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Abstract 

AI-driven dynamic trajectory planning and control systems are the keys to enhancing safety and 

performance for the next generation of autonomous vehicles. The growing demand for autonomous vehicles 

is pushing relevant companies to deploy the latest AI/ML methods to build better, more reliable, and 

versatile control systems. Current software architectures supporting the deployment and execution of AI in 

vehicles rely on centralized or decentralized control. Centralized approaches optimize performance over 

specific tasks, but they are poorly scalable. Decentralized approaches target scalability but struggle to 

maximize global efficiency and safety, especially when handling the variability and unpredictability 

associated with real-world scenarios. In this talk, we bring on the discussion that modular software 

architectures offer a more appealing way to organize the three core functions of future autonomous vehicles, 

i.e., sensing, planning, and control.Moreover, fostering the debate and collaboration between companies, 

academic institutions, and community-driven open-source foundations is a key priority to increase the 

number of potential solutions from a vast array of currently applicable technologies such as Deep 

Reinforcement Learning, Model Predictive Control, and Motion Planning Field, to name a few. The scale 

needed for a production-worthy solution is not achievable by any single company. Finally, an increasing 

level of democratization and standardization has a desirable side effect for the community itself: making the 

final user confident in the performance and safety of AI-driven products is the key to unlocking the adoption 

of fully autonomous vehicles. 

Keywords: Vehicle Control Systems: Integrating Edge AI and ML, Industry 4.0, Internet of Things (IoT), 

Artificial Intelligence (AI), Machine Learning (ML), Smart Manufacturing (SM),Computer Science, Data 

Science,Vehicle, Vehicle Reliability 

1. Introduction 

It is estimated that less than 20% of the total cost of 

owning an automobile over its expected use life is 

in the purchase price. The remaining 80% is spent 

on operations, maintenance, and repairs. One 

approach that might be taken to reduce that 80% 

cost is through the development of vehicle control 

systems incorporating edge artificial intelligence 

(AI) and machine learning (ML) for enhanced 

performance and safety. These edge hardware and 

software developments are intended to work in 

tandem with, rather than replace, the computing and 

signal processing capabilities of the software-based 

engine control unit (ECU) that already exists in 

every car.This paper begins with an overview of 

existing vehicle control systems. The fundamental 

issues related to edge 'embedded' AI/ML 

acceleration, technologies to address these issues, 

and recent developments and applications to 

commercial vehicles are then outlined. These are 
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followed by avionics industry experiences and 

recent industry-specific hardware developments in 

machine learning. They are being applied to 

vehicles as well. The paper concludes with 

embedded AI function enhancement and systems 

integration issues that serve as both industry and 

applicable government policy planks. Such planks 

support and encourage the widespread utilization of 

edge artificial intelligence devices in customer-

owned automobiles serving multiple 

purposes.Drawing insights from experiences in the 

avionics industry, the paper examines recent 

developments in hardware designed for machine 

learning applications and their adaptation for 

automotive use. These developments are crucial as 

they pave the way for embedding AI functionalities 

directly into vehicles, thereby enhancing operational 

efficiency and safety. 

 

Fig :1:  Full system architecture 

  

1.1. Background and Significance 

Automated vehicle control systems have emerged as 

the means to boost operational and performance 

metrics for a variety of vehicles such as cars, trucks, 

and unmanned aerial vehicles. Autonomous 

vehicles are used to improve traffic throughputs 

within cities, reduce energy consumption associated 

with propulsion systems, and increase safety by 

reducing human errors. This has been enabled by a 

drastic drop in the costs of sensors and 

communication technologies, which has fueled the 

generation and voluminous influx of different types 

of data. 

For autonomy to become widespread, we must go 

beyond the level of creating models a priori of 

driving scenarios with fixed rules of engagement by 

integrating new data as it becomes available in the 

form of reinforcement learning or deep learning 

models. These models must take advantage of the 

consolidation of resources at the edge, which, 

through federated learning, can help aggregate 

experiences across a variety of use cases for a 

potentially large number of autonomous vehicles on 

the road to stay current with the changes in 

dynamically driving scenarios. 

This presentation aims to summarize the current 

state of vehicle control systems and the steps 

leading to the widespread deployment of edge AI 

for enhancing the safety and performance of these 

complex systems. 

 

1.2. Research Objective 

As mentioned in the previous sections, the sharp 

intersection between statistical learning and control 

theory has developed a vast body of work in the 

fields of control, learning, and model inference. 

While this research has yielded various theoretical 

tools and computational methods and provided a 

better understanding of the tighter integration of 

statistical learning and control, the advances, 

especially at the intersection of ML, AI, and 

traditional AEC, have remained largely 

competent.On the one hand, most of the prior work 

has focused on the constrained form of operation 

and power of traditional deterministic control 

systems. This has limited the broader application 

and evaluation of AI and ML algorithms across 

many potential applications, especially where 

learning methods can achieve high proficiency. On 

the other hand, robustness is the key feature of 

traditional AI/ML research. However, under the 

operating constraints or disturbances of control 

systems, it is difficult to maintain system 

performance levels. Therefore, the integration of 

AI, ML, and control theory in the vast number of 

AEC engineering applications is still in its infancy. 

Moreover, most of the successful results and rich 

integrations have been developed in function-

specific areas using a wide variety of ad-hoc 
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technologies without much regard for the richer 

ideas and more systematic perspectives afforded by 

others. 

 

2. Fundamentals of Vehicle Control Systems 

Vehicle Control Systems: Integrating Edge AI and 

ML for Enhanced Safety and Performance2.1. 

Closed-Loop Control Closed-loop control plays a 

key role in vehicle systems. The fundamental 

control problem is to determine the system input 

(command) that ensures that the state of the system 

follows a desirable trajectory or evolves within a 

desired region of the state space, even in the 

presence of uncertainty. The desired or reference 

state trajectory is generated by some automated 

planning system or operator input. Closed-loop 

control can be physical (such as the power steering, 

throttle, and brake in a modern vehicle) or cyber-

physical, where the physical actuation is modulated 

by a controller capable of reasoning about system 

dynamics, the effect of actuation and sensor noise, 

as well as estimating the current state in real-

time.2.2. Vehicle Models Vehicles are often 

modeled using point mass models, which represent 

vehicles as point masses equipped with speed and 

steering angle actuators and translational and 

angular dynamics. For certain control problems, 

linear or Nonlinear Advanced Vehicle Models 

(NVEMs) are used. For automated planning 

problems, the vehicle is modeled as an autonomous 

hybrid model, where the continuous dynamics are 

described by the NVEM, and the discrete state 

transitions are defined by the stacked rectangles and 

other non-smooth constraints such as brush tires and 

road/wheel contact models. Some specific control 

systems are modular, and modular models can be 

derived from NVEMs. The high-level behavior of 

these vehicles can be formulated as control 

problems over a finite state space and solved using 

methods such as POMDPs. 

 

Fig :2: Approach for mitigating network latency 

using shared memory to store multiple sensor 

data 

 

2.1. Basic Components and Functions 

Ike enables control of the velocity; hence vehicle 

acceleration and deceleration in speed frames. The 

yaw rate and both lateral acceleration measurements 

control the curvature while the forward acceleration 

controls the speed. The triple integral in the 

integrated version of the system made it robust 

against the longitudinal evolutions in lateral 

acceleration signals often causing instability in 

conventional systems. The combined velocities of 

the two above functions produce roll- and pitch-

reference angular velocities of the vehicle. In 

conjunction with the damped characteristic of the 

sideslip difference control allocation techniques, 

which provide linear and decoupled control of the 

inputs, are applied giving in particular negative roll 

input increasing the sideslip of the inner wheel.The 

brake pressure control is a command tracking loop 

that utilizes a linear feedback control structure 

based on the overall linearisation of the brake 

system. It preserves the decoupling behavior and 

produces pressure references for given front-and-

rear axle brake effort balances. The traction system 

signal is veto provided by the state of the road 

friction estimation running in traction and stability 

feedback loops which correct the individual wheel 

velocity measured. 

 

2.2. Challenges and Limitations 

We can categorize challenges and limitations based 

on the model and application type. For model type, 

those challenges we faced using the deep learning 

model, such as it requires large labeled data, 

without labeled data, deep learning performance is 
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going to reduce, and the interpretability of the 

model is difficult. Then for the application type, we 

faced challenges to define safety performance when 

clustering algorithms are used for building CDsP 

from the normal driving data. Moreover, we faced 

visible quality issues and observed reduced 

maximum throughput quality incorrectly controlled 

traffic-light bypass functionality that led to stops 

after the overlay was implemented on other routes. 

And deep learning can't define future probabilities, 

such as how many people need at least 

approximately zero point five years of age to use 

the seats with child-restraining elements? This is 

important to select the right vehicle and ensure 

safety. Then interpretation without validation data 

and the expert and end-user interpretation required 

by the insufficient validation data. This data is not 

always used during the model-building process, and 

overall, there is a need for a good balance between 

AI data and expert human knowledge for quality 

control applications. 

 

3. Edge AI and ML Technologies 

For automotive systems, edge computing has 

always been the critical implementation approach 

due to real-time vehicle response requirements to 

guarantee safety. From the safety design aspect, the 

application of open-source embedded machine 

learning toolkits has also been a commonly used 

approach for neural network design on edge 

computing platforms. With recent advancements in 

accelerator hardware as well as embedded machine 

learning libraries, applying reinforcement learning 

on edge computing platforms for optimized 

controller development can be an effective approach 

to utilize edge computing capabilities for improved 

performance.To support the enabling of the open-

source reinforcement learning framework, the paper 

presents the reinforcement learning integrated state 

of charge management algorithm development 

within the easily accessible ROS2-based simulator 

open-source project. The reinforcement learning-

based control design automated objective function 

formulation and hardware-in-loop generation 

process, solutions involving Python sci-kit-learn 

and ROS2 incorporated Williams sensorless PMSM 

motor control hardware are also described.As such, 

edge computing is now standard in all vehicle 

platforms for safety-related components. For many 

applications, especially for machine learning, the 

separation of embedded hardware resources allows 

model training and validation to be done on high-

end computing infrastructures. After the model 

development phase, the AI model can be deployed 

to the edge with various software and hardware 

constraints available to minimize the processing 

delay and computational resources for live vehicle 

AI implementations and further process/vector 

capabilities. Deployed edge AI models can also 

provide extra features independent of traditional 

controls and provide authenticated safety 

improvement enhancements through vehicle 

communication networks.For vehicle control 

applications, safety-related edge AI functionalities 

need a real-time response as close as possible to 

vehicle controller performance, only making sense 

of enabling fast actuators and sensors for additional 

vehicle performance improvement provided by on-

edge AI model-based optimization algorithms. 

 

Fig :3 P2 hybrid vehicle structure 

 

3.1. Overview and Definitions 

We focus on a vehicle controller, that is, a set of 

control functions for a vehicle that drives the 

vehicle. Examples of vehicle controllers include 

path-following for automated driving or cycle-by-

cycle torque control for energy management. The 

distinction between vehicle controllers and ECU 
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controls can be subtle but important. Simply put, the 

ECU runs the vehicle but does not control vehicle 

operation, that is, setting a speed setpoint for a 

vehicle speed control if we consider the cruise 

control. Vehicle controllers, on the other hand, 

actively drive the vehicle to achieve some desired 

outcome.An important characteristic of a vehicle 

controller is that the input to the controller is some 

measure of the vehicle dynamics, while the output 

is a set of required system functions. Fuzzy logic, 

PID, and MPC controllers that manage vehicle 

systems such as anti-lock brakes, torque vectoring, 

and drive mode initiation based on tire slip angles 

are examples of vehicle controllers. Even the basic 

proportional and integral controllers associated with 

cruise control can be thought of as vehicle 

controllers.Behavior functions are AI and ML 

algorithms that define the control of these vehicle 

systems using vehicle dynamic inputs. The vehicle 

control function that computes tire friction 

characteristics using tire sensor inputs is an example 

of a behavior function. Running any vehicle 

dynamic model with the vehicle speed setpoint as 

input and computing the vehicle's path using lateral 

and longitudinal offsets from a lane model is also a 

behavior function. Traction control and torque 

vectoring strategies based entirely on vehicle 

dynamics inputs can similarly fall into a general 

category of behavior functions. Note how two 

different vehicle functions can be based on different 

kinds of AI and ML technologies (in this case, tire 

model tables vs. neural networks). 

 

3.2. Applications in Automotive Industry 

System-on-chip (SoC) technologies play an 

essential role in modern automotive computing 

systems. These technologies implement various 

automotive systems, including advanced driver 

assistance systems (ADAS) and the domain-

controller approach. Within these systems, there is a 

need for greater functional safety (FuSa) and 

security to ensure data integrity, vehicle control, 

and personal safety. In this study, we explore the 

model application, software, and hardware aspects 

of an automotive computer exception management 

system (ACEMS) for an SoC to address these 

issues.In-vehicle driver assistance systems are 

becoming increasingly common in modern vehicles. 

Many SoC-based electronic control units (ECUs) 

enable feature-rich infotainment, telematics, and 

ADAS capabilities, improving vehicle safety. With 

these sophisticated features and capabilities, in-

vehicle systems will generate more command and 

telemetry signals, increasing the number of ECUs 

and the complexity of automotive networks and 

nodes. However, with the increase in the number of 

ECUs, the requirements have to be raised to 

improve functional safety, particularly in extending 

the concept of reliable vehicle operation beyond 

FuSa (functional safety) and guaranteeing passenger 

safety and data integrity. This is increasingly salient 

as more vehicle control moves from drivers to 

increasingly sophisticated in-vehicle control 

systems leveraging edge artificial intelligence (AI). 

4. Integration of Edge AI and ML in Vehicle 

Control Systems 

Developing and deploying machine learning (ML) 

for intelligent vehicle control systems presents a 

myriad of challenges. Relevant data capture, 

labeling, and curation are required to efficiently 

train ML models to maintain predictively acceptable 

performance despite non-stationary and evolving 

environments. With the prospect of ML in vehicle 

controls, full stack development and deployments 

need to be explored, not only algorithmic model 

advancements. Edge AI now offers state-of-the-art 

modular sensor fusion and embedded ML AI 

accelerators. Edge AI mechanisms can generate 

high prediction accuracy for a latency and 

throughput budget even under limited resources. 

However, bringing edge AI models to live 

production systems requires many decisions 

regarding edge AI model architectures, ultra-

efficient runtimes, cutting-edge annotation tools, 

and novel domain KL methods necessary to evolve 

model performance. These integration choices 

should align tightly with the development of 
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supporting infrastructure and real-world data 

validation. The solutions must align well with 

regulation and ethical requirements.Deployment of 

traditional vehicle control systems presents 

substantial challenges associated with maintaining 

acceptable levels of vehicle and system safety while 

reliably managing the operation of the myriad 

mechanical, mechatronic, and electronically 

controlled components. Moreover, due to the 

continuous need to simultaneously manage vehicle 

operating conditions, edge and extreme 

environmental conditions, predict performance, and 

support system safety and security constraints, 

significant engineering effort must also be allocated 

to ensure robust and comprehensive risk and 

uncertainty models are developed, validated, 

deployed, and maintained. Effectively integrating 

edge AI technologies can make a huge difference in 

the development cost, and performance, and keep 

the development team focused on the technical 

development of the vehicle systems and supporting 

infrastructure evolution to thrive and preserve 

relevant capabilities. Key factors in deciding to 

leverage ML for control systems include the need 

for scalable operating systems, sensing modality 

that can support data-driven development, the 

ability of algorithms to manage the co-optimization 

of a plethora of inputs and outputs, need to auto-

determine optimal decision-making, tracking, 

estimation, and control functions, need to develop 

datasets and scoring suitable for training and 

validation, and intent to leverage increasingly 

efficient computational hardware and data 

storage.Developing and deploying machine learning 

(ML) for intelligent vehicle control systems 

introduces a range of complex challenges that must 

be navigated effectively. Crucial among these are 

the processes of capturing, labeling, and curating 

relevant data to train ML models effectively. This is 

essential for ensuring consistent and predictive 

performance in dynamic and evolving environments 

typical of vehicle operations.ML's integration into 

vehicle control systems necessitates a holistic 

approach encompassing full-stack development and 

deployment considerations, beyond merely 

advancing algorithmic models. Edge AI 

technologies now offer sophisticated capabilities in 

modular sensor fusion and embedded ML AI 

accelerators. These advancements enable high 

prediction accuracy within constrained latency and 

throughput budgets, even with limited 

computational resources. 

 

Fig :4: Schematic diagram for edge computing 

4.1. Benefits and Advantages  

Deployment of advanced driver assistance and 

autonomous vehicle features by using traditional 

embedded ML workflows and platforms could often 

result in sub-optimally trained models (due to the 

edge constraints related to cost, power, and thermal 

dissipation requirements), subjugation of edge 

safety and security considerations including 

functional safety (FuSa), ISO 26262 compliance, 

and security – to the overall model accuracy and 

task efficacy considerations. An erroneous 

adversarial interference with ADAS/autonomous 

vehicle decision-making functionality could result 

in disastrous consequences in the case of road-going 

vehicles; the safety and security concerns, 

especially concerning malicious adversarial attacks, 

exploitation, or 'fooling' of perception and control 

functionality have been very well documented. 

Consequently, the approach would often require 

large-scale latency-prone tests and validation, 

typically involving the execution of expensive 

simulation or over-the-air (OTA) update 
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methodologies, to address a wide set of possible 

adversarial inputs.Concerns related to training, 

validating, and ensuring the safety of deployed ML 

models – inference – then become the bottlenecks in 

the implementation process. However, many of 

these concerns (related to adversarial input 

generation, verification of FuSa properties, safety 

and security of the inference data and the response) 

could be better addressed by leveraging 

comprehensive integration of applicable ML, AI 

training, validation, and inference frameworks with 

the deployed edge AI, edge ML lifecycle, and run-

time control systems. While traditional defense-in-

depth approaches could be invoked to address many 

of the aforementioned concerns, smarter edge 

model-training integration could provide significant 

performance, power, and cost advantages to the 

vehicle controller, especially with the rapidly 

evolving features of advanced driver assistance 

systems. 

 4.2. Challenges and Implementation Issues 

In this section, we discuss the key challenges and 

implementation issues in the deployment of ML-

based AI systems into vehicle ECUs. Here, the 

presentation is relatively high-level, avoiding the 

use of notation and detailed equations to make the 

work accessible to both control and AI 

communities. We can summarize key challenges in 

embracing AI/ML-based vehicle control systems 

without loss of generality as follows: 

1. ML implementation for small, embedded control 

applications. ML-based methodologies are known 

to be computationally expensive and time-

consuming, especially from a hardware design, 

verification, validation, and implementation 

standpoints. Even with adequate HIL and SIL 

validation mechanisms, safety concerns may keep 

such AI-infused applications out of critical and 

safety-critical applications, such as lane change 

execution and high-speed platooning. On the other 

hand, with the ability of high-capacity and high-

performance mobile processors and sensor 

technology, cars are predicted to become HPC on 

wheels. 

2. Real-time learning algorithms. ML-based 

algorithms tend to require a large amount of data, 

including live data, data uploaded from all 

connected sources, and duly processed data to 

extract as much valuable knowledge from. On the 

other hand, driving situations are ever-changing, 

with a vast number of live scenarios emerging. 

Apart from this issue, a successfully trained system 

may fail to work when deployed in a vehicle with 

nominal and off-nominal conditions. Furthermore, 

how to let models dynamically learn interesting and 

relevant new corner-case driving scenarios, 

unknown in the development data set, for the 

allowed model to enclose safe convex sets must be 

resolved for the industry to adopt the proposed 

technologies. 

5. Case Studies and Examples 

In this section, we describe a few vehicle control 

case studies and examples to illustrate the wide 

variety of problems that edge AI can 

address.Collision Avoidance: The classic vehicle 

control system that most people think of first is 

collision avoidance, and with good reason, as it is 

surprisingly effective! A key aspect of practically 

all collision avoidance systems is the steering 

control system, which determines how to steer out 

of the way of the impending collision. It's a 

stunning fact that less than 1 degree of steering 

(about a 1-inch turn of the steering wheel) could 

effectively minimize the impact and save human 

lives when there were no better alternatives, such as 

hitting the brakes. In many cases, crashing straight 

ahead into a tree that was deflected away from the 

driver's door rather than into the side of the car is 

better than avoiding it. Braking has a similar aspect, 

especially in urban areas, where the incursion of 

other vehicles into the intersection during the red 

light is a significant hazard.Driver Distraction and 

Impairment: Vehicle AI-oT systems can also 

improve safety by alerting drivers that they are 
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distracted from safe operating. Substantial 

advancements in machines are poised to play a far 

stronger role in monitoring drivers virtually 

continuously, perhaps without being as intrusive to 

users as cameras since the system would be 

immediately disengaged if the driver's facial 

condition changed significantly and returned to 

normal in a predetermined period. There are several 

real-world examples where driver distraction was a 

condition, yet the driver-sitting-idly-in-the-driver's-

seat threshold had not been met in years. 

 

Fig :5:  Percentage of manuscripts coverage 

between different publishers 

 

5.1.  Real-world Applications 

Systems based on combining principles of control 

theory and machine learning can be used to derive 

effective control solutions for a range of vehicle-

related applications. In recent years, interest has 

surged in end-to-end learning formulations, where 

raw inputs from a vehicle's sensors can directly be 

processed to derive control actions. However, in 

practice, these schemes require an inordinate 

amount of labeled training data to develop accurate 

models that can deal with the wide range of 

conditions found on roads.Integrating edge AI with 

model-based control provides better network design 

and architecture flexibility and can lead to novel 

model-based formulations that can leverage data 

sources in an auxiliary manner. Importantly, such 

hybrid architectures also provide good 

interpretability and allow constraints to be enforced 

using heuristic pre-processing algorithms.Control 

theory is at the core of a wide range of safety-based 

vehicle control systems. The use of formal logic-

based control algorithms has been the cornerstone 

of high-assurance systems developed to date and are 

typically used to enhance AI-powered systems. 

Combining principles of the two methodologies in a 

principled manner has the potential to provide 

networks that can adapt to a diverse range of real-

world and safety-critical scenarios.Control-based 

learning is the term we use to describe such 

integrations with machine learning paradigms, 

which allow network parameters to be updated by 

propagating gradients through the control 

algorithms. Schemes based on this methodology do 

not require a succinct end-to-end model and thus 

offer a higher degree of robustness. Moreover, 

while AI techniques are good at deriving 

discriminative models based on data evidence, 

constraints that encapsulate useful invariants and 

knowledge of the operating behavior in closed, 

known environments may not be naturally 

engendered from data.In contrast, control 

techniques can be used to encompass these 

constraints, which are necessary to ensure that the 

model behaves influenced in a way that guarantees 

safety and reliability. 

5.2. Performance Evaluation Metrics                             

To evaluate the performance of the ML model, as 

well as evaluate the suitability of the approach for a 

given vehicle class, road condition, and scenario, it 

is necessary to define several evaluation metrics. 

Each metric emphasizes different aspects of model 

performance under diverse aspects of AV driving 

concerning various end goals and operational 

contexts. The critical performance evaluation 

metrics, their relevance, and some general 

guidelines are summarized in this article.Regarding 

objective performance, performance improvements 

through integration and calibration of the module 

are the fundamental aspects. It is beneficial to 

decompose the outputs of each module to evaluate 

and map their outputs to some relevant metrics. 

However, performance measurements concerning 
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vehicle control systems such as path planning and 

vehicle dynamics need further attention. These 

performance evaluation metrics, as well as some 

general guidelines, are summarized in this study. In 

particular, it is beneficial to map the outputs of the 

trained models to performance measurements such 

as computational speed, frequency of operation, and 

specific vehicle control results. The design and 

relevance of the performance evaluation metrics are 

especially significant, as enhanced performance 

plays a key role in the broader capabilities and 

viability of the ML implementation.To effectively 

evaluate the performance of machine learning (ML) 

models in autonomous vehicle (AV) applications, 

and to determine their suitability for specific vehicle 

classes, road conditions, and scenarios, it is 

essential to define and employ various evaluation 

metrics. These metrics are crucial as they highlight 

different aspects of model performance across 

diverse operational contexts and end 

goals.Objective performance metrics focus on 

assessing improvements achieved through the 

integration and calibration of ML modules within 

AV systems. It is advantageous to decompose the 

outputs of each module and map them to relevant 

metrics. Specifically, for vehicle control systems 

such as path planning and vehicle dynamics, special 

attention is needed to ensure that the performance 

metrics accurately reflect the system's operational 

effectiveness.Key performance evaluation metrics 

include computational speed, operational frequency, 

and specific vehicle control outcomes. These 

metrics help quantify how well ML models translate 

into real-world operational efficiency and 

effectiveness. Guidelines for defining these metrics 

are critical as they directly impact the overall 

capabilities and feasibility of ML implementations 

in AVs.Furthermore, the design and relevance of 

these performance evaluation metrics are pivotal in 

ensuring that ML models enhance overall system 

performance and safety. By aligning the outputs of 

trained models with measurable performance 

criteria, stakeholders can effectively gauge the 

practical benefits and limitations of ML-driven AV 

technologies.In summary, a comprehensive 

evaluation framework that incorporates these 

performance metrics is essential for assessing the 

robustness, reliability, and applicability of ML 

models in AV environments. This approach not 

only supports ongoing advancements in AV 

technology but also fosters confidence in deploying 

ML solutions for safer and more efficient 

autonomous driving systems. 

6. Future Directions and Emerging Trends 

In this chapter, we presented an approach to 

developing next-generation vehicle control systems 

for passenger cars and vehicles used in driverless 

cargo transport. This approach relies on integrating 

AI and adaptive learning into control system design 

and using models that are trained on and operate 

within the hardware constraints of edge acceleration 

devices. We demonstrated the effectiveness of the 

AI-based adaptive approach with two examples of 

automated lane-keeping and adaptive cruise control 

systems for driverless transportation in highway 

conditions. Both tracks are driverless transportation 

underlying the same design principles that 

seamlessly integrate with existing best practices in 

transportation management. The development of 

these systems leveraged the increased capability of 

edge hardware devices and the rich ecosystem of 

software and tools designed for AI edge 

applications. Racing toward the edge in 

transportation is just one aspect of the relentless 

acceleration that the transport industry is 

experiencing at all levels, from infrastructure 

administration, and vehicle operation, to logistic 

management.Vehicle control systems can integrate 

the data and technologies of the edge that form the 

basis of an efficient, robust, and safe infrastructure. 

The tension between the flexibility to absorb 

uncertainties and measured actions conducted based 

on scenarios pulled from the library-controlled 

environment will still have to be balanced. The 

growing ecosystem of edge and edge AI tools to 

help manage this tension can be leveraged and 

integrated iteratively to both speed up the 
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deployment of these advanced features and lower 

their development costs while improving safety. As 

edge technologies evolve, additional models—

currently only instantiated on simulation or cloud-

based systems—will be able to execute on the edge 

and interact with the rest of the transportation 

infrastructure in faster and more secure ways. Edge 

computing is supposed to form a clear symbiotic 

partnership with the cloud since certain other 

tasks—like computational best efforts such as 

training, autopilot feature development, and 

verification—are better carried out in a data center 

that offers the most computing power per watt (and 

per unit of CO2 emission). 

 

 
Fig :6:  Simplified diagram describing the 

REINFORCE algorithm 

 

7. Conclusion and Recommendations 

Automotive technology is evolving rapidly, and the 

next evolutionary steps are expected to come in the 

form of vehicle autonomy, electric propulsion, and 

multilevel integration of smart circuits. Meanwhile, 

the concept of a digital twin, which is an edge 

computing construct, is increasingly being accepted 

and used in the automotive domain. The vehicle-

integrated data analytics procedures involved in 

developing a digital car are pivotal to the method 

called predictive failure analysis, which is poised to 

create a profound impact on vehicle safety and 

reliability (VSR). After a brief introduction, the 

authors discuss how the use of advanced diagnostics 

can prevent failures and improve vehicle safety and 

reliability. Unmodified failure rates are inversely 

proportional to safety and reliability, and significant 

developments in data analytics and corresponding 

machine learning algorithms could result in AI-

based predictive failure analysis procedures that can 

digital twins in the automotive industry: predicting 

changes to vehicle structure and physics, and 

various design, simulation, and management 

applications [21]. 

Simultaneously, the ontological structure of a 

vehicle can also be used to design architectures for 

a Vehicle Design and Operation Support System 

(VIDEOS). The technical details and system 

realizations in actual vehicles are used to enrich the 

mode-based ontologies. Consistency and reasoning 

are also confirmed.  

 
Fig :7:  The basic structure of a CNN model. 

 

8. Conclusion 

The automotive industry, along with Information 

Technology, is converging with the emergence of 

Autonomous Connected and Electric Shared 

(ACES) vehicles. This not only promises the vision 

of safety but also peak performance. Towards 

achieving this goal, Edge Intelligence revolutionizes 

the paradigm of traditional vehicle control systems. 

With the ever-increasing advancements made in 

Deep Learning and Machine Learning models, Edge 

AI has demonstrated competencies in not only 

enhancing traditional vehicle systems but also 

paving the way for real-time implementation of 

such advanced models. In addition to this, the use 

cases that are employed act as essential ingredients 

for understanding societal impact factors and safety 

concerns. Having discussed the potential use cases, 

we offer beginning steps with research directions 

for future work. 

With the advent of electric vehicles, the traditional 

rules governing the engine torque and operating 

regimes change. Edge intelligence models can be 

employed for data-driven optimization of strategies 

for the unique characteristics of electric vehicles. 

Health Monitoring is extremely critical for safety 

issues dealing with Autonomous Vehicles. In 
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addition to these standard model and control 

problems, Edge Intelligence can also be 

instrumental in fueling the revolution of the two-

wheeler space. With advanced capabilities of Edge 

devices to execute sophisticated control algorithms, 

the vehicles can be connected to the central 

authority of the Vehicle-To-Everything network in 

the long term, meeting both vehicular safety as well 

as performance promised by Autonomous systems. 

8.1. Future Trends  

The plethora of sensor data will lead to increasing 

use of AI at the edge. Edge computing will impact 

applications at the edge, and innovations in areas 

like edge GPUs, distributed AI, turning AI chips, 

edge privacy and data security issues, IoT devices, 

and ensuring low-power consumption with the need 

for AI to execute will all be critical enablers. 

Advanced perception, reasoning, decision-making, 

and control technologies will benefit from edge AI. 

The capital-effectiveness of integrated approaches 

that use AI for sensor fusion and decision support at 

the edge versus centralized processing will be an 

important factor impacting the way vehicles are 

equipped with computing resources.In the realm of 

autonomous vehicles, the top priority topics to be 

addressed for continued development are related to 

legal, ethical, and regulatory frameworks. There is 

an increasing need to build an understanding of the 

domain so reliable, safe, and sound systems can be 

developed, comply with ethical and legal 

assumptions and requirements, and show strong 

societal engagement focused on monitoring and 

discussing the main barriers. To harness the full 

potential of AVs, it is critical to address the 

challenges highlighted by the technology roadmap, 

which allows the setting up of an EU strategy that 

harmonizes national strategies, promotes the 

availability of common pilot zones, and ensures 

synchronization of the timeframe of implementation 

across all EU countries. 
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