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Abstract: 

Vibration of cylindrical shells is accomplished for their involvement in various areas of engineering and technology. Shell vibration 

behavior depends upon on geometrical material parameters. Materials in functionally graded forms are more progressive ones. They 

provide the maximum stability of a physical system. There is graduation distribution of constituent materials in functionally graded 

materials and is controlled by polynomial, exponential and trigonometric volume exponent fraction laws. In the present study a 

cylindrical shell is composed of three layers whereas the middle layer consists of functionally graded material and the extreme layer 

are of isotropic nature. Material composition of the FG layer is governed by polynomial, exponential and trigonometric volume 

fraction exponent laws. Impact of these laws is examined on shell vibration frequencies for different physical parameters. Love’s 

thin shell theory is adopted for shell motion equations. The Rayleigh-Ritz technique is applied to form the shell frequency equation 

which is solved by MATLAB software.  The validity and accuracy of this method is investigated for a number of comparisons of 

numerical results. 

1.1Introduction 

Cylindrical shells are essential components in the field of technology as well as that of engineering. Vibrations of cylindrical shells 

have been extensively studied for their simple geometrical designing. So a huge amount of research on them is seen in open literature. 

Egle et al. [1] examined free vibrations of orthogonally inflexible cylindrical shells where rigidness has been treated as distinct 

elements. Sharma et al. [2] investigated vibrations of cylindrical shells for clamped-free boundary conditions by using Rayleigh-

Ritz technique. The vibration of cylindrical shells with intermediary supports was examined by Swaddiwudhpong et al. [3]. 

Vibrations of functionally graded cylindrical shells were investigated by Loy et al.[4] and Pardhan et al. [5] for various physical 

parameters and several boundary conditions. Li et al. [6] examined vibrations of circular cylindrical shells with functionally graded 

materials middle layer for simply supported end conditions The idea of tri-layered cylindrical shells with intermediate layer of FGM 

was given by Li and Batra [7] for studying axial buckling of cylindrical shells. They also used Love’s approximation for strain and 

curvature-displacement relationships for shells The idea of tri layered cylindrical shells with intermediate layer of FGM was given 

by Batra [7] for studying axial buckling of cylindrical shells and they investigated this aspect of dynamical study of the shells. Bing 

et al. [8] examined vibration frequencies of thin walled cylindrical shells for different edge condition. Shao and Ma [9] investigate 
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the vibration analysis of those cylindrical shells split into thin layer and used Fourier series expression method for SS-SS, C-C, C-

F and C-SS boundary conditions. Naeem et al. [10] employed the Ritz formulation to investigate vibration of natural frequency 

characteristic of FG cylindrical shells. Naeem et al. [11] established the equation of FGM shells in eigenvalue expression to observe 

their frequencies.  

In this study vibration characteristics of three layered cylindrical with functionally graded middle layer are investigated. The 

frequencies analysis of two layers cylindrical shells was examined by Arshad et al. [12] in which one layer was FG layer and other 

layer was of homogeneous materials. Iqbal et al. [13] examined vibrations of FG cylindrical shells applying the wave propagation 

technique. The generalized differential quadrature method was applied to examine the vibration characteristics of functionally 

graded materials cylindrical shells by Naeem et al. [14]. Sofiyev et al. [15] examined the constancy of FG cylindrical shells attached 

to combine loads with various ends conditions and resting on elastic foundations. Vel [16] employed the elasticity solution technique 

to observe free and forced vibration of cylindrical shells. These shells were estimated by SS-SS boundary condition. Shah et al. [17] 

applied exponential volume fraction law to observe the cylindrical shell’s vibration with FGM. Warburton et al. [18] investigated 

the appearance of frequency variations with the circuit wave and expressed the frequency in the form of shell energies. Vibration of 

spinning cylindrical shells was examined by Mehparvar [19]. The shells were constructed from FGM. They used the higher ordered 

theory for shell inflections with the use of energy Hamilton’s principle to obtain the shell dynamical equations. Material grade and 

turning velocity effect on the frequencies of shells. The vibration of cylindrical shells which are containing FGM was observed by 

Lam et al. [20]. Their purpose was to check the effect of FGM on vibration characteristics of the shells. Their composition was 

maintained by volume fraction power law of distribution of materials in the radial direction. Yamanouchi et al.[21] and Koizumi 

[22] studied the structure and design of FGMs. 

In this paper vibration of three layered cylindrical shells are analyzed for various shell parameters. The shell thickness consists of 

three layers where materials of the extremes are of isotropic. The middle layer consists of functionally graded materials. The shell 

problem has been written in the integral form by considering expressions of kinetic and strain energies for a cylindrical shell. The 

shell frequency equation is formed by applying the Raleigh-Ritz technique. The estimation of axial modal dependence is done by 

characteristic beam functions. These functions satisfy boundary conditions. Results are obtained for simply supported- simply 

supported, clamped-clamped, clamped-free and clamped-simply supported boundary conditions. Comparisons of results determined 

by this procedure are done with those ones found in literature to verify the validity and efficiency of this technique and accuracy of 

the results. 

1.2 Theoretical formulation: 

Figure 1 represents the geometry of a cylindrical shell. L, h, R, stand for its geometrical quantities viz.; length, thickness and mean 

radius respectively while E, v and 𝜌 designate explained Young’s modulus, the Poisson ratio and the mass density respectively. The 

triplet (x, 𝜃,z)  defines an orthogonal coordinate system and they lie at the mid plane of the cylindrical shell. They describe the 

coordinates in the longitudinal, tangential and transverse directions respectively. The functions u(x,𝜃,z), v(x, 𝜃,z) and w(x, 𝜃, z) 

indicate for the longitudinal, tangential and transverse displacements from the mid surface of the shell. 
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Figure: 1Coordinate system and shell geometry 

For a vibrating thin cylindrical shell, its strain energy, expressed by U is stated as:
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where the stress where 1,e 2e  and   define the reference surface strains, 1k , 2k and  represent the surface curvatures and where

,ijA ijB and 
ijD ( , 1,2i j  and 6) are associated with the extensional , coupling and bending stiffness respectively and are stated 

as: 

              (2) 

The reduced material stiffness ( , 1,2ijQ i j   and 6)  for isotropic materials are described as: 
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for isotropic cylindrical shells the coupling stiffness considered equal zero and for the shells formed by FGM they considered non-

zero. For the cylindrical shells which fabricated by functionally graded materials their values depend on the position FGM.  The 

negativity and positivity of coupling stiffness exist due to the irregularity of characteristics of materials at mid plane when reduced 

stiffness produced by physical properties of functionally graded materials. 

Also the kinetic energy of the cylindrical shell, denoted by T, is written as 
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where t denotes the time variable and t  
represents the mass density per unit length and is written as
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where  stand for the mass density. 

1.3 Love’s shell theory  

Several shell theories have been found in the open literature. Kirchhoff’s assumption is the basis for all shell theories. This 

assumption states that “Normal to the original mid-surface of a shell retains its normal position, suffer no change in length during 

deformation”. Shell theory due Love is the pioneering one and all other modern theories have designed from it by modifying some 

physical terms. The formulas for strain and curvature–displacements are adopted from Love’s shell theory to solve the present shell 

problem and are written as: 
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These expressions for the surface strains 1,e 2 ,e and  and the curvatures 1,k
2,k  and  from the relations (6) and (7) respectively 

are replaced into Equ.(1), the expression for strain energy, U  attains the following form: 
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The Lagrange energy functional, symbolized by  for a cylindrical shell is described by the difference of its strain and kinetic 

energies as: 
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                                                       T U 
                                (9) 

The Raleigh-Ritz technique is used to examine the vibration of cylindrical shells. The deformation of cylindrical shells in 

longitudinal, tangential and transverse direction describe in the form of shell motion’s equations with particular variables. Many 

kinds of mathematical functions are used to measure the axial modal dependence. The boundaries conditions of cylindrical shells 

are satisfied by them. 

1.4 Modal displacement functions 

The unidentified displacement functions u(x,𝜃, z), v(x, 𝜃, z), w(x, 𝜃, z), showing deformations in the longitudinal, tangential and 

transverse directions are supposed in such shapes that the separation of the special and temporal variables is performed. This process 

is done by classical technique of separation of variables used for solving partial differential equations. The substitution of the 

presumed shapes of the modal displacement functions are made into the shell governing equations and a system of simultaneous 

equations is obtained in the vibration amplitude coefficient by the Rayleigh-Ritz method. The axial modal dependence related to the 

unknown functions is determined those functions which meet boundary conditions described for a cylindrical shells. The following 

models for the modal deformation function are mentioned for axial, tangential and temporal variables:   

       ( , , ) ( )sin sinu x z AU x n t                           (10a) 

 ( , , ) ( )sin sinu x z AU x n t                           (10b) 

 ( , , ) ( )sin sinw x z CW x n t                                             (10c) 

where 𝜔 denotes the frequency of the cylindrical shell and n is the circumferential wave number. The coefficients A, B, C show the 

vibration amplitudes in the longitudinal, tangential and transverse directions respectively.  

Substituting the above expressions of the shell energies into Equation (9), the new expression for the Lagrange functional is achieved 

as: 
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          (11) 

Applying the Rayleigh- Ritz method, the process of minimization is applied to the Lagrange functional and is partially 

differentiated with regard to the vibration amplitude coefficients A, B and C. So doing process of extremization of  , the 

following required extrema conditions are obtained: 

  0
A B C

  
  
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  
                                                                                                     (12)                                              

1.5 Derivation of the shell frequency equation 

The point when terms of these compelling conditions adjusted in particular shape then shell recurrence mathematical statement is 

discovered. Three concurrent mathematical statements in A, B, C are acquired as: 

   C11A+C12B+C13C= 0                                               (13) 

C21A+C22B+C23C= 0                                               (14) 

C31A+C32B+C33C= 0                                               (15) 

where the coefficients Cij’s =(i,j=1,2,3) are listed in appendix. The above equations can be written in the matrix form as  

 (
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}                                                               (16) 

This represents the frequency equation in the eigenvalue problem form. The condition of making the determinant of the matrix 

coefficients zero is applied for non-trivial solution for achieving the frequency equation. 

1.6 Polynomial volume fraction law  

The properties of functionally graded materials vary for temperature and they are originating in the field of high thermal condition. 

If the material property is denoted by P which is function of the absolute temperature T(K). Then Touloukian (1973) stated as: 
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where the thermal coefficients are indicated by P0, P-1, P1, P2 and P3 while T indicates the temperature at absolute scale. The material 

properties of a functionally graded constituent material for a cylindrical shell are functions of both temperature and their volume 

fractions. The succeeding material of a functionally graded material is described as:  
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where the materials characteristics are mentioned by 'jP s  and the volume fraction of FGM denoted by '
jfV s , . Their sum always 

equal to one 
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fV denotes the volume fraction of a FG material. It can be written as: 

    𝑉𝑓 = [
𝑍−ℎ2

ℎ3−ℎ2
]

𝑁

                                                     (20) 

 The thickness of cylindrical shell denoted by h and power-law exponent by N and its value always lie between zero and infinity. 

FGM are composition of two materials. For a FG cylindrical shell E , v &   are expressed as: 
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 𝐸 = (𝐸1 − 𝐸2) [
𝑍−ℎ2

ℎ3−ℎ2
]

𝑁

+ 𝐸2                                 (21) 

 𝑉 = (𝑉1 − 𝑉2) [
𝑍−ℎ2

ℎ3−ℎ2
]
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+ 𝑉2                                  (22) 
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]

𝑁

+ 𝑃2                                   (23) 

where z= -h/3, E=E2, v=v2denotes the materials used for M2and z= -h/3, E=E1, v=v1 describe the materials for M1. Both the materials 

present on the inward and outward surfaces of cylindrical shells can change their materials characteristics by interchanging 

themselves. The cylindrical shells with FGM are usually in-homogeneous shell. When the thickness of a shell toward its radius ratio 

is less than 0.05 then the theory of classical thin-walled cylindrical shell is applicable. 

1.7 Exponential volume fraction law 

Arshad et al. [10] modified the polynomial volume fraction law (20) and framed it in the exponential expression as: 
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where 2.718e  … is the usual natural base. Further formula is amended and a more general base  0b   is established and a 

new expression is written as: 
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Thus formulae for the effectual material properties: the effective Young’s modulus ,E  the Poisson ratio 𝑣 and the mass density   

for a FG are written as: 
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The above relations express M2 present at the inward surface while M1 at outward surface of the cylindrical shells. 

1.8 Trigonometric volume fraction law 

This law obtained by making some changing in the formulae defines in (20) and (25) for cylindrical shell with FG layer related to 

M1 and M2 can be defined as: 
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The formulae (3.13) and (3.14) show that  

           1 2 1f fV V                                                                   (29) 

where N is a positive real number. The conclude materials for this law can also express like other two laws for cylindrical shells 

with FG  
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2

hz    M2  is attached at inward  side but when z=h/2 

then the characteristics material are obtained by both M1 and M2  materials present at outward surface of the cylindrical composed 

with functionally graded material.  

1.9 Material Stiffness for three-layered cylindrical shells 

The thickness layer of the cylindrical shell is divided into three layers. Thicknesses of interior, intermediate and exterior layers are 

h1, h2 and h3 respectively. For simplicity, thickness of each layer is of the thickness h/3. According to this configuration, the 

coefficients of extensional, coupling and bending stiffness Aij, , Bij and  Dij are modified as  

Here E, E2 and E2 are Young’s moduli, N is power-law exponent and vf volume fractions while v,v1 and v2 are Poisson ratios. 
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1.9 Result and discussion 

The comparison of values of non-dimensional frequency parametersΩ = 𝜔𝑅√(1 − 𝑣2)𝜌/𝐸, for simply supported boundary 

conditions for homogeneous cylindrical shell with those of Loy et al. [4] is composed in Table 1. The present case was solved by 

the Raleigh-Ritz method while the frequency parameters in Loy et.al. [4] were obtained by the differential quadrature method. This 

comparison shows that the present results are nearly equal with each other. At n=2, the frequency parameter has the lowest value.  

Table 1, Comparison of frequency parameters Ω = 𝜔𝑅√(1 − 𝑣2)𝜌/𝐸 for a cylindrical shell with simply supported-simply 

supported boundary conditions (m=1, L/R=20, h/R=0.01, v=0.3) 

 

n Loy et al. [4] Present 

1 0.016101 0.016101 

2 0.009382 0.009363 

3 0.022105 0.022085 

4 0.042095 0.042075 

5 0.068008 0.069788 

 

The results frequencies (Hz) of vibration cylindrical shells having FGM are obtained. These cylindrical shells consist of two types 

of functionally graded material. Two materials: nickel and stainless steel are associated at inward and outward surfaces of a 

functionally graded cylindrical shell of 1st Type. While in 2nd Type they interchange their positions. The outer surface denoted by 

M1 and inner denoted by M2. Natural frequencies (Hz) of  1st Type and 2nd Type cylindrical shells are composed in Table 3 and 4 

respectively for the half-axial wave mode m =1. Geometric parameters are mentioned in the Tables. Polynomial fraction law 

regulates the material distributions in FGM. The power law exponents are taken as:  N A comparison of the result of natural 

frequencies (Hz) for a cylindrical shell for simply supported-simply supported edge conditions is given with the results of Warburton 

[18] in the Table 2. These boundary conditions are applied at the both end points of the cylindrical shell. The half-wave axial 

numbers are taken to be m = 1, 2, 3, 4, 5, 6 and the circumferential wave numbers are taken n=2, 3. From the comparison it observed 

that these results are close to each other. 

= 0.5, 1, 15.The present obtained frequencies and those of Iqbal et al. [13] are compared with each other. The shell frequencies have 

been evaluated by the Raleigh - Ritz method and wave propagation method was applied by Iqbal et al. [13] to obtain them. The 

condition which is stated at both the ends is simply supported-simply supported. So the compared results coincided with each other 
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Table 3, Natural frequencies (Hz) comparisons of 1st Type cylindrical shells having simply supported – simply supported end 

condition (m=1, L/R=20, h/R=0.002) 

 

 Iqbal et al. [13] Present 

n N=0.5 N=1 N=15 N=0.5 N=1 N=15 

1 13.321 13.211 12.933 13.321 13.211 12.932 

2 4.5168 4.480 4.3834 4.5195 4.4831 4.3858 

3 4.1911 4.1569 4.0653 4.2014 4.1685 4.0788 

4 7.0972 7.0384 6.8856 7.113 7.0563 6.9091 

5 11.336 11.241 10.999 11.356 11.265 11.032 

 

Table 2, Comparison of natural frequencies (Hz) for a simply supported- simply supported isotropic cylindrical shell (L=8in, 

h=0.1in, v=0.3,𝜌=7.35×10−4Ibfs2 in-4, E=30×106Ibf in-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4, Natural frequencies (Hz) comparisons of 2nd Type cylindrical shells having simply supported-simply supported end 

condition. (m=1, L/R=20, h/R=0.002) 

 

 Iqbal et al. [13] Present 

n N=0.5 N=1 N=15 N=0.5 N=1 N=15 

1 13.103 13.211 13.505 13.102 13.209 13.504 

n N Warburton[18] Present 

2 

1 2946.8 2042.7 

2 5637.8 5631.9 

3 8935.3 8926.4 

4 11405 1139.3 

5 13245 13243.7 

3 

1 2199.3 2194.4 

2 4041.9 4031.2 

3 6620.0 6605.9 

4 9124.0 9108.4 

5 11357 11343.4 
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2 4.4382 4.4742 4.5759 4.4386 4.4742 4.5767 

3 4.1152 4.1486 4.2451 4.1256 4.1578 4.2522 

4 6.9754 7.0330 7.1943 6.9945 7.0497 7.2051 

5 11.145 11.238 11.494 11.172 11.2611 11.5070 

 

From the above comparisons, it is clear that the present numerical procedure is efficient and valid and yields accurate results. Natural 

frequencies (Hz) for the present configurations of three layered cylindrical shells are furnished with variations depending on 

circumferential wave number, n, axial wave numbers, m and geometrical parameters. The end conditions considered here are simply 

supported – simply supported (SS-SS), clamped-clamped (C-C), clamped- free (C-F) and clamped- simply supported (C-SS). The 

three volume fraction laws: (i.) polynomial, (ii.) exponential and (iii.) trigonometric are applied to measure the material composition 

of functionally graded layer. 

 

 Table 5, Variation of frequencies of cylindrical shells with simply supported-simply supported edge conditions for 1st Type versus 

n (h=0.002, L=20, R=1) 

 

 

 

 

 

 

 

 

 

From the Table 5, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 1st Type cylindrical shell with simply supported- simply supported 

boundary condition 

Table 6, Variation of frequencies of cylindrical shells with clamped-clamped edge condition for 1st Type versus n (h=0.002, L=20, 

R=1) 

 

 Polynomial Exponential Trigonometric Polynomial Exponential Trigonometric 

N N=0.5 N=15 

1 13.5748 13.3747 12.7887 13.3356 13.1472 12.5716 

2 4.4803 3.3600 4.2153 4.3893 3.2996 4.1429 

3 3.4889 1.2446 3.2995 3.3233 1.2183 3.2431 

4 5.5134 4.1349 5.2247 5.1750 4.0681 5.1371 

5 8.7339 7.6059 8.2760 8.1820 7.4847 8.1382 
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From the Table 6, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 1st Type cylindrical shell with clamped-clamped boundary 

condition. 

Table 7, Variation of frequencies of cylindrical shells with clamped-free edge condition for 1st Type versus n (h=0.002, L=20, R=1) 

 

From the Table 7, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 1st Type cylindrical shell with clamped-free boundary condition. 

Table 8, Variation of frequencies of cylindrical shells with clamped-simply supported edge condition for 1st Type versus n (h=0.002, 

L=20, R=1) 

 

 

 

 

 

 

 

 

From the Table 8, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 1st Type cylindrical shell with clamped-simply supported boundary 

condition. 

 Polynomial Exponential Trigonometric Polynomial Exponential Trigonometric 

n N=0.5 N=15 

1 22.3255 22.3171 21.1528 21.7079 21.7211 20.5885 

2 7.5297 7.5349 7.0933 7.3182 7.3340 6.9042 

3 4.1355 4.0913 3.8996 3.9749 3.9833 3.7960 

4 4.4917 4.3080 4.2520 4.2090 4.1967 4.1399 

5 6.5838 6.2462 6.2383 6.1177 6.0863 6.0741 

 Polynomial Exponential Trigonometric Polynomial Exponential Trigonometric 

 

 

N N=0.5 N=15 

1 22.3256 22.2350 21.1529 21.7079 21.6407 20.5885 

2 7.5302 7.1317 7.0938 7.3184 6.9392 6.9043 

3 4.1365 3.1758 3.9006 3.9753 3.0863 3.7962 

4 4.4927 3.4062 4.2529 4.2094 3.3139 4.1401 

5 6.5845 5.6490 6.2389 6.1180 5.5018 6.0743 

 Polynomial Exponential Trigonometric Polynomial Exponential Trigonometric 

N N=0.5 N=15 

1 10.0573 9.9054 9.4714 9.7789 9.6408 9.2187 

2 3.3181 2.4884 3.1359 3.2186 2.4195 3.0380 

3 2.5839 0.9217 2.4436 2.4370 0.8933 2.3781 

4 4.0833 3.0623 3.8694 3.7948 2.9831 3.7670 

5 6.4683 5.6330 6.1293 5.9998 5.4885 5.9677 
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Table 9, Variation of frequencies of cylindrical shells with simply supported- simply supported edge condition for 2nd Type versus 

n (h=0.002, L=20, R=1) 

 

From the  

 

 

 

 

 

 

 

Table 9, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 2nd Type cylindrical shell with simply supported-simply supported 

boundary condition. 

Table 10, Variation of frequencies of cylindrical shells with clamped-clamped edge condition for 2nd Type versus n (h=0.002, L=20, 

R=1) 

 

From the  

 

 

 

 

 

 

 

Table 10, it is observed that the frequency obtained by using the exponential volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 2nd Type cylindrical shell with clamped-clamped boundary 

condition.  

 

 

 

 

 

 

 

 

 Polynomial Exponential Trigonometric Polynomial Exponential Trigonometric 

n N=0.5 N=15 

1 13.442 13.249 12.720 13.691 13.481 12.943 

2 4.4217 3.3257 4.1903 4.5040 3.3875 4.2644 

3 3.3347 1.2283 3.2690 3.3935 1.2552 3.3267 

4 5.1848 4.0992 5.1720 5.2718 4.1675 5.2614 

5 8.1969 7.5412 8.1931 8.3330 7.6656 8.3033 

 Exponential Polynomial Trigonometric Exponential Polynomial Trigonometric 

n N=0.5 N=15 

1 21.959 21.950 20.896 22.589 22.588 21.481 

2 7.4147 7.4003 7.0094 7.6650 7.6153 7.2057 

3 4.0281 4.0151 3.8502 4.2069 4.1299 3.9577 

4 4.2461 4.2403 4.1898 4.4279 4.3569 4.3059 

5 6.1591 6.1575 6.1432 6.3719 6.3247 6.3130 

 Polynomial Exponential Trigonometric Polynomial Exponential Trigonometric 

n N=0.5 N=15 

1 21.9503 21.8769 20.8955 22.5883 22.4913 21.4812 

2 7.4003 7.0099 7.0089 7.6153 7.2091 7.2056 

3 4.0151 3.1066 3.8492 4.1299 3.1991 3.9575 

4 4.2403 3.3397 4.1889 4.3569 3.4353 4.3057 

5 6.1575 5.5596 6.1426 6.3246 5.1721 6.3129 
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Table 11, Variation of frequencies of cylindrical shells with clamped-free edge condition for 2nd Type versus n (h=0.002, L=20, 

R=1) 

 

From the Table 11, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 2nd Type cylindrical shell with clamped-free boundary condition. 

Table 12, Variation of frequencies of cylindrical shells with clamped-simply supported edge condition for 2nd Type versus n 

(h=0.002, L=20, R=1) 

 

 

 

 

 

 

 

From the Table 12, it is observed that the frequency obtained by using the polynomial volume fraction law is the highest than those 

corresponding frequencies for other two volume fraction laws for 2nd Type cylindrical shell with clamped-simply supported 

boundary condition. 

1.8 Conclusions 

The vibration of cylindrical shells with FGM express by using the Raleigh-Ritz technique in this method. Three volume fraction 

laws are used to define the middle layer of tri-layer cylindrical shells. Two types of cylindrical shells are discussed in this method. 

The middle layer of cylindrical shell is FG which is composition of two materials Nickel and Stainless steel. At the inward surface 

of shell Stainless steel attached, while Nickel is attached at outward surface in 1st Type of shells. The position of these materials 

will interchange in 2nd Type. The results for simply-supported-simply supported, clamped-clamped, clamped-free and clamped- 

simply supported boundary conditions are obtained by this method. Following results are obtained by this present shell problem.  

I. Circumferential wave number affect on the natural frequencies (Hz) of both Types of cylindrical shells. The frequencies 

increased and decreased by them. 

II. Comparison of present obtained results with exponent power law for three volume fraction laws with the results of Loy et 

al.[4] and Naeem et al. [10-11] shows that they are good agreement with each other. 

III. It observe that in 1st Type of cylindrical shell frequency is increasing as N increase and in 2nd Type it decreasing when N 

increase, due to interchanging the materials M1 and M2. 

IV.  The comparison of frequencies values of three volume fraction laws give the result that the frequency of 1st Type 

cylindrical shell increasing by polynomial fraction law, while in 2nd Type the frequency of cylindrical shells with clamped-

clamped boundary condition increased by exponential law and other with polynomial fraction law. The comparison of 

variations of frequencies estimated that the recent method is valid and accurate. The obtained results are very close to 

previous result.  
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