On Intuitionistic Fuzzy Almost Regular α Generalized Continuous Mappings

Nivetha M^1 , Jayanthi D^2

¹Department of mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India *nivethathana@gmail.com*

² Department of mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India *jayanthimaths@rediffmail.com*

Abstract: The purpose of this paper is to introduce and study the concept of intuitionistic fuzzy almost regular α generalized continuous mapping in intuitionistic fuzzy topological spaces and study some of their properties.

Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy topology, Intuitionistic fuzzy topological space, Intuitionistic fuzzy regular α generalized closed set, Intuitionistic fuzzy regular α generalized continuous mappings, Intuitionistic fuzzy almost regular α generalized continuous mappings.

1. INTRODUCTION

The Intuitionistic fuzzy sets was introduced by Atanassov [1]. Using the notion of intuitionistic fuzzy sets, Coker [2] introduced the notion of intuitionistic fuzzy topological space. In 2010, K. Sakthivel [8] introduced intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic fuzzy regular α generalized continuous mappings was introduced by Nivetha M and Jayanthi D [7]. In this paper we introduce the notion of intuitionistic fuzzy almost regular α generalized continuous mappings and study their behaviour and properties in intuitionistic fuzzy topological spaces. Also we obtain some interesting theorems.

2. PRELIMINARIES

Definition 2.1:[1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ where the function $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2: [1] Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X\}$. Then

- a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- d) A \cap B = { $\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle / x \in X }$
- e) A U B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X }$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. The IFS $0 \sim = \{\langle x, 0, 1 \rangle / x \in X \}$ and $1 \sim = \{\langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFS in X satisfying the following axioms:

- a) 0~, 1~ \in τ
- b) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- c) $\cup G_i \in \tau$ for any family { $G_i / i \in J$ } $\subseteq \tau$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in (X,τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [2] Let (X,τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

 $int(A) = \cup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \}$

 $cl(A) = \cap \{K \ / \ K \ is \ an \ IFCS \ in \ X \ and \ A \subseteq K\}$

Note that for any IFS A in (X,τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Corollary 2.5:[2] Let A, $A_i(i \in J)$ be intuitionistic fuzzy sets in X and B, $B_j(j \in K)$ be intuitionistic fuzzy sets in Y and $f: X \rightarrow Y$ be a function.

Then

a) $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$ b) $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$ c) $A \subseteq f^{-1}(f(A))$ [If f is injective, then $A=f^{-1}(f(A))$] d) $f(f^{-1}(B)) \subseteq B$ [If f is surjective, then $B=f(f^{-1}(B))$] e) $f^{-1}(UB_j) = U f^{-1}(B_j)$ f) $f^{-1}(OA_j) = O f^{-1}(B_j)$ g) $f^{-1}(OA_j) = O A$ h) $f^{-1}(1A_j) = 1A$ i) $f^{-1}(B^c) = (f^{-1}(B))^c$

Definition 2.6:[3] An IFS A in an IFTS (X,τ) is said to be an

- (i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A
- (ii)intuitionistic fuzzy α closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A
- (iii) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$
- (iv) intuitionistic fuzzy regular closed set (IFRCS in short) if cl(int(A)) = A

Definition 2.7:[5] An IFS A of an IFTS (X,τ) is called intuitionistic fuzzy regular α generalized closed set (IFR α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFROS in X.

Definition 2.8:[6] An IFS A of an IFTS (X,τ) is called intuitionistic fuzzy regular α generalized open set (IFR α GOS in short) if α int(A) \supseteq U whenever A \supseteq U and U is an IFRCS in X.

The family of all IFR α GOSs of an IFTS (X, τ) is denoted by IFR α GO(X).

Definition 2.9:[3] Let f be a mapping from an IFTS (X,τ) into an IFTS (Y,σ) . Then f is

said to be an intuitionistic fuzzy continuous (IF continuous in short) mapping if $f^{-1}(B) \in IFO(X)$ for every $B \in \sigma$.

Definition 2.10:[4] Let f be a mapping from an IFTS (X,τ) into an IFTS (Y,σ) . Then f is

said to be an

- (i) intuitionistic fuzzy semi continuous (IFS continuous in short) mapping if $f^{-1}(B) \in IFSO(X)$ for every $B \in \sigma$
- (ii)intuitionistic fuzzy α continuous (IF α continuous in short) mapping if f⁻¹(B) \in IF α O(X) for every B $\in \sigma$
- (iii) intuitionistic fuzzy pre continuous (IFP continuous in short) mapping if $f^{-1}(B) \in IFPO(X)$ for every $B \in \sigma$

3. INTUITIONISTIC FUZZY ALMOST REGULAR α GENERALIZED CONTINUOUS MAPPINGS

In this section we introduce intuitionistic fuzzy almost regular α generalized continuous mapping and investigate some of its properties.

Definition 3.1: A mapping $f : X \rightarrow Y$ is said to be an intuitionistic fuzzy almost regular α generalized continuous (IFaR α G continuous in short) mapping if $f^{-1}(A)$ is an IFR α GCS in X for every IFRCS A in Y.

Example 3.2: Let $X = \{a,b\}, Y = \{u,v\}$ and $G_1 = \langle x, (0.6, 0.7), (0.4, 0.2) \rangle$ where $\mu_a = 0.6, \mu_b = 0.7, \nu_a = 0.4$, $v_b=0.2$ and $G_2 = \langle x, (0.2, 0.2), (0.7, 0.7) \rangle$ where $\mu_a=0.2$, $\mu_b=0.2$, $\nu_a=0.7$, $\nu_b=0.7$ and $G_3 = \langle y, (0.6, 0.7), (0.3, 0.1) \rangle$ $\mu_{\rm v}=0.7,$ $v_u = 0.3$, where $\mu_{u}=0.6$, $v_v = 0.1$ and $G_4 = \langle y, (0.1, 0.1), (0.8, 0.8) \rangle$ where $\mu_u = 0.1, \mu_v = 0.1, \nu_u = 0.8$, 1~} are IFTs on X and Y respectively. Define a mapping $f: (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_{3}^{c} = \langle y, (0.3, 0.1), (0.6, 0.7) \rangle$ is an IFRCS in Y. Then f $^{-1}(G_3^c) = \langle x, (0.3, 0.1), (0.6, 0.7) \rangle$ where $\mu_a = 0.3, \mu_b = 0.1$, $v_a=0.6$, $v_b=0.7$ is an IFS in X. Then $f^{-1}(G_3^c) \subseteq G_1$ where G_1 is an IFROS in X. Now $\alpha cl(f^{-1}(G_3^c)) = G_1^c \subseteq G_1$. Therefore f ${}^{-1}(G_3^{c})$ is an IFR α GCS in X. Thus f is an IFaRαG continuous mapping.

Theorem 3.3: Every IF continuous mapping is an IFaR α G continuous mapping but not conversely.

Proof: Let $f : (X,\tau) \to (Y,\sigma)$ be an IF continuous mapping. Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an IFCS in Y. Then $f^{-1}(V)$ is an IFCS in X, by hypothesis. Since every IFCS is an IFR α GCS [5], $f^{-1}(V)$ is an IFR α GCS in X. Hence f is an IFaR α G continuous mapping.

Example 3.4: Let X = {a,b}, Y = {u,v} and $G_1 = \langle x, (0.5,0.7), (0.4,0.2) \rangle, G_2 = \langle x, (0.2,0.2), (0.7,0.7) \rangle,$ $G_3 = \langle y, (0.6,0.6), (0.3,0.2) \rangle$ and $G_4 = \langle y, (0.2,0.2), (0.8,0.8) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3^c = \langle y, (0.3,0.2), (0.6,0.6) \rangle$ is an IFRCS in Y. Then f $^{-1}(G_3^c) = \langle x, (0.3,0.2), (0.6,0.6) \rangle$ is an IFS in X. Then f $^{-1}(G_3^c) \subseteq G_1$ where G₁ is an IFROS in X. Now $\alpha cl(f {}^{-1}(G_3^c)) = \langle x, (0.4,0.2), (0.5,0.6) \rangle \subseteq G_1$. Therefore f $^{-1}(G_3^c)$ is an IFR α GCS in X but not an IFCS in X, since G_3^c is an IFCS in Y but $cl(f {}^{-1}(G_3^c)) = G_1^c \neq f {}^{-1}(G_3^c)$. Therefore f is an IFaR α G continuous mapping but not an IF continuous mapping.

Theorem 3.5: Every IF α continuous mapping is an IFaR α G continuous mapping but not conversely.

Proof: Let $f : (X,\tau) \rightarrow (Y,\sigma)$ be an IF α continuous mapping. Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an IFCS in Y. Then $f^{-1}(V)$ is an IF α CS in X, by hypothesis. Since every IF α CS is an IFR α GCS [5], $f^{-1}(V)$ is an IFR α GCS in X. Hence f is an IFaR α G continuous mapping.

Example 3.6: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.4,0.4), (0.4,0.2) \rangle$, $G_2 = \langle x, (0.3,0.2), (0.5,0.5) \rangle$, $G_3 = \langle y, (0.5,0.5), (0.3,0.2) \rangle$ and $G_4 = \langle y, (0.2,0.2), (0.8,0.8) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3^c = \langle y, (0.3,0.2), (0.5,0.5) \rangle$ is an IFRCS in Y. Then $f^{-1}(G_3^c) = \langle x, (0.3,0.2), (0.5,0.5) \rangle$ is an IFS in X. Then $f^{-1}(G_3^c) \subseteq G_1$ where G_1 is an IFROS in X. Now $\alpha cl(f^{-1}(G_3^c)) = G_1^c \subseteq G_1$. Therefore $f^{-1}(G_3^c)$ is an IFR α GCS in X but not an IF α CS in X, since G_3^c is an IFCS in Y but $cl(int(cl(f^{-1}(G_3^c)))) = G_1^c \nsubseteq f^{-1}(G_3^c)$. Therefore f is an IFA α G continuous mapping but not an IF α continuous mapping.

Remark 3.7: IFP continuous mapping and IFaR α G continuous mapping are independent to each other.

Example 3.8: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.5, 0.4), (0.5, 0.3) \rangle$, $G_2 = \langle x, (0.1, 0.2), (0.8, 0.8) \rangle$, $G_3 = \langle y, (0.6, 0.6), (0.3, 0.3) \rangle$, $G_4 = \langle y, (0.1, 0.1), (0.9, 0.9) \rangle$.

Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3^c = \langle y, (0.3,0.3), (0.6,0.6) \rangle$ is an IFRCS in Y. Then f ${}^{-1}(G_3^c) = \langle x, (0.3,0.3), (0.6,0.6) \rangle$ is an IFS in X. Then f ${}^{-1}(G_3^c) \subseteq G_1$ where G_1 is an IFROS in X. Now $\alpha cl(f {}^{-1}(G_3^c)) = G_1^c \subseteq G_1$. Therefore f ${}^{-1}(G_3^c)$ is an IFR α GCS in X but not an IFPCS in X, since G_3^c is an IFCS in Y but $cl(int(f {}^{-1}(G_3^c))) = G_1^c \notin f {}^{-1}(G_3^c)$. Therefore f is an IFaR α G continuous mapping but not an IFP continuous mapping.

Example 3.9: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.8,0.6), (0.2,0.2) \rangle$, $G_2 = \langle x, (0.2,0.3), (0.6,0.6) \rangle$, $G_3 = \langle y, (0.7,0.8), (0.1,0.2) \rangle$, $G_4 = \langle y, (0,0), (0.9,0.9) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3^c = \langle y, (0.1,0.2), (0.7,0.8) \rangle$ is an IFRCS in Y. Then $f^{-1}(G_3^c) = \langle x, (0.1,0.2), (0.7,0.8) \rangle$ is an IFS in X. Then G_3^c is an IFCS in Y. Now cl(int($f^{-1}(G_3^c)$)) = $0\sim \subseteq f^{-1}(G_3^c)$. Therefore $f^{-1}(G_3^c)$ is an IFPCS in X but not an IFR α GCS in X, since $\alpha cl(f^{-1}(G_3^c)) = G_2^c \nsubseteq G_2$ but $f^{-1}(G_3^c) \subseteq G_2$ where G_2 is an IFROS in X. Therefore f is an IFP continuous mapping but not an IFA α G continuous mapping.

Remark 3.10: IFS continuous mapping and IFaR α G continuous mapping are independent to each other.

Example 3.11: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.5,0.5), (0.3,0.2) \rangle$, $G_2 = \langle x, (0.1,0.2), (0.6,0.6) \rangle$, $G_3 = \langle y, (0.5,0.5), (0.3,0.1) \rangle$, $G_4 = \langle y, (0.1,0.1), (0.8,0.8) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3^c = \langle y, (0.3,0.1), (0.5,0.5) \rangle$ is an IFRCS in Y. Then $f^{-1}(G_3^c) = \langle x, (0.3,0.1), (0.5,0.5) \rangle$ is an IFROS in X. Now $\alpha cl(f^{-1}(G_3^c)) = G_1^c \subseteq G_1$. Therefore $f^{-1}(G_3^c)$ is an IFR α GCS in X but not an IFSCS in X, since G_3^c is an IFCS in Y but int $(cl(f^{-1}(G_3^c))) = G_2 \nsubseteq f^{-1}(G_3^c)$. Therefore f is an IFAR α G continuous mapping but not an IFS continuous mapping.

Example 3.12: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.6,0.7), (0.2,0.2) \rangle, G_2 = \langle x, (0.2,0.2), (0.7,0.7) \rangle$,

G₃ = $\langle y, (0.2,0.2), (0.6,0.7) \rangle$, G₄ = $\langle y, (0.6,0.6), (0.4,0.4) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f : $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS G₃^c = $\langle y, (0.6,0.7), (0.2,0.2) \rangle$ is an IFRCS in Y. Then f⁻¹(G₃^c) = $\langle x, (0.6,0.7), (0.2,0.2) \rangle$ is an IFS in X. Then G₃^c is an IFCS in Y. Now int(cl(f⁻¹(G₃^c))) = G₁⊆ f⁻¹(G₃^c). Therefore f⁻¹(G₃^c) is an IFSCS in X but not an IFRαGCS in X, since α cl(f⁻¹(G₃^c)) = G₂^c ∉ G₁ but f⁻¹(G₃^c) ⊆ G₁ where G₁ is an IFROS in X. Therefore f is an IFS continuous mapping but not an IFaRαG continuous mapping.

Theorem 3.13: A mapping $f : X \rightarrow Y$ is an IFaR α G continuous mapping if and only if the inverse image of each IFROS in Y is an IFR α GOS in X.

Proof: Necessity: Let A be an IFROS in Y. This implies A^c is an IFRCS in Y. Since f is an IFaR α G continuous mapping, f⁻¹(A^c) is an IFR α GCS in X. Since f⁻¹(A^c) = (f⁻¹(A))^c, f⁻¹(A) is an IFR α GOS in X.

Sufficiency: Let A be an IFRCS in Y. This implies A^c is an IFROS in Y. By hypothesis, $f^{-1}(A^c)$ is an IFR α GOS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is an IFR α GCS in X. Hence f is an IFaR α G continuous mapping.

Theorem 3.14: Let $f: X \to Y$ be a mapping where $f^{-1}(V)$ is an IFRCS in X for every IFCS in Y. Then f is an IFaR α G continuous mapping but not conversely.

Proof: Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an IFCS in Y. Then f⁻¹(V) is an IFRCS in X. Since every IFRCS is an IFR α GCS [5], f⁻¹(V) is an IFR α GCS in X. Hence f is an IFaR α G continuous mapping.

Example 3.15: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x, (0.7,0.7), (0.3,0.2) \rangle$, $G_2 = \langle x, (0.1,0.1), (0.9,0.9) \rangle$, $G_3 = \langle y, (0.7,0.7), (0.2,0.1) \rangle$, $G_4 = \langle y, (0,0), (0.9,0.9) \rangle$. Then $\tau = \{0\sim, G_1, G_2, 1\sim\}$ and $\sigma = \{0\sim, G_3, G_4, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping $f : (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. The IFS $G_3^c = \langle y, (0.2,0.1), (0.7,0.7) \rangle$ is an IFRCS in Y. Then $f^{-1}(G_3^c) = \langle x, (0.2,0.1), (0.7,0.7) \rangle$ is an IFROS in X. Now $\alpha cl(f^{-1}(G_3^c)) = G_1^c \subseteq G_1$. Therefore $f^{-1}(G_3^c)$ is an IFR α GCS in X but not an IFRCS in X, since G_3^c is an IFCS in Y but $cl(int(f^{-1}(G_3^c))) = G_1^c \neq f^{-1}(G_3^c)$. Therefore f is an IFaR α G continuous mapping, but not the mapping as in Theorem 3.14.

Theorem 3.16: Let $f : X \to Y$ be a mapping. If $f^{-1}(\alpha int(B)) \subseteq \alpha int(f^{-1}(B))$ for every IFS B in Y, then f is an IFaR α G continuous mapping.

Proof: Let B be an IFROS in Y. By hypothesis, f⁻¹(α int(B)) $\subseteq \alpha$ int(f⁻¹(B)). Since B is an IFROS, it is an IF α OS in Y. Therefore α int(B) = B. Hence f⁻¹(B) = f⁻¹(α int(B)) $\subseteq \alpha$ int(f⁻¹(B)) \subseteq f⁻¹(B). Therefore f⁻¹(B) = α int(f⁻¹(B)). This implies f⁻¹(B) is an IF α OS in X and hence f⁻¹(B) is an IFR α GOS[8] in X. Thus f is an IFaR α G continuous mapping.

Remark 3.17: The converse of the above theorem 3.16 is true if B is an IFROS in Y and X is an $IF_{r\alpha}T_{1/2}$ space.

Proof: Let f be an IFaR α G continuous mapping. Let B be an IFROS in Y. Then f⁻¹(B) is an IFR α GOS in X. Since X is an IF_{r α}T_{1/2} space, f⁻¹(B) is an IF α OS in X. This implies f⁻¹(B) = α int(f⁻¹ (B)). Now f⁻¹(α int(B)) \subseteq f⁻¹(B) = α int(f⁻¹(B)). Therefore f⁻¹(α int(B)) \subseteq α int(f⁻¹(B)).

Theorem 3.18: Let $f : X \to Y$ be a mapping. If $\alpha cl(f^{-1}(B)) \subseteq f^{-1}(\alpha cl(B))$ for every IFS B in Y, then f is an IFaR α G continuous mapping.

Proof: Let B be an IFRCS in Y. By hypothesis, $\alpha cl(f^{-1}(B)) \subseteq f^{-1}(\alpha cl(B))$. Since B is an IFRCS, it is an IF α CS in Y. Therefore $\alpha cl(B) = B$. Hence $f^{-1}(B) =$ $f^{-1}(\alpha cl(B)) \supseteq \alpha cl(f^{-1}(B)) \supseteq f^{-1}(B)$. Therefore $f^{-1}(B) =$ $\alpha cl(f^{-1}(B))$. This implies $f^{-1}(B)$ is an IF α CS in X and hence $f^{-1}(B)$ is an IFR α GCS[5] in X. Thus f is an IFaR α G continuous mapping.

Remark 3.19: The converse of the above theorem 3.18 is true if B is an IFRCS in Y and X is an $IF_{r\alpha}T_{1/2}$ space.

Proof: Let f be an IFaR α G continuous mapping. Let B be an IFRCS in Y. Then f⁻¹(B) is an IFR α GCS in X. Since X is an IF_{r α}T_{1/2} space, f⁻¹(B) is an IF α CS in X. This implies α cl(f⁻¹(B)) = f⁻¹(B). Now f⁻¹(α cl(B)) \supseteq f⁻¹(B) = α cl(f⁻¹(B)). Therefore f⁻¹(α cl(B)) \supseteq α cl(f⁻¹(B)).

Theorem 3.20: Let $f : X \to Y$ be a mapping where X is an $IF_{r\alpha}T_{1/2}$ space. If f is an IFaR α G continuous mapping, then $cl(int(cl(f^{-1}(B)))) \subseteq f^{-1}(\alpha cl(B))$ for every IFRCS B in Y.

Proof: Let B be an IFRCS in Y. By hypothesis, $f^{-1}(B)$ is an IFR α GCS in X. Since X is an IF_{r α}T_{1/2} space, $f^{-1}(B)$ is an IF α CS in X. This implies α cl($f^{-1}(B)$) = $f^{-1}(B)$. Now cl(int(cl($f^{-1}(B)$))) $\subseteq f^{-1}(B) \cup cl(int(cl(<math>f^{-1}(B)$))) \subseteq $\alpha cl(f^{-1}(B)) = f^{-1}(B) = f^{-1}(\alpha cl(B)), \text{ as every IFRCS is an}$ IF\alphaCS. Hence cl(int(cl(f^{-1}(B)))) \sum f^{-1}(\alpha cl(B)).

Theorem 3.21: Let $f : X \to Y$ be a mapping where X is an $IF_{r\alpha}T_{1/2}$ space. If f is an $IFaR\alpha G$ continuous mapping, then $f^{-1}(\alpha int(B)) \subseteq int(cl(int(f^{-1}(B))))$ for every IFROS B in Y. **Proof:** This theorem can be easily proved by taking complement in Theorem 3.20.

REFERENCES

- Atanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- [2] Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- [3] Gurcay, H Coker, D and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. of Fuzzy Math., 5(1997), 365-378.
- [4] Joung kon Jeon, Young Bae Jun and Jin Han Park., Intuitionistic fuzzy alpha continuity and Intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [5] Nivetha, M and Jayanthi, D., On Intuitionistic Fuzzy Regular α Generalized closed sets, International Journal of Engineering Sciences & Research Technology, Vol 4, Issue 2, pp.234-237, 2015.

- [6] Nivetha, M and Jayanthi, D., Regular α GeneralizedOpen Sets in Intuitionistic Fuzzy Topological Spaces, (accepted).
- [7] Nivetha, M and Jayanthi, D., On intuitionistic fuzzy Regular α Generalized continuous mapping Sets, (accepted).
- [8] Sakthivel, K., Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Alpha Generalized Irresolute Mappings, Applied Mathematical Sciences, Vol. 4, 2010, no. 37, 1831 -1842
- [9] Santhi, R and Sakthivel, K., Intuitionistic fuzzy almost alpha generalized continuous mapping, Advances in Fuzzy Mathematics, 2(2010), 209-219.
- [10] Thakur, S. S and Rekha Chaturvedi., Regular gerenalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Mathematica, 16(2006), 257-272.