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Abstract 

k-Nearest Neighbors (k-NN) is a well-known algorithm, used for classification and regression. Its usage 

in time series forecasting is limited though, as demonstrated in relevant research, despite its simplicity 

and competitive accuracy. This work presents a method for time series forecasting, based on k Nearest 

Neighbors (k-NN) regression, which can be utilized for macroeconomic variable forecasting, like Gross 

Domestic Product (GDP). The approach focuses on one-step ahead forecast, and uses R package libraries 

for the implementation. The method is applied to forecast Greek Gross Domestic Product and the 

forecasting accuracy results are quite high and comparable to ARIMA approach. The work offers a 

competent approach for time series and GDP forecasting, which is comparable to traditional statistical 

approaches and can be further developed. Experimentation on diverse data sets can improve parameter 

tuning and aggregation approach, and can lead to improved accuracy.  

 

 

Introduction 

Forecasting is a valuable aid for quite diverse domains, either in public sector or industry. Research on 

forecasting methods, including development of new algorithms and methods, optimizing existing ones, is of 

real interest for both researchers in the field and beneficiaries [1]. In economics, the ability to forecast 

macroeconomic variables accurately, using time series data, plays a significant role for policy makers, either 

central banks, or states globally. Traditional time series analysis and forecasting methods, based on 

statistical approaches, have been developed at a large extent during the previous decades, because of 

computing capability developments [2]. In time series analysis, linear statistical models, like ARIMA, were 

dominating the forecasting domain for decades. However, due to some limitations in real life applications 

[4], nonlinear models were also developed, such as the bilinear model [5], or the autoregressive conditional 

heteroscedastic model (ARCH) [6]. Research in machine learning, during the past two decades, has however 

led to novel forecasting models, which are competitive to the traditional. New methods have been 

introduced, following a bottom-up approach, based on the underlying data rather than an explicit theoretical 

model [3]. Even if there is some controversy on utilization of machine learning for time series forecasting, 

machine learning has become a prominent and viable alternative for the creation of forecasting models, 

especially in time series. It competes traditional methods and, in some cases, outperforms [7]. Machine 

learning models are non-parametric and nonlinear, and they are characterized as data driven or black box 

models, as they use historical data to identify the stochastic dependency between past and future time series 

values. They are based on computational intelligence, and they are not so mature compared to statistical 

ones. However, research is very active and empirical findings support that utilization of algorithms like k 

Nearest Neighbors (k-NN) is very competitive [8]. k-NN is a popular algorithm for classification and 

regression and is based on the measurement of a point’s similarity or distance to a training set, which 

contains target values or labels. Even if it is based on a conceptually simple idea, and is considered as not so 

novel any more, it is still used as benchmark for more complex algorithms [9].  

Despite the fact that machine learning can possibly compete traditional statistical approaches, the 

application of simple algorithms, like k-NN, is very limited in time series forecasting and software packages 

do not embed such functionality. Given the limited works on k-NN use for time series forecasting, this work 

aims to introduce a method for time series forecasting with usage of k-NN. The novelty of our work lies in 
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the fact that it proposes an approach for GDP forecasting, it is not previously met, it is comparable to 

ARIMA, and it can be further developed, in terms of complexity, and compared to other statistical or 

machine learning methods.  

In the paper, we present the method and how it can be applied to Gross Domestic Product (GDP) 

forecasting. The structure of the paper is as follows. Initially, some background on time series machine 

learning forecasting approaches and strategies is presented, and next the k-NN forecasting method is 

introduced. Then, an illustrative application on GDP forecasting follows, along with explanation and 

comparison to ARIMA approach. Finally, key findings and future directions are discussed in the conclusion. 

Literature review on time series forecasting and machine learning  

Time series analysis is a wide and rapidly developed research domain, which focuses on describing and 

summarizing features, identifying patterns and trends, forecasting future values and examining interactions 

between time series. One of the key aims in time series analysis is to identify future trends or forecast values 

in the future, that is to infer the stochastic dependency between values in the past and the future. Application 

domains are wide, including finance, economics, production and quality assurance among others. In 

economics, the key problems addressed in time series analysis is identifying causal effects and forecasting 

[10].  

Basic types of traditional forecasting is based either in ordinary regression models, where time indices are 

used as the independent variables, or on autoregressive moving average models, where the independent 

variables are the past values and the past prediction errors. The Box and Jenkins method for ARIMA and 

exponential smoothing are some representative traditional statistical methods for time series forecasting [4]. 

In the past twenty years, there has been a rapid development of methods based on machine learning, which 

compete the traditional linear or nonlinear statistical based methods [7]. Even early studies support that 

methods like Artificial Neural Networks can outperform the traditional methods, like linear regression and 

ARIMA [11], [12]. But, also recent work on new methods, based on support vector machines, decision trees 

and nearest neighbors, prove to be quite competitive to traditional methods [13]. Some recent empirical 

evidence show that nonlinear machine learning models, combined with large data sets, can be extremely 

useful for economic forecasting [14], [15]. On top of relevant research in theoretical models, many 

forecasting competitions have been organized, providing thus the ability to use algorithms in data rich 

environments and compete for improving accuracy [16]. Empirical findings from the competitions have also 

led to some interesting scientific debates on the accuracy of machine learning methods for forecasting [17]. 

One important aspect of time series forecasting, which affects modelling, is the time horizon of the forecast. 

It can be either one-step ahead, or a multi-step, with multi-step being more challenging due to accumulation 

of prediction errors, reduced accuracy and increased uncertainty [18]. Another aspect that determines 

modelling is the theoretical interpretation of the forecasting problem. In statistical theory a time series 

sequence is considered as a random process realization, where a large number of independent degrees of 

freedom interact in a linear way, and this is the cause of randomness [19]. Another interpretation of the 

problem is based on dynamic systems theory, which considers that deterministic systems can generate a 

random process from a small number of degrees of freedom that interact in a nonlinear way [20]. This can 

lead to a deterministic chaotic behavior. In this case a time series can be interpreted as the observation of a 

dynamic system represented by a state function which evolves over time in a state space. However, the 

original state is not possible to be recovered, as the dynamics functions are not known, but the work is 

towards creating a state space that can be equivalent to the original. So, the reconstruction problem is based 

on the time series observations, and has been developed under the dynamical systems theory [21]. The 

reconstructed states can be used then to estimate the functional form of the series and can lead to a statistical 

nonlinear autoregressive formulation that can be further used for analysis and forecasting [3], [22]. 

Following the above, in a machine learning approach, the one-step ahead forecasting problem can be 

modelled as a supervised learning problem, where the model consists of a set of past observations, 

considered as input, and one or more output, which consists the forecast. In one-step forecasting past values 

are available and the problem can be considered as a general regression problem, where the forecasted value 
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is the value of the approximator function for the next time period. In the general machine learning 

forecasting setting, the training set is derived by the time series and is split into instances and the 

corresponding targets values [3]. Among the various machine learning methods, the local learning 

techniques [3], are considered as more capable to deal with learning in real data environment with increasing 

training samples, and require less assumptions on the process underlying the data. Nearest neighbor and lazy 

learning are the most representative methods of this category [13], [23]. 

The nearest neighbor approach is a well-known technique for local approximation and is based on the 

concept that the evolution of the current state will be alike to the nearest neighbor evolution. So, the method 

examines the nearest neighbors in the dataset, given a certain dimension that defines the pattern in past to 

search. The approach has been introduced by Lorenz in weather maps [24], and various extensions have 

been presented, including more neighbors [25] and higher order approximations [26]. Lazy learning on the 

other hand, follows a cross validation approach to optimally determine the number of neighbors and 

reducing the nonlinear problem to a sequence of local linear problems, one for each query, or forecast value 

[27].  

For multi-step forecasting, there exist some strategies for machine learning methods adoption. The recursive 

strategy, which trains a one-step model and then it uses it recursively to return a multi-step forecast. The 

strategy has been used in real life problems with success, despite its limitations in error calculation 

sensitivity [28]. Another, strategy is the direct, which learns a number of models independently, and returns 

a multi-step forecast by concatenating the separate forecasts from the models. It has been applied in neural 

network models, with computational complexity a major drawback [28]. A combination of the recursive and 

direct strategies is the dirrec strategy, which computes the forecasts like the direct strategy for every time 

horizon using different models, and like the recursive strategy, it extends the input set, adding variables from 

the previous steps forecasts [29].  

Proposed k-NN time series forecasting method  

In this work, we focus on the utilization of k-NN for regression in univariate time series, so we will 

elaborate on the regression features of k-NN. In the basic regression modelling scenario, given a query value 

 , the associated, or predicted, value  ̂ is computed as the average of the associated target values of the 

  nearest neighbors:  

 ̂  
 

 
∑      

 
      (1) 

with         the associated target value of the i-th nearest neighbor.  

Some accuracy improvement can be achieved by introducing weights for the neighbor values, where the 

closest ones receive increased importance. For example, a weight function which assigns weights inversely 

proportional to the distance, and promotes closest neighbors, can be defined as: 

      
 

          
   (2) 

where             and            is the distance between the value   and its neighbors.  

So, in this case, the associated value to   is given by the following:  

 ̂  
∑           

 
   

∑      
 
   

   (3) 

In the general case for regression modelling, k-NN, uses as input a dataset which comprises a set of training 

instances or data objects. Each training instance represents a point in a n-dimensional space, and comprises a 
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feature vector and a target vector. Each dimension represents a feature, so a training instance     can be 

represented as a vector of   features: (  
    

      
 ), which describes the object and an associated target 

vector (          ). Given the training dataset, for a new instance (          ), with known feature 

values and unknown target values, the target values of the new instance are computed from the k most 

similar or nearest instances from the training dataset. The k nearest neighbors are identified by using a 

similarity or distance metric to compare the feature vectors of the training data and the new instance. A 

widely used metric is the Euclidean distance. So, in this case the distance between the i-th training instance 

(  
    

      
 ) and the new instance (          ) can be computed as: √∑    

      
 
      . This allows 

for the identification of the k nearest neighbors to the new instance. Considering that a new instance should 

follow its neighbors, we follow an approach which aggregates the k nearest neighbor target values in order 

to generate a prediction for the target value of the new instance. So, if we consider that the k nearest 

neighbors have the target vectors           , then we can take the average of them to compute the 

predicted target of the new instance as:  ̂  
 

 
∑    

   . Table 1 presents a view of the dataset organization for 

k-NN input.  

Table 1: Dataset organization for k-NN regression  

 Feature 1  Feature 2  Feature n Target  

Instance 1   
    

     
     

Instance 2   
    

     
     

      

Instance m   
    

     
     

New instance             ̂  

 

In order to use k-NN regression method for univariate time series forecasting, we need to organize the time 

series data in a way that is appropriate input and sensible dataset for the algorithm, next we need to define 

the way to identify the k nearest neighbors, and finally select the appropriate distance metric to compute the 

distance between training and query instances. As soon as we focus on univariate time series, the forecast or 

explained variable is the same with the explanatory or predictor variables. So, the explanatory variables are 

defined as lagged values of the explained variable. Under this scenario, in the general case where we 

consider a multi-step ahead forecast, the target is a set of values from the time series, which is associated 

with a training instance, that comprises lagged values of the target. This approach indicates an 

autoregressive model. In case we focus on one step ahead forecast, then the target is a single value.  

So, for the one step ahead case, given a time series                  with length N, the target of a 

training example is a value of the time series, and its features are lagged values of the target. The number of 

features, is defined as the number of the lagged values of the series and is a hyperparameter of the algorithm, 

that we need to define. The idea behind this approach is that, given a number of lagged values equal to   , 
for the target value   , with      the associated feature values are equal to                   . So, 

each training instance is a lagged set of values of the target from the time series, of length   . Table 2, 

demonstrates the organization of the dataset for the general scenario.  

Table 2: Dataset organization for k-NN in univariate time series regression  

 Feature 1  Feature 2 … Feature p Target  

Instance 1     
       

 …       
    

Instance 2       
       

 …         
      

… … … … … … 
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Instance m       
         

 …         
      

New instance m+1         
  …           

   ̂      

 

In this approach, a new instance has the form shown in Table 2 (new instance m+1), where the feature 

values are known and the target value is unknown. This value can be forecasted using the k-NN regression 

model, given that we select appropriate distance metric and define the k nearest neighbors. The distance 

metric is used to calculate the distance between any two instances, with Euclidean distance being the most 

popular metric. The k nearest neighbors of the instance in query are the instances with the closest distance, 

based on the metric defined. The query instance has the feature values                     . 

Following the above, we compute the target value of the      instance from the k neighbors, using an 

aggregation approach for the target values of the k neighbors. For the one step ahead forecast, a common 

approach is to take the average of the k neighbors target values, which represents the forecast value for the 

one step ahead case. Alternatively, the median of the k nearest target values can be used instead.  

So, the proposed process for the one step ahead forecasting using k-NN comprises the following steps:  

1. Parameter definition 

a. Define the parameters for the algorithm:  

k: number of neighbors 

p: the lags that will be used to as features for the model, which are the autoregressive explanatory 

variables.  

b. Define distance metric:  

The distance metric, that will be used to compute the distance between any two instances, is 

defined. It can be Euclidean or other.  

c. Define the aggregation operation:  

For the calculation of the target values for the query instance, an aggregation operation needs to 

be defined. It can be the average or other operator, which aggregates the target values of the k 

nearest neighbors.  

d. Define the query instance:  

This is the instance that we want to forecast.  

2. Training phase 

a. Train the k-NN algorithm:  

Read the training time series and store it in a training set.  

b. Read the parameters k, p and store them.  

c. Organize values in appropriate input:  

The data need to be formatted in target and feature values given the lag number defined in the 

parameter p.  

3. Forecast phase  

a. Find the k nearest neighbors:  

Use the distance metric to establish which are the k nearest neighbors to the query instance. The 

instance has the feature values                     . 

b. Estimate the forecast:  

Use the aggregation operation, defined earlier, to estimate the target value for the query instance 

(     instance). 

 

Application of k-NN regression method to GDP forecasting  

Following relevant work with gross domestic product prediction using ARIMA model [30], we build a 

forecasting model based on the k-NN algorithm as proposed in the previous section. The motivation for this 

approach, is the limited works on GDP forecasting using k-NN, and on the other hand its simplicity and high 

accuracy level. We follow the steps for the one step ahead forecasting process, using k-NN as follows:  

1. Parameter definition 
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a. Definition of the parameters for the algorithm: The number of neighbors is set to k=3. The 

number of lags that will be used to as features for the model, is set to p=15. The parameter 

values, are set after some preliminary experiments, and even they seem non justified, they are 

connected to the characteristics of the time series, like stationarity. There is not a universal 

approach to define them, but it is an iterative process to achieve increased accuracy levels.  

b. Definition of the distance metric: The metric distance used in this case is the most commonly 

used distance, the Euclidean distance. Alternative metrics can be used.  

c. Definition of the aggregation operation: The target value of the query instance will be the 

average of the neighbor target values. Other aggregation approaches can be used as well.  

d. Define the query instance: This is the instance that we want to forecast. The purpose of this study 

is to achieve, with k-NN method, the apply a one-step forecast, and forecast the values of GDP 

time series on a time horizon ℎ = 1 year. So, the query instance, is set to the next year after the 

end of the time series. In order to examine the accuracy, we repeat the process for three 

consecutive years and compare the forecasts with the actual values.  

 

2. Training phase 

a. Train the k-NN algorithm: In the training phase, we need to define the dataset and ensure it is 

formatted appropriately as a univariate time series. To build the time series for the Greek GDP, 

we used publicly available data from the WorldBank database in constant USD2015 values for 

the period 1971-2020.The line plot below (Fig. 1) depicts the evolution of GDP through this 

period (in USD millions). It is obvious that there is an increasing trend until 2005, and a 

decreasing trend afterwards, showing a non-stationary process.  

 

Figure 1: Greek GDP in constant millions USD2015 (1971-2020) 

b. Organize values in appropriate input: For the dataset processing, we used R package and 

especially the library tsfknn, which provides some functionality for k-NN modelling [31]. So, the 

dataset was loaded and stored the training set, as a set of instances with features and 

corresponding values, and a set of target values. The values of parameters k, p were also stored in 

the model.  

 

3. Forecast phase  

a. Find the k nearest neighbors: We use the Euclidean distance metric to establish the k nearest 

neighbors to the query instance.  

b. Estimate the forecast: Using the R package and specifically tsfknn library, we applied the model, 

in one-step forecasts for the years, 2019, 2020, 2021. Results are summarized in Table 3, and are 

presented in the pictures below (Fig. 2, 3, 4), where the time series and the one-step ahead 

forecast is depicted.  

Table 3. Forecasted values 
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Year  Forecast Actual 

2019 193857.7 203669.1874 

2020 195775.3 185300.0005 

2021 190062.2 200082.00 

 

Figure 2: One-step forecast for year 2019 

 

Figure 3: One-step forecast for year 2020 

 

Figure 4: One-step forecast for year 2021 
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Results and discussion  

In order to check the accuracy of the present model, we use a rolling forecast approach, which splits the 

dataset in training and test sets. The approach is based on the idea that a number of the last observations 

from the series are used as test set and the rest as training. The rolling approach is iterating the process for a 

number of repetitions equal to the number of the observations defined previously reducing the test set by one 

each time and until it reaches the end of the series. The global accuracy of the model is provided in Table 4 

below, while the forecast accuracy for different time horizon predictions is depicted in Table 5. From the 

results, we can see that the accuracy falls substantially after the first step forecast.   

Table 4. Global model accuracy 

RMSE  MAE    MAPE  

23316.767881  17541.819903      9.226776 

 

Table 5. Time horizon (H in years) model accuracy 

 H=1 H=2 H=3 H=4 

RMSE 8000.319461 13983.528452 29927.12589 52941.60242 

MAE    7361.829637 11806.560329 28804.79854 52941.60242 

MAPE 3.767711      6.181035     15.04153     28.57075 

 

In general, we can see that MAPE results for the one step ahead forecast are quite comparable to the results 

from ARIMA(1,2,1) model for the same dataset, as presented in previous work [30]. Also, forecasted values 

in both approaches are close to the actual ones. So, even if the k-NN model presented can be improved, it 

shows some decent level of accuracy for one-step ahead forecasts.  

As a conclusion, the model presented is an initial approach to model GDP using k-NN method, and can be 

improved in future in parameter tuning and distance metric choice. Also, further assessment with larger and 

more diverse datasets is needed, as well as comparison with established models, like ARIMA and GARCH. 

However, the findings from this work demonstrate the feasibility of the approach and its comparable 

accuracy to traditional statistical approaches. 
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