TCI VCI VHI 

Negative spatial autocorrelation pattern 99% 5.12 20.74 4.64 16.94 12.84 

Negative spatial autocorrelation pattern 95% 3.12 8.05 23.18 10.44 24.45 
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Negative spatial autocorrelation pattern 90% 2.54 3.61 7.03 8.15 6.34 

No pattern 66.23 45.24 44.66 57.00 47.00 

Positive spatial autocorrelation pattern 90% 0.68 0.83 0.20 0.93 0.73 

Positive spatial autocorrelation pattern 95% 4.64 10.15 3.56 4.10 5.81 

Positive spatial autocorrelation pattern 99% 17.67 11.37 16.74 2.44 2.83 

 

Table 5: Percentage covered by the spatial autocorrelation pattern of precipitation with the vegetation 

indices based on the GI* and I indices 
INDEX Positive spatial autocorrelation pattern 

95% 

Negative spatial autocorrelation 

pattern 95% 

I GI* I GI* 

DVI 15.569 19.28 25.72 36.36 

EVI 12.954 14.88 24.793 33.38 

IPVI 20.791 30.16 18.204 23.52 

NDVI 10.102 12.25 20.644 33.53 

NDWI 22.694 26.26 8.98 13.03 

RVI 14.765 18.99 7.979 10.78 

SAVI 11.664 22.35 25.964 32.4 

TCI 16.886 20.5 19.082 34.85 

VCI 6.391 7.47 22.255 35.53 

VHI 6.538 9.37 30.649 43.63 

 

Conclusion 

In the present study, we used precipitation data from 30 rain gauge stations and vegetation indices DVI, 

EVI, IPVI, NDVI, NDWI, RVI, SAVI, TCI, VCI, and VHI derived from Landsat TM, ETM +, and OLI 

satellite data over 20 years from 1997 to 2017. The aim was to investigate the spatial autocorrelation pattern 

of precipitation with the vegetation indices in the Bandar Abbas sub-basin. The study's results showed that 

precipitation was directly and significantly correlated with most of the vegetation indices. It means that with 

increasing rainfall, vegetation increases and vice versa. This finding is consistent with the study of 

Mackerem et al. (1986), showing that vegetation indices in most cases (more than 90%) were significantly 

related to precipitation and temperature. Also, other researchers in their studies noted a high correlation 

between the vegetation index and precipitation (Young et al., 1998; Jei & Peter, 2004; Li et al., 2004), which 

further confirms the present study's findings. However, among the studied indices, the highest variability of 

precipitation was related to NDWI, RVI, Savi, and VCI, and, on the contrary, TCI had the least variability 

with precipitation. The GI* and I indices were used to investigate the relationship between precipitation 

and the vegetation indices more accurately. The results of the GI* and I indices showed that the spatial 

relationship between precipitation and the vegetation indices in most of the study area, especially in the 

southern and eastern parts of the study area, had a positive spatial autocorrelation pattern. As a result, 

vegetation in the study area's southern and eastern regions is more affected by precipitation based on the GI* 

and I indices. Among these indices, NDWI and IPVI had the highest spatial pattern these results are 

consistent with the findings Abdulhafedh (2017). Therefore, it can be concluded that climatic elements, 

especially precipitation, have a significant impact on vegetation status. Thus, the vegetation disappears 

rapidly by decreasing precipitation. Overall, based on the results, it can be mentioned that about 30-40% of 

vegetation is related to precipitation changes, and other vegetation changes can be related to factors, such as 

micro-precipitation, drought, and cold, as well as human factors such as land use change and grazing. 
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