
International Journal of scientific research and management (IJSRM)

||Volume||4||Issue||06||Pages||4347-4350||2016||

Website: www.ijsrm.in ISSN (e): 2321-3418

Ms. Arati A. Gadgil, IJSRM volume 4 issue 6 June 2016 [www.ijsrm.in] Page 4347

Enhancing Security in user authentication through honeyword

Ms. Arati A. Gadgil, Prof. S. D. Khatawkar

ADECT, Ashta ME CSE (Appearing)

arati.gadgil1@gmail.com

ME CSE

ADECT, Ashta

shriharikhatawkar@gmail.com

Abstract: Honeyword system used to detect password file disclosure. For each user set of honeyword is generated. When

adversary have a password file, then it get confused which one is real password in honeyword set. Adversary enters all

honeywords in the set. When honeywords are entered notification will be send to the admin. Author gives hybrid method

for generation of honeyword. Hybrid method provides strong DoS resistance and flatness.

Keywords: authentication, login, password cracking,

 honeyword

I Introduction

System is said to be secure if two issues are concerned. First

one is use of strong password policies and second is system

must detect attacks like password file disclosure before

getting any harm to the system. [1] Generally users chose

their password which is easy to remember and uses single

password for multiple system.

Disclosure of password file affected many

companies like Yahoo, RockYou, Linkedln, eHarmony and

Adobe [2] [3]. Website uses weak storage method to store

password. Such as use of SHA-1 algorithm without salt and

MD5 hashes. When adversary have password file then, by

using some password cracking algorithm it is easy to invert

hashed password in plaintext. [4] Implementing some

policies like encrypt password using strong encryption

algorithm, use of salt and use of key stretching or slow

algorithms to increase password cracking time will

minimize potential damage caused by password leak.

Honeypot is one methods to identify occurrence of a

password database breach. [5]

Proposed system uses SHA-1 whit salt for

encryption of password. Honeywords are decoy passwords

generated from original password. Proposed system uses

hybrid method for generation of honeyword. Also system

will check correlation between username and password. If

username and password are co related then it becomes easy

for adversary to identify correct password between set of

honeyword.

II Honeywords

Honeywords are decoy passwords generated using two types

of method. First one is legacy-UI method and second one is

modified-UI method. [6] In legacy-UI method user is not

aware about honeyword system. In legacy-UI user can get

idea some security policies are implemented. Legacy-UI

consists of chaffing with tweaking, chaffing with password

model and chaffing with toughnut methods where modified-

UI consists of tweak a tail method.

1 Chaffing by tweaking digit

In chaffing by tweaking method, honeywords are generated

by tweaking the characters in passwords. System

predetermines the value of t that is how many characters of

passwords are replaced by randomly selected digit.

e.g. For password abc123$ honeywords are

abc1693 abc1736 abc1235

2 Chaffing with password model

In chaffing with password model honeywords are generated

using same syntax of true password. [7] Password is

“cat6light” then there are 3 letters, 1 digit and 5 letters,

represented as L3+D1+L5. These characters are replaced by

same syntax, here first 3 letters are replaced by random 3

letters then one digit replaced by random one digit and again

5 letters are replaced by 5 random letters. Therefore

cat6light is replaced by fit1rings.

3 Chaffing with “toughnut”

Tough nuts are some special honeywords. Tough nuts are

inserted by system at any random position in password.

Inverting hash value of tough nuts is computationally

infeasible. e.g. of tough nut is „9.50Pee[kv.0]!nwt‟. Number

and position of toughnut is selected randomly. User usually

select passwords that are simple so tough nuts are complex.

Therefore adversary can skip such honeyword for classic

attacks.

4. Tweak a tail

DOI: 10.18535/ijsrm/v4i6.17

Ms. Arati A. Gadgil, IJSRM volume 4 issue 6 June 2016 [www.ijsrm.in] Page 4348

In tweak a tail method when user choose their password

then system will generate one random string and displayed

to user. Generated string will be appended to the user

password and this new string is a password of user.

III System implementation

1 User registration

User must be registered to the system. Generally

user chooses password which are simple and easy to

remember. [8] [9] Such type of password can easily identify

using some basic attacks. [10] [11] [12] System allow user

to select password which consist of minimum 8 characters,

one digit and one special symbol is implemented. Also

system will check correlation in percentage, between

username and password. If correlation is greater than 50%,

then system will force user to change the password.

Registration process is completed when user enters

correct CAPTCHA. CAPTCHA is used to identify user is

human or not. CAPTCHA protects system from spam and

abuse. [13] After successful completion of registration,

honeywords are generated using hybrid method.

2 Hybrid method

Proposed system uses hybrid method for generation of

honeyword. Hybrid method is combination of other

methods. In hybrid method first system will apply chaffing

by tweaking digit method on password. In this step last t

position will be tweaked. In second step output of first step

is taken as input and system will apply chaffing by password

model method.

Algorithm for hybrid method are given below,

Hybrid method Algorithm

1: Procedure HybridMethod(P)

2: a, b constants

3: s  lenghth(P)

4: for I 0 to a do

5: Tweak(P)

6: for j 0 to b do

7: Split(P)

8: Honeyword  P

9: end for

10: end for

11: end Procedure

Tweak method

1: Procedure Tweak(P)

2: R(D) return digit

3: d  length(P)

4: jd-2

5: for d to j do

6: p[d]R(D)

7: j=j-1

8: end for

9: end Procedure

Split method

1: Procedure Split(P)

2: R(D) return digit

3: R(L)  return letter

4: R(SS)  return special symbol

5: d  length(P)

6: for i=0 to d-1 do

7: if P[i]==Letter then

8: P[i]R(L)

9: else if P[i]== Digit then

10: P[i]==R(D)

11: else

12: P[i]R(SS)

13: end if

14: end for

15: end Procedure

3. Management of password

For each user account honeywords are generated. [14]

Honeywords are encrypted using hash function with salt.

Adding salt increases difficulty level for inversion process

to the plain text. Salt is random string generated using

Cryptographically Secure Pseudo-Random Number

Generated (CSPRNG). Salt is unique for each user.

In proposed system original password is stored

along with honeywords at any random index. System will

stores user id and true password index in honeychecker.

Password storage in honeyword system is shown in fig.1

Figure1 Password storage in honeyword system

4. Mechanism of Password Detection

System uses hybrid method for generation of honeywords.

Therefore each user consists of set of honeywords.

Honeywords are stored in hashed form along with original

password. System implements mechanism for password

detection. The purpose for implementing this mechanism is,

as original password is stored along with honeyword

therefore system can authenticate user. Honeychecker stores

original password index.

When user login request arrives first system will

check this user exists or not. If user exists it will check

entered password is honeyword or not. If entered password

is not honeyword then system will simply deny the access. If

DOI: 10.18535/ijsrm/v4i6.17

Ms. Arati A. Gadgil, IJSRM volume 4 issue 6 June 2016 [www.ijsrm.in] Page 4349

the password is honeyword then system will check the index

of that honeyword. As original password index is stored in

Honeychecker, system will compare the index value. If the

index value of entered honeyword and index of original

password is same then user is registered user. So system will

give access to that user. If index of entered honeyword and

index of original password is not same then notification is

send to the admin.

III Experiment and Result

1. Encryption of password.

Existing system uses hash function to protect user password.

Hash algorithms are one way functions. They turn any

amount of data into fixed length “finger” print that cannot

be reversed.

They also have the property that if the input

changes by even a tiny bit, the resulting hash is completely

different. But there are many ways to recover passwords

from hashes very quickly.

There are several easy-to-implement techniques

that make these “attacks” much less effective. The two most

common ways of guessing passwords are dictionary attacks

and brute-force attacks. [14]

Dictionary Attacks

Trying apple: fail

Trying blueberry: fail

Trying 1234567: fail

..........

Trying letmein: fail

Trying qwerty: Success

A dictionary attack uses a file containing words, phrases,

common passwords, and other strings that are likely to be

used as a password. Each word in the file is hashed, and its

hash is compared to the password hash. If they match, that

word is password.

Brute Force Attacks

Trying aaaa: fail

Trying aaab: fail

Trying aaac: fail

Trying aaad: fail

…..

Trying acdb: fail

Trying acdc: Success!

A brute-force attack tries every possible combination of

characters up to given length. These attacks are very

computationally expensive, and are usually the least

efficient in terms of hashes cracked per processor time, but

they will always eventually find the password. System

randomizes the hashes by appending random string, called a

salt to the password before hashing. Salt is unique for each

user. As shown in example below, this makes the same

password hash into a completely different string every time.

In implemented system salt is generated by

Cryptographically Secure Pseudo-Random Number

Generator (CSPSNG). As the name suggests, CSPRNGs are

designed to be cryptographically secure, meaning they

provide a high level of randomness and are completely

unpredictable. Therefore implemented system makes the

total hash inversion process harder for an adversary in

getting the passwords in plaintext from a leaked password

hash file.

2. Dos resistance

Consider that adversary created few accounts intentionally.

Therefore adversary knows true password of few accounts.

Consider there is N no of user in the system. Adversary

created m no of accounts. Now adversary has m no of true

password. The probability that adversary can be entered

honeyword and can be identified is calculated using

following formula.

P =

Where k is no of honeywords.

Consider, N=1000, k=10 and m=10, then p=0.89

Probability that adversary can be caught is 89%, that is

system providing strong DOS resistance.

3. Flatness

Implemented method satisfies perfect flatness as long as the

correct password is not correlated with username. If

username and password are correlated then original

password is easy to guess. In system investigation of target

user profile gives no advantage to an adversary in password

guessing.

System also checks that entered username and

password is correlated or not. If correlated then system force

user to choose the password which is not correlated.

Consider example user enters username as “Amruta” and

password is “Amruta@1” then system calculates parentage

correlation between username and password. If it is greater

than 50 % then user must be change their password. In this

example correlation is 75 %. Therefore user must change

their password. Therefore system achieves strong flatness.

4. Storage cost

Compute the storage requirement of implemented system, a

typical password file system requires hN plus storage for

usernames, where N stands for the number of users in the

system and h denotes length of password hash in bytes. On

the other hand this is khN where k denotes the number of

the sweetwords assigned to each account. For our approach

we assume that each index requires 4 bytes and the storage

cost becomes 4kN + hN + 4N. As no of honeywords

increases storage cost for system increases. But goal is to

make system secure which can be achieved by generating

DOI: 10.18535/ijsrm/v4i6.17

Ms. Arati A. Gadgil, IJSRM volume 4 issue 6 June 2016 [www.ijsrm.in] Page 4350

honeyword. Table 5.1 shows comparison of honeyword

generation method.

Sr.

No

Honeyword

method

DOS

resistance
Flatness

Storage cost

1 Tweaking Weak weak hN

2
Password

model
Strong strong hkN

3
Hybrid

method
Strong strong 4kN +hN + 4N

Table 1 Comparison of honeyword generation method

IV Conclusion

Proposed system identifies password file disclosure

before getting harm to the system. Use of ReCAPTCHA

protects system from spam and abuse. Hybrid method which

combines strength of others method is used for generation of

honeyword, which provides strong DOS resistance and also

flatness but increases storage cost. As no of honeywords

increases storage cost of system will increase. Passwords are

encrypted using hash function with salt which makes

inversion process difficult for attacker.

In future, system can use honeyword mechanism to

detect theft and gathering information about their source,

attack patterns, final target and purpose of attacker by using

fake interactive sessions.

V Reference

[1] Imran Erguler , Achieving Flatness: Selecting

 the Honeywords from Existing User Passwords,

 IEEE Transactions on Dependable and Secure

 Computing 2015.

[2] D.Mirante and C. Justin, Understanding Password

 Database Compromises, Dept. of Computer

 Science and Engineering Polytechnic Inst. of

 NYU, Tech. Rep. TR-CSE-2013-02, IEEE, 2013.

[3] I. Paul. Update: LinkedIn confirms account

 passwords hacked. PC World, 6 June 2012.

[4] K. Brown, The Dangers of Weak Hashes_SANS

 Institute InfoSec Reading Room, Tech. Rep.,

 ,2013.

[5] M. H. Almeshekah, E. H. Spafford, and M. J.

 Atallah, Improving Security using Deception,

 Center for Education and Research Information

 Assurance and Security, Purdue University, Tech.

 Rep. CERIAS Tech Report 2013-13, 2013.

[6] A. Juels and R. L. Rivest, Honeywords: Making

 Password cracking Detectable, in Proceedings of

 the 2013 ACM SIGSAC Conference on

 Computer and Communications Security, ser.

 CCS13. New York, NY, USA: ACM, 2013, pp.

 145160. [Online].Available:http://doi.acm.org/

 10.1145/2508859.2516671

[7] H. Bojinov, E. Bursztein, X. Boyen, and D.

 Boneh, “Kamouflage: Loss-resistant Password

 Management,” in Computer Security-ESORICS

 2012. Springer, 2010, pp. 286-302

[8] P.G. Kelley, S. Komanduri, M.L. Mazurek, R.

 Shay, T. Vidas, L. Bauer, N. Christin, L.F.

 Cranor, and J. Lopez. Guess again (and again and

 again): Measuring password strength by

 simulating password-cracking algorithms. In

 IEEE Symposium on Security and Privacy

 (SP),2012.

[9] A. Vance, If Your Password is 123456, Just Make

 It Hackme, The New York Times, vol.20,2010.

[10] J. Bonneau and S. Preibusch, The Password

 Thicket: Technical and Market Failures in Human

 Authentication on the Web, in WEIS, 2010.

[11] M. Bakker and R. van der Jagt. GPU-based

 password cracking. Technical report, Univ. of

 Amsterdam, 2010.

[12] Y. M. Weir, S. Aggarwal, B. de Medeiros, and

 B. Glodek, Password Cracking Using

 Probabilistic Context-Free Grammars, in

 Security and Privacy, 30th IEEE Symposium

 on. IEEE,2009, pp.,391- 405.

[13] L. V. Ahn, M. Blum, N. J. Hopper, and J.

 Langford, CAPTCHA: Using Hard AI

 Problems for Security, in Proceedings of the

 22nd International Conference on Theory and

 Applications of Cryptographic Techniques

 EUROCRYPT03, ser. Lecture Notes in

 Computer Science, vol. 2656. Berlin,

 Heidelberg: Springer-Verlag, 2003, pp. 294311.

[14] F. Cohen, The Use of Deception Techniques:

 Honeypots and Decoys, Handbook of

 Information Security, vol. 3, pp. 646655, 2006.

[15] C. Herley and D. Florencio, Protecting financial

 institutions from brute-force attacks, in SEC08,

 2008, pp. 681685.

