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Abstract 

The emergence of Additive Manufacturing (AM) has created a plethora of opportunities for different 

industries due to its application in 3D printing technology. Since its introduction back in 1980, 3D 

printing technology has overseen numerous developments and changes.  A rarity back in the day, 3D 

printing has now become cheaper and available for everyone who wishes to learn and experiment with the 

technology. Although 3D printing technology can produce optimized and detailed printing at a cheaper 

rate than in earlier days, it can still be time-consuming and quite costly due to the technology's tendency 

to follow the trial-and-error method when printing. A proposed solution to such an issue is by 

implementing Digital Twin (DT), a virtual representation of an object that provides real-time reflection 

between the virtual and physical space and can interact and converge with the flow of data between both 

spaces. However, despite the need, Digital Twin is yet to achieve its fullest potential due to a gap in 

knowledge regarding its concept and development methods. This paper, therefore, intends to provide a 

brief review regarding the implementation, applications as well as challenges of DT for 3D printing, to 

provide an understanding of the current trends that can be utilized for further research regarding Digital 

Twin and its implementation in 3D printing.  
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Introduction 
Additive manufacturing (AM), also known as 3D printing technology or Digital Fabrication technology, is a 

revolutionary technology that creates objects in a physical form from geometrical representation through 

successive addition of materials [1]. According to the American Society for Testing and Materials (ASTM) 

Committee, additive manufacturing is defined as "a process of joining materials to make objects from 3D 

model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies". Likewise, 

ASTM defines 3D printing as "the fabrication of objects through the deposition of a material using a print 

head, nozzle, or another printer technology, often used synonymously with additive manufacturing" [2, p. 2]. 

3D printing has become an ever-growing technology that is currently widely used across the globe by the 

manufacturing industry to produce custom goods.  

 

3D printing technology was first conceptualized by Charles Hull in the 1980s for commercialization 

purposes. [1]. Because AM has emerged as rapid tooling and manufacturing technology, it has since then 
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rightly positioned itself at the cusp of introducing the Fourth Industrial Revolution [3]. Over the years, 

numerous technologies pertaining to AM have been developed such as Stereolithography (SLA), Fused 

Deposition Modeling (FDM), Selective Laser Sintering (SLS), Laser Engineered Net Shaping (LENS), and 

Laminated Object Manufacturing (LOM) [4]. With the help of AM, a computerized 3D solid model is 

converted into a standard AM file format such as the traditional Standard Tessellation Language (STL) 

format in order to transform it into a finished product [5]. As additional cutting tools or fixes are not 

required, AM also helps in the production of complicated objects that are tough to produce through other 

processes, mostly due to the complex geometry of such objects.   

 

Before the introduction of 3D printing techniques, traditional methods that were employed by companies for 

industrial prototyping were not able to provide any competitive advantage in their industry. Eventually, in 

1980, additive manufacturing was crucial in introducing a new automated fabrication technique of 3D solid 

objects that originated from a digital computer-aided design (CAD) file. During its early days, the 3D 

printing technology was riddled with inadequacies such as slow and expensive printing, substandard level of 

details and quality of finish, use of plastic as the only material, and so on [6]. Over time, the technology has 

evolved and has become more useful due to its increasing affordability and fine attention to detail [7]. 

Designers can now examine their designs in physical form and perform necessary changes for better 

optimization of their products.  

 

While most of the pre-existing issues have been addressed innovatively, there are still a few drawbacks of 

AM. For instance, in the case of metal printing, fabricated items can have uncontrolled porosity as well as 

brittleness and become prone to shrinkage and brittleness. Similarly, the FDM can also undergo challenges 

related to the quality of the surface of the printer as well as the printed object's structural integrity due to the 

problems related to proper tuning of the numerous process parameters before printing. Additionally, failed 

3d prints can also be the result of other issues such as motor stall, timing belt break, breaking failure, nozzle 

blockage, items getting detached from the 3d printer's bed, abnormal extrusion and so on. Oftentimes, such 

errors result in 19% of material waste on average whereas, in case of FDM 3D printers, almost 34% of total 

materials, including the material used for support structures are wasted [8]. As a result, there have been 

breakthroughs in fourth industrial revolution technologies, often characterized by big data, Machine 

Learning (ML) along with the Internet of Things (IoT) to solve such issues [9]. The development of 

technologies related to Artificial Intelligence (AI), ML, Deep Learning (DP) as well as big data has therefore 

become an essential step during data collection from different sensors that are able to provide most of the 

relevant data [10]. Such technologies enhance the efficiency of existing systems due to their tendency to 

work through complex problems.  

 

Apart from the aforementioned technologies, another modern technology that is often considered the 

backbone of industry 4.0 is the Digital Twin (DT), often deemed as the doorway between imagination and 

the Cyber-Physical System. DT is the physical product‟s virtual representation which consists of details 

about the physical product and can simulate the behavior after the cyber-physical fusion [11]. Digital Twin 

was first conceptualized by Michael Grieves while working at NASA with John Vickers [12]. During a 

lecture in 2003, Grieves attributed the origin of DT with respect to the product life-cycle management and 

explained the 3 components of Digital Twin: a physical product, the product‟s virtual representation and the 

two-way connection of data that gathers and exchanges detailed information about the process from the 

existing physical product to the virtual representation and vice versa [13].  

 

Glaessegen and Stargel proposed another definition of DT in 2012 as the combination of three different 

components, namely the physical object, the virtual product and finally, the interrelation between both of 
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them [11]. DT is therefore a representation of the fabrication service or process in the digital virtual world 

that is often guided by preset properties as well as conditions. From a cyber-world context, DT enables a 

mechanism for the digital transfer of real-world items and processes together with their relevant surrounding 

environment. Thus, DT can help optimize items or processes by analyzing and understanding them without 

the need to allocate resources for trial and error methods [14].  

 

The implementation of DT in AM technology has been crucial when overcoming issues related to additive 

manufacturing such as saving time as well as improving part quality [15]. Gaikwad et al. [16] has proposed 

three ways how DT can impact AM significantly. According to the study, it can be done by optimizing the 

process parameters such as scan speeds as well as laser power and by providing guidelines for build 

orientation, support placement and part design. Secondly, it can be done by identifying and observing 

process faults through the combination of theoretical predictions and real-time sensor data in order to 

provide a model-based feedforward control in AM. The final step is by reducing computational burden 

during multi-scale modeling along with storing and analyzing huge volumes of in-situ sensor data. 

Generally, implementation of DT consists of three steps. The first step in the implementation cycle is to 

create a digital twin prototype (DTP) that consists of data related to planning and analysis along with the 

ways to implement them into the physical system. This is followed by designing the digital twin instances 

(DTI) of each physical object and its properties. Finally, the systematic properties of all digital twins need to 

be integrated (digital twin aggregate - DTA) to ensure further predictions can be made by understanding the 

acquired data and information [14]. Likewise, for smart manufacturing, the digital twin also has the 

possibility to assist when performing the monitoring as well as troubleshooting tasks of machine tools in an 

autonomous manner. This can be achieved by developing a special type of signal-based sensor twin and 

adapting the sensor twin into the cyber-physical systems [17]. Moreover, the use of innovative technologies 

- the pillars of industry 4.0, would enhance the effectiveness of DT and its application in the cyber-physical 

system. If implemented effectively, DT can represent its physical twin with accuracy, realism and fidelity.  

 

 
Figure 1: Pillar Technologies of Digital Twin [14] 
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Implementation of DT in different fields: 

Due to the increasing interest shown in DT since its conceptualization in 2003, it has made its way into some 

of the global industries over the past couple of years [18]. Together with IoT, DT has enabled individuals 

and companies to optimize and provide better results by detecting issues sooner and predicting outcomes 

more efficiently and accurately to build better products. As digital Twin can also be used during product 

redesign, it can be immensely helpful in the process of product improvement. Such implementation of DT in 

the redesign process can also foster innovation and improve the quality of physical products [19]. DT‟s 

characteristics and potential has therefore been significantly useful in multiple industries. Some of the fields 

that have been impacted by digital twins are: 

 

1. Smart Cities: 

The use of DT has been hugely effective within smart cities due to the integration of IoT and the subsequent 

development in connectivity [12]. Integrating IoT with cloud computing along with the implementation of 

DT is essential when building smart cities. DT has become more influential while offering smart solutions in 

construction, energy sectors and transportation - all of which are crucial during city planning [20]. 

Advancement in DT is bound to happen with the increase in the number of smart cities. It can be further 

helpful when assessing test scenarios and allowing DT to analyze the environment through the changes in 

collected data. Its ability to detect the actual and possible future scenario can be effective towards traffic 

management [21], renewable energy [22] and livestock management [23].  

 

2. Health Care: 

AI algorithms along with DT have the potential to oversee how certain changes in a person's lifestyle can 

affect their health. Recommendations can also be made if any issues can be found related to such lifestyle 

using both DT and AI [12]. A study [24] has demonstrated how AI and IoT can be used to create DT avatars 

of people, giving them the ability to envision changes that can happen with their physical self through such 

avatars [12]. Another study discusses the potential of creating a patient's DT with the help of Industry 4.0 

connectivity and an autonomous surgery harnessing IoT. A working prototype in the form of a remote 

surgery application that can be accessed through 4G mobile network and uses virtual reality is also proposed 

by the authors to deliver precision surgery [25]. 

 

3. Manufacturing 

As manufacturing companies often track products and processes in order to become more efficient and cost-

effective, implementing DT can be highly beneficial for manufacturers [26]. When it comes to 

manufacturing, DT can help predict issues sooner as it can give real-time data on machine performances and 

production lines [27]. In the case of the automotive industry, the DT of the car engine or other parts can be 

used for simulation while data analytics can be used to predict the component‟s present as well as future 

capabilities [28], [29]. Such use of DT has most famously been implemented by Tesla [12]. Likewise, in the 

construction industry, DT as well as data analytics can aid during the development stage of a building when 

predicting and maintaining structures by comparing virtual and physical structures with greater accuracy 

[30]. Adopting DT-based technologies such as BIM, also known as Building Information Modeling, has also 

been influential when it comes to changes within the construction industry [31].  

 

3D printing  

Basically, it is the process of printing layers on top of one another in order to produce three-dimensional 

objects by extracting details about the item from its digital file. While David E. H. Jones is credited for the 

introduction of 3D printing in 1974, Chuck Hull of 3D System Corporation followed through on the notion 
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and filed his own patent in 1984. 3D printing has since surpassed the standardization as well as printing of 

smaller tools and objects and has continued its development in material application [3]. The evolution of 3D 

printing technology over the past couple of decades has also resulted in a reduced cost when purchasing 3D 

printers, which has created a surge in its commercial use [32]. Nowadays, more than one hundred types of 

raw materials are used to manufacture numerous items such as bio constructs, singular parts, spare parts, 

micromachines, electronica and even jewelry. This has created a breakthrough in the 3D printing industry as 

policy makers, entrepreneurs, academicians, and society are certain to encounter numerous opportunities as 

well as challenges in the coming future [33]. 

 

3D printer consists of basic parts such as print bed, which is the flat surface that is used to print the object;  

extruder, which feeds the filament onto the nozzle for heating; filament, which is the material that enters the 

extruder as well as the nozzle and is used to print and finally the motherboard, which is the control board of 

the printer [34]. Referencing to a computer aided design (CAD) model, 3D printing uses a layer-by-layer 

additive manufacturing method to create an object from various materials such as polymers, ceramics, 

metals, composites, resins and other smart materials such as nickel-titanium as well as special materials such 

as food items such as chocolate, meat, sauce, candy and so on [2]. Regarding applications of 3D printing, 

food layered manufacture or 3D food printing can be used to produce various food products for those who 

need a strictly controlled diet [35]. Similarly, 3D printing is also one of the leading technologies that is 

prevalent in the manufacturing process for pharmaceutical as well as healthcare technology due to its cost-

efficient economical process and high productivity. [36] 
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Figure 2: Schematic Diagram of a 3D printer [2] 
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Figure 3: Ender 3 Pro Printer along with its parts  

 

 

DT Application for 3D Printing 

It is fair to say that the current impact of DT when it comes to 3D printing technology has been influenced 

by the implementation of DT in numerous sectors. Currently, numerous applications of 3D printing are 

found depending on the type of 3D printing technology. In a study by Mourtzis et al. [37], DT for Fused 

Deposition Modeling (FDM) is designed and developed to integrate quality assessment modules. Similarly, 

a database has also been modeled in order to monitor the results of experiments conducted in the study. The 

DT will also be used to provide remote control and monitoring capabilities and to compensate for existing 

errors. Furthermore, implementation of Augmented Reality (AR) interface is also proposed. AR-based DT 

technologies for AM enables a more convenient interaction between human and machine [38]. The research 

for AR is mostly focused on reducing production cost of AM products. This can be done either by detecting 

a process that has completely failed and stopping the process or by making sure to prevent low-quality and 

defective 3D prints with the help of results based on simulation as well as references from previous prints.  

 

The study [37] also talks about how DT is involved in the overall 3D printing method. In order to achieve 

the rapid prototyping effect, the object's 3D CAD is sliced into a layer-by-layer section before 3D printing. 

A dataset is then created with the help of the slicing algorithm that corresponds to the slices of the item, 

which includes the details about the size, shape and so on. This is followed by creation of G-code 

instructions, which are transferred to the 3D printer for the manufacturing process [39]. For an FDM 3D 
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printer, the DT will be designed as a form of attachment to the conventional setup. As some commercial 3D 

printers operate processes remotely, cloud databases are included in the workflow to ensure DT has access 

to the stored information. The proposed DT will also utilize AR interfaces where processes are replicated 

[38]. Users will then be able to inspect simulation of the printer's previous prints and the stored results and 

adjust slicer settings by referencing previous prints.  

 

The paper [38] also proposes using cumulated small cylinders to estimate the component's geometry called 

'Volume Approximation by Cumulated Cylinders (VACCY). VACCY technique is more pragmatic when 

simulating the virtual component's printing process in the digital twin. For mobile AR-platforms, 

implementing AR based DT needs a huge amount of calculation power. DT ensures consistent delivery of 

details in a summarized way so that end-users can make critical decisions in a short period of time. The 

paper [40] talks about the implementation of desktop 3D printer's DT that can be used to display the printer's 

parameters and related alerts in real-time and facilitates control of the printer‟s crucial functions with the 

help of a lightweight AR model which helps maintain bi-directional information exchange. The paper 

concludes that DT was exported as an Android application where the model is displayed right after the 

image target is scanned. The DT correctly displayed the 3D printer's parameters and successfully transferred 

the control instructions while the corresponding changes were also reflected in the 3D printer. The 

implemented DT can achieve its objective of data abstraction and enables faster understanding and seamless 

control of its respective processes. Additionally, the paper also showcases that 11 respondents out of 18, 

who had never used a 3D printer before, are also more likely to utilize the DT interface. The following 

figures (4 and5) shows the screenshot of DT as can be seen in the Android device and the DT displaying a 

notification alert when the temperature for the print bed exceeds a specified threshold.   

 
Figure 4: Output of AR Device 
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Figure 5: Alert for High Print Bed Temperature 

 

Odada et al. [41] presented in their paper the design and use of FDM 3D printer's data-driven DT that 

monitored the 3D printer's motion in real time. The system consists of FDM 3D printer's virtual model, 

which is connected with the physical printer. The linked virtual model followed the motions of the physical 

3D printer's main parts with less than half a second lag. With the help of this, the user could extract 

information related to the virtual printer's printing process such as the vibrations in different parts of the 

printer and compare the link with the observed motions. With the help of MS Excel as well as Kepserverex's 

DDE driver along with a data logger, the authors were able to develop a history tracking platform that can 

run simulations of part printing operations, which enabled the comparison of datasets generated at different 

times. Likewise, the paper [42] presents a DT architecture that caters to performance monitoring as well as 

anomaly detection in additive manufacturing processes. The DT proposed in this paper consists of a hybrid 

automation model at its core, which is capable of capturing both functional as well as the continuous 

dynamics of the AM processes along with a flexible function block which can be used for numerous 

objectives like performance monitoring and anomaly detection. The authors also inform on the nature of 

their future work, which will mostly focus on developing efficient ways for real-time data processing and 

STL monitoring along with efficient schemes for system monitoring as well as control for multiple AM 

machines. 

 

Paper [43] discusses the need to have a more efficient and cost-effective DT driven virtual verification 

process for 3D printers and its designs. According to authors, the application of a Digital Twin driven virtual 

verification addresses the gap between physical simulations and virtual simulations of 3D printed design and 

geometrical CAD design as CAD software is not able to analyze the functionality as well as the performance 

of 3D printers together with its designs. The DT approach can measure physical designs to maintain 

accuracy and track the historical database of previous models for future comparison. Similarly, the DT also 

allows simulation as per the changes in the real environment such as differences in humidity as well as 

temperature. The increasing use of sensors and IoT technology along with the advanced form of machine 

learning technologies as well as big data analytics enables uploading of real-time data and updating the 

virtual world continually. Finally, authors highlight the need to develop DT that focuses on the analysis of 
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current as well as future technologies in order to develop a DT driven virtual verification. With DT, it is also 

easier for designers to forecast behavior of the product through virtual verification as designers do not need 

to wait until the product is completely manufactured in order to alter the product's design [44]. Virtual 

verification through DT also helps in reducing inconsistencies between the existing behavior and the 

expected behavior while also minimizing costs and design cycles.  

 

Another paper by Stavropoulos et al. [45] talks about the design as well as the implementation of DT for 

Additive Manufacturing processes. According to the paper, AM procedures are often optimized through 

offline monitoring and modeling tools due to the lack of proper real-time decision support as well as 

adaptiveness that are offered by DT. The paper proposes a DT supporting platform that gathers current 

details and provides optimization to networked AM producers by taking into consideration cycle time, 

connectivity to production planning and energy consumption. The proposed model details the users to 

improve their product quality and reduce the material waste for products which do not fulfill the 

requirements. By providing adaptivity and control, the usability of the model in a DT aims to improve the 

accuracy of production planning by optimizing the selection of values for process parameters and positively 

affecting the build time. Build time is the amount of time taken to print an object, without including the 

design time, conversion of the CAD file to STL file or the creation of G-Code [46]. The software then 

collects all the details and offers secure storage so that it can be easily accessed by other authorized users. 

The quality of product can be improved whereas the energy consumption is decreased with the help of the 

methodology outlined in the paper for different FDM printers.  

 

Knapp et al. [47] proposes a recourse to rigorously validate a DT of AM process that showcases accurate 

projections of the temporal as well as spatial variations of metallic parameters which influences the 

component‟s properties and structure. Digital twin and its key building blocks use a transient, 3 dimensional 

model which calculates solidification parameters, temperature and velocity fields, cooling rates and deposit 

geometry [48]. Such a DT model is presented and validated along with experimental information of single-

pass, single-layer deposits. The proposed DT model was able to correctly determine 3D curved surface 

deposit geometry for single-pass deposits, velocity distributions and transient temperature, solidification 

parameters, cooling rates, micro harness and secondary dendrite arm spacing in a computationally efficient 

manner. Additionally, the given framework was also able to reduce the required time for costly empirical 

tests in order to assess the influence that process variables have on single-layer deposit geometry, cooling 

rates and some structural features.  

 

In the paper by Moretti et al. [49], an original form of optical imaging solution that can be used for 

identification and stacking of layer contour is proposed. The proposed solution addresses the current 

challenge related to image and range/resolution interpretation, based on the prevalent manufacturing process 

parameters through DT. DT also ensured the vision system uses a high resolution image only when 

necessary by tracing the layer contour‟s predicted positions when obtaining a sequence of images. Similarly, 

with the help of DT, the vision system is also able to algorithmically interpret images by focusing solely on 

relevant areas indicated by simulated prediction, which reduces the possibility for false positives. Likewise, 

it can also monitor the quality of contour through a detailed differentiation between the reference contour 

and the measurement acquired through simulation that replicates the actual fingerprint of the process, 

instead of relying on the CAD model's slicing edge. Furthermore, issues related to fabrication can be 

detected by the system, which causes the alarms to be triggered, thus providing an option to terminate the 

build during its early stages or initiate necessary actions to correct them.  
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Sieber et al. [50] present the formulation of DT through the integration of geometrical measurement data by 

enhancing an optical model. This technique aids in strengthening the high precision process in 3D printing 

in order to fulfill conditions pertaining to optical precision requirements. In the simulation model, a process 

flow between fabrication by inkjet printing, design of freeform components, fabricated optical suface's 

geometrical measurement and the measurement data's feedback was developed and their interfaces have 

been defined. By assessing the measurements, the printing process was able to adapt in order to compensate 

for the process errors and tolerances. Additionally, the manufactured component's performance was 

simulated and compared with the nominal performance, and the enhanced model could be used for 

sensitivity analysis. In this paper, a mathematical software called Mathematica was used to calculate the 

arbitrary freeform optical surface. Likewise, OcticStudio - an optical simulation tool was introduced to 

conduct an optical analysis of the whole system model. The communication between both tools - 

Mathematica and OpticStudio was made possible through Wolfram Symbolic Transfer Protocol (WSTP) to 

carry out an automatic analysis of the optical properties of different variants.  

 

In a paper by Gidwani et al. [51], a DT additive reconstruction tool is implemented to create an explicit 

characterization of layer by layer 3D printed parts in CAD software. This approach outlines the principle of 

DT reconstruction which can be applied to numerous CAD software while keeping a distinct universal G-

Code Parser module that is written in a Python script. The method aims to maintain a simple workflow 

without loss of information. Additionally, the computational time can also be minimized by excluding 

Boolean Union operation if needed and selectively reconstructing and unioning the specific layers after 

specifying the algorithm's layer numbers. Another paper by Weinand and Rosengerger [52] refers to 

software solutions for creating DT. In the paper, the DT of 3D printers are developed through creation and 

validation of the requirements within the tested programs. Instead of utilizing DT to simulate a production 

line, the goal of the paper is to use the tested program to simulate the 3D printer.  

 

Mukherjee and DebRoy [53] explain in their paper that the DT of a printing machine can minimize the 

number of tests related to trial and error and help acquire the required attributes of the product as well as to 

become time-efficient for part qualification in order to ensure the numerous printed components remain 

economical. With the help of a comprehensive DT for 3D printing machine that includes mechanistic, 

statistical and control models of 3D printing, ML as well as big data can minimize counts for trial and error 

testing as well as the time that is normally taken between the product‟s design and production, all the while 

reducing defects. The schematic representation of the DT and the mechanistic model is shown in the figure 

below: 
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Figure 6: Schematic representation of the Digital Twin (above) and a mechanistic model (below) [53] 

 

Machado et al. [54] iterates the influence of DT in the AM industry and how IoT and DT are the way to 

move forward for the said industry. IoT has been hugely influential for manufacturing technologies when it 

comes to being able to produce faster, in a more dynamic way by ensuring quality standards are maintained. 

The fundamental aspects when developing a DT of the optical system of a powder bed fusion (PBF) 

machine is analyzed along with the concept of DT to the laser source as well as to the galvanometric 

scanner. The process proposed in the paper is fundamental for the integration of IoT information modeling 

towards the additive manufacturing solutions. Furthermore, the paper also analyzes how technical details 

can be generated during the process and how the data can be used to develop a DT that can connect IoT 

devices into an AM system. As per Chhetri & Faruque [55], in order to highlight and implement the benefits 
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of digitalization to legacy manufacturing systems, Internet of Things (IoT) is used so that it can address 

previously unresolved issues pertaining to DT. IoT is used to build DT with the help of an indirect medium 

such as side-channels, that can help localize irregular faults and understand the manufactured product‟s 

quality while also keeping itself updated.  

 

In this paper [56], a DT-based cloud-edge collaboration architecture for 3D printers is proposed for the 

cloudification of manufacturing equipment in the cloud manufacturing environment. In order to resolve the 

lack of network availability by traditional cloudification, time-sensitive services are deployed at the edge, 

realizing the local extensive of cloud services. This process aids in defining the DT information model of 

FDM AM, which enables real-time controlling and monitoring based on the DT. The development of edge 

computing and its integration with DT and IoT can solve numerous issues and improve performance [57]. 

As mentioned in the paper [56], edge computing can mediate issues related to the large amount of generated 

data, time delay and security concerns. Through cloud-edge collaboration, verification of the effectiveness 

of the process is made possible by implementing an application case, which in turn provides a reference 

solution for other manufacturing equipment's cloudification in the cloud manufacturing environment.  

 

The paper [58] talks about a novel DT ecosystem which can be implemented in order to perform process 

monitoring, testing along with remote management of AM - FDM machines in a simulated virtual 

environment. The DT system proposed in the paper consists of two approaches: a data driven approach by 

OctoPrint - an open-source 3D printer web controller application that can capture its key parameters as well 

as status. The second method is using externally mounted sensors to perform a data-driven approach in order 

to estimate the 3D printer‟s actual behavior and attain precise synchronization between the virtual 3D and 

the physical printers. The DT system can capture the whole operation as well as capability of the FDM 

machine and hence can be useful during optimization as well as in-process analysis. Furthermore, a DTE 

architecture was applied to the system which consists of two key components: the data acquisition-

processing-distribution component (APDC) as well as the virtual-representation component (VRC). Both 

components are used to interconnect and coordinate elements that incorporate the Digital Twin Ecosystem 

(DTE) system and can achieve continuous synchronization between the digital system and the physical 

asset, with a mean response time of 265.94 ms.  

 

Octoprint integrates 3D printer control software with a web interface so that the printer can be controlled 

and its progress can be monitored over the connected network. It is a free and open source software that 

sends Gcode to the remotely connected 3D printer, which allows to perform and observe every aspect of the 

printer with the help of a Raspberry Pi [59]. The server for Octoprint and its web interface also provides 

24/7 network access. With a 24/7 network access, total control of the printer, its axis movements, extruder 

behavior, tools temperature and numerous other real time features such as launch, pause, resume, cancel 

along with serial communication with the 3D printer, managing G-code commands, time lapse generation to 

locate and resolve printing errors are possible [60].  

 

As per the study conducted by Henson et al. [61], part distortion during AM can lead to significant waste of 

resources and catastrophic failure. Current research is more focused on identifying and detecting specific 

causes that might cause part failures such as extruder clogging. Integration of early warnings and fast 

detection systems for print failures has always been a top priority to minimize errors [62]. However, as print 

failures can also be the outcome of numerous errors - which can be both known and unknown, relying on 

identifying individual root causes may not be the best idea. The authors therefore propose adoption of DT 

strategy to differentiate model predictions to parameters that are obtained from the in-situ sensing data. The 

paper also focuses on DT strategy to detect distortion by generating a multi-view optical sensing system for 
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movable print beds and failure detection methods by analyzing multi-view of part images layer by layer. 

This methodology performs real-time comparisons of pre-print simulation of ground truth images and print 

images that are acquired throughout the printing process in order to determine whether the print should be 

continued or terminated.  

 

3D Printer Challenges for Digital Twin 

 

When it comes to the manufacturing environment, mostly physical objects are used for engineering. 

Converting a digital design towards a working prototype was not only costly with fewer margin of errors, 

but the price to pay for having to go back to redesign was similarly time-consuming and expensive. DT, with 

its capability to model as well as simulate digitally, has advantages such as reducing time and money for 

trial and error optimization, reducing defects and minimizing product qualification procedures, has been 

revolutionary in the manufacturing industry due to its potential [63]. However, implementation of DT still 

has a few drawbacks and challenges as DT models still need other conceptual details, maturity as well as 

integration across the fast iterations and lifecycle in order to close the gap between the limitations of the 

current system engineering models [64]. DT keeps in check information related to the products and its 

performance that are based IoT-based smart connected systems and products. There is however a definitive 

lack of IoT's standards and its integration as well as alignment on a global scale. Due to the ties between DT 

and IoT, standardization of IoT is an essential step to achieve maximum benefits. Therefore, standardization 

of IoT and its supporting technologies has become essential to realize a smart society through various 

technological services [65]. 

Similarly, integration of a cyber-physical closed-loop system is crucial for optimization through Digital 

Twin. An efficient DT can integrate all the manufacturing processes through a closed-loop system and can 

be used for optimization of manufacturing, product design, maintenance and so on [66]. The importance of 

closed-loop systems is further highlighted in a study [67] where the authors have noted that a closed-loop 

DT for manufacturing can be introduced by integrating DT with digital thread on the software platform 

through the product manufacturing life cycle. Integration of both IoT and DT can form a closed-loop DT 

system that can collect processing information and provide its details as a feedback to the manufacturing 

system throughout the design and manufacturing process. By doing this, product issues or adjustments can 

be updated at the same time it has been noted, thus making the manufacturing system an autonomous, self-

optimizing and intelligent production system through the integrated smart algorithm. As a result, DT cannot 

only describe the behaviors related to the real system, but can also propose solutions to resolve such issues 

[68]. However, there is a deficiency of a closed-loop data feedback system that can converge the data 

between physical and virtual space. Developing a closed-loop DT system is therefore integral, as it can 

alleviate numerous problems that occur during the printing process.  

DT‟s scope can range from a small manufacturing product or process to a complicated and highly 

sophisticated production system which provides the required accuracy with the help of smart data analytics. 

Hence, system architectures must be scalable in nature in problem size function, IT profile as well as the 

range of viable models with desired capabilities. Although there are basic ideas and components regarding 

what Digital Twin should do, there is a lack of universal and standardized characteristics of DT [69]. Full 

potential of DT is yet to be realized due to the lack of standard practices and terminologies which indicates a 

lack of widely accepted Digital twin framework. This shows that there is a need to have a more scalable and 

efficient system architecture for the design and development along with the application of DT [70]. 
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Similarly, information sharing is also one of the hurdles in the modern manufacturing industry due to 

various factors such as culture, company policy, data ownership and so on. Both internal as well as external 

sharing of data can become a major challenge outside of the DT's engineering and technological 

complexities. Moreover, the consistency when it comes to sharing data and necessary information between 

relevant stakeholders among the company's supply chain is also crucial to the validity of DT. Hence, one of 

the key functionality of DT is also the digitization of the supply chain within a company. However, supply 

chain‟s digitization is a complex process due to the considerable amount of effort and time it takes for 

adequate technological advancement and financial investments [64]. Furthermore, issues related to costs of 

implementing technologies such as sensors and computational resources along with the necessity of catering 

to the long term and large scale requirements of big data analytics and AI also poses a hindrance for 

effective DT development and integration [69].  

Wagner et al. proposes that the key future challenge for digital twin will be to define and develop a 

compatible structure for a comprehensive use of DT across the complete product engineering process due to 

its need to incorporate production planner concepts and product designers [71]. As different technologies 

need to be merged together to create a single system DT that meets the specified framework, Odada et al. 

[41] talks about the need to identify the ideal level of detail for the DT early in the process. Similarly, 

numerous other challenges such as the price of using different technologies during the design and 

development phase for the finalized systems as well as the lengthy time period during development are also 

mentioned in the paper. Also, some other challenges as specified by Bevilacqua et al. are data privacy 

issues, security related issues and connectivity between the virtual and real system [72]. Along with that, 

proper management of the real-time data in order to ensure the system is more understandable and the 

accuracy level of the DT are also some of the challenges. Moreover, integration between the virtual entities 

involved in the process, ownership of the involved data, technical implementation and the accuracy level of 

the DT depending on factors such as computational processing power, network speeds and so on are also 

some of the challenges that implementation of DT for 3D printers may face [13] 

Conclusion 

3D printing technology along with its implementation in additive manufacturing has established itself as one 

of the pioneering technologies in the world today. Over the years, the application of 3D printing has 

successfully contributed towards a collaboration of digitally designed products and a final manufactured 

product. The 3D printed products are now being manufactured in numerous fields as outlined earlier such as 

to create models for smart cities, manufacturing industries, healthcare sectors and so on. Together with other 

fourth industrial revolution concepts such as Internet of Things (IoT), cyber-physical systems, cloud 

computing and data analytics, 3D printing has been widely adopted for research as well as industrial and 

business purposes in order to better optimize their product and services. 

However, the additive manufacturing industry is still susceptible to imperfect implementation due to an 

absence of machine driven simulations that can process closed-loop interactions with the printer and produce 

details on a real time basis when printing. Users are still likely to go through a trial and error method to 

optimize the printed parts, which often results in a wastage of resources. Any prevalent reasons that may 

cause printing failure should be addressed beforehand to ensure the process is completed efficiently. While 

anticipating problems can provide better output, it is not always ideal as issues may arise during the printing 

process such as changes in temperature resulting in nozzle clogging and warping of printed products. 

With the help of Digital Twin, numerous issues that are faced in 3D printing technologies can be resolved. 

Complications pertaining to printing processes can be understood and solved through DT due to its real-time 

transfer of data between both virtual as well as physical processes. While the application of Digital Twin has 
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exponentially increased in other industries, in case of 3D printing, DT is still in its infancy. Mostly because 

for 3D printing, the concept of DT is still abstract as there are no standardizations regarding the notion and 

application of digital twin in 3D printing. Research is still underway on how to develop a DT that can 

perform efficiently. For better optimization, sensors and other web based applications such as OctoPrint are 

currently being used to create a more robust DT platform. Future research should focus on creating an easy-

to-use DT for 3D printing that can increase efficiency when printing and provide a real-time closed-loop 

feedback system between physical and virtual space in order to resolve any errors that arise during the 

printing process.  
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