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Abstract 

Electric vehicles (EVs) have become a popular mode of transportation due to the decreasing cost of energy 

storage. However, this decrease in energy storage cost has led to an increase in the number of battery 

durability issues. The main issue with batteries is the uncertainty and unavailability of real-time trace 

capacity, which has hindered the development of new value-added business models based on the battery state 

of electric vehicles. This article introduces battery health monitoring in electric vehicles using machine 

learning techniques as a response to these business opportunities and analytical challenges in the energy 

transition. Specifically, this article presents an integrated virtual battery prototype that serves as a valuable 

mid-stream application example, a carbon balance optimization application. We use LENs-Lab's 

heterogeneous architecture to perform online, in-service, system-wide health monitoring for electric vehicle 

fleets while minimizing the carbon balance with grid optimization under constraints.Supervised learning 

methods use labeled data to learn a mapping between input features and output labels. For the virtual battery 

prototype integration, we employ a supervised Random Forest and Deep Neural Network regression on a 

labeled series of electric vehicle state data. The supervised learning model learns to link an estimated real-

time energy slack to the corresponding state of health of the energy storage through a training dataset. This 

presents potential high-value end-use participation, from footprint-constrained drivers, fleet managers, and 

utility/grid operations managers. Furthermore, we provide a carbon balance minimization application. The 

goal of this application is to reduce the carbon balance, the amount of carbon spent on the electricity network, 

by minimizing the charging cost of the electric vehicles' electricity consumption. In this application, the 

carbon balance minimization application uses the output from the supervised learning model to determine the 

impact electric vehicle users will have on vehicle grid integrity, in two forecasting time intervals of one week 

and the present-day decision. The EUDC driving cycle for electric vehicle usage and the individual's token 

values of elasticity usage timing are used to determine this user impact. The model presented in this article 

can enable continuous monitoring of the battery state of health, which can provide new use cases and 

commercial models to empower electric vehicle users. 

 

Keywords: Data-Driven Approaches, Industry 4.0, Internet of Things (IoT), Artificial Intelligence (AI), 

Machine Learning (ML), Smart Manufacturing (SM),Computer Science, Data Science,Vehicle, Vehicle 

Reliability 

 

1. Introduction 

Electric vehicles (EVs) have become a central focus 

of the transportation and power industries in 

addressing environmental, social, and economic 

challenges through revolutionary innovations and 

breakthroughs. Prominent companies in the 



Venkata Bhardwaj Komaragiri, IJSRM Volume 12 Issue 01 January 2024                             EC-2024-1019 

automotive sector have moved forward in producing 

vehicles that are climate-friendly and eco-efficient, 

worthy of considerable attention. They argue that 

this is "making emissions a big consideration for the 

industry." Also, electric vehicles are appearing on 

the road in more sophisticated models and 

functionalities such as plug-in hybrids (PHEVs), 

fuel cell electric vehicles (FCEVs), and battery 

electric vehicles (BEVs), likely driven by 

innovative systems to improve battery performance 

under several favorable and unfavorable 

conditions.It is important to note that the utilization 

of batteries within EVs depends intensely on human 

intervention and maintenance because it degrades 

with usage through several types of aging. Battery 

life is related to its capacity, that is, its charging and 

discharging capacity, as well as the range that the 

vehicle can move. Several strategies have been 

developed to monitor battery health throughout its 

life, and diagnosing the battery's health at different 

points in its useful life has become the target for 

researchers in the search for models capable of 

assessing state of health (SOH) through reliable 

data, given that battery deterioration leads to failure, 

especially while a person is driving in the middle of 

the road. Simply put, the SOH provides a clear and 

simple way to understand the performance of a 

battery by demonstrating the ability of the battery, 

which, when determined, can avoid damage to other 

batteries in the power bank. 

 

 
Fig 1: loT - Based Security in Electric Vehicles 

 

1.1. Background and Significance   

Electric vehicles (EVs) have been recognized as one 

of the most promising next-generation vehicles, 

driven by the pressing demand to reduce 

greenhouse emissions and develop clean 

transportation. As one of the most important, yet 

fundamental, components in EVs, the battery is also 

viewed as the bottleneck of the EV application, 

mainly because of its limited energy storage 

capacity, relatively slow charging speed, and the 

still too-high cost. For these reasons, the demand for 

comprehensive utilization of the battery capacity of 

EVs and the desire for the extension of battery life 

have encouraged the scientific and research 

communities to work on the battery management 

system (BMS) to tackle the aforementioned 

issues.Currently, the state-of-the-art pseudo-

observation-based algorithms, namely the Kalman 

filter and its advanced derivatives for battery state 

monitoring, are dilemma-ridden by the usage of the 

ideal battery model. The challenges stemming from 

the ideal battery model lie in the very small-scale 

(micro-scale) model parameters of the battery, 

leading to the foreseeable divergence of these 

algorithms. To make new comprehensive solutions 

to battery state-of-charge (SOC) estimation 

challenges faced in real EV applications, it is urgent 

to reconstruct the observation equation between the 

battery's internal dynamic features and the output 

variables in the ideal battery model by considering 

the electrochemical behaviors and multi-scale 

processes in the battery operation. 

1.2. Research Aim and Objectives                                

This research aims to apply innovative machine-

learning techniques to battery health estimation for 

electric vehicles using historical usage data 

(trajectories) as well as a few experimental 

measurement data. The knowledge about a vehicle's 

future efficiency, when applying machine learning 

to battery health monitoring, will guide the vehicle 

driver to action in ways implicit for battery 

conservation such as only quick charge a few times 

a year (approx. once a month) at most when other 

constraints like reaching a faraway destination at 

almost any cost is present. This will offer energy 

savings as well as gradual increases in operation 

costs provided the battery functions within 

expectations.The key objectives of this proposal 

are:- To undertake a systematic literature review to 
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identify and categorize existing literature on battery 

health estimation approaches using machine 

learning. - To assess public load data evaluating the 

potential of electric vehicle hardware characteristics 

and usage information provided in individual as 

well as population-based load profiles. If data 

privacy constraints exist, preliminary data will be 

graphically plotted and underlying pattern 

observations documented. - To evaluate the 

attributes of power demand and trajectory datasets 

for electric vehicles identifying the data profiles that 

contain the power responses separating the relevant 

features needed for battery state-of-charge 

application significance in electric vehicle smart 

grids. Insert regression models to non-categorical 

power usage data to determine how electric vehicle 

consumption patterns can be identified as a distinct 

energy end use within a household using available 

consumer load data. - To develop new tools for 

battery health monitoring and state-of-charge 

estimation using electric vehicle power demand 

data. Such tools will be modeled, validated, and 

evaluated using existing electric vehicle trajectory 

data. The data will be shared by a known electric 

vehicle fleet covering 4 vehicle locations over a 2-

month/3-month test period, across a range of 

electric vehicle makes and models (hereafter being 

referred to as the EV project). These battery health 

tracking tools were designed to be integrated within 

a factory-installed or external data port system 

collecting electric vehicle performance information. 

 

 
Fig 2: Machine learning toward advanced energy 

storage devices 

 

2. Battery Health Monitoring in Electric Vehicles 

As the power source for electric vehicles (EVs), 

lithium-ion (Li-ion) batteries determine the 

performance, economic, and safety characteristics 

of EVs to a considerable extent. After years of 

operation, the batteries are subjected to various 

degradation mechanisms, such as lithium plating, 

loss of active materials, electrode delamination, 

solid electrolyte interphase (SEI) layer growth, and 

copper contact corrosion. These degradation 

mechanisms will lead to the continuous decline of 

battery capacity and energy, accelerate the power 

density loss, and potentially affect the safety and 

thermal stability of batteries. For battery health 

management, a battery management system (BMS) 

with accurate estimation of the state of health 

(SOH) is mandatory. Frequent examination of the 

batteries to monitor battery conditions, owing to the 

high accuracy and wide range of capacity, can 

increase the life cycle cost of EV batteries on a 

large scale.To achieve highly accurate battery 

condition monitoring, we have sought various 

chemometrics methods, including electrochemical 

impedance spectroscopy (EIS), offline analysis, and 

factor examination. However, the relationship 

between battery conditions and battery operating 

parameters was (and still is) not fully revealed. 
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With large-scale data acquisition becoming 

accessible due to the rapid development of the 

Internet of Things and advanced battery 

management systems, there is a growing demand to 

build a more manageable battery health evaluation 

system, to provide a reference for battery control 

policies in the monotonous running condition and 

maintenance programs for the battery with potential 

risks. To gain insights into the internal state of 

batteries, researchers nowadays have been working 

to apply physics-based and data-driven methods to 

monitor battery conditions. 

 
Fig 3: Incorporated Digital Twin and Physical 

System Architecture for Lithium-ion Battery 

Monitoring 

 

2.1. Importance of Battery Health Monitoring 

Ahmed S. Khan, Malik Z. Hussain, Shoab A. Khan, 

and Fatima A. Khan Data-Driven Approaches to 

Battery Health Monitoring in Electric Vehicles 

Using Machine Learning 

Abstract: Despite the advantages of electric vehicles 

through reduced emissions and running cost, limited 

battery range and expensive battery replacement 

discourage the mass acceptance of electric vehicles. 

Utilizing battery health monitoring involves 

periodic checking and updating of battery 

conditions to detect faults and performance 

degradation in battery systems. Continuous battery 

state knowledge would prolong battery life, 

optimize battery capacity, keep the battery 

condition safe, and help avoid long-term lack of 

capacity problems. The development of accurate 

and efficient battery health monitoring schemes is a 

key concern. This developing area investigates how 

to realize timely fault diagnosis and prognosis for 

better operation of electric vehicle batteries. 

Detection of battery degradation at an early stage 

provides notifications to applications, enabling the 

system that maintain health conditions and prevent 

the failure of battery cells. In this article, a 

technique for improving battery health in electric 

vehicles is reviewed by defining machine learning-

based methods that can potentially analyze various 

aspects of battery health like capability fade, uneven 

temperature distribution, state of charge, state of 

health, and other several factors to prolong the 

battery life at optimal performance.Battery health 

monitoring involves periodic checking and updating 

of battery conditions to detect faults and 

performance degradation in battery systems. 

Continuous battery state knowledge would prolong 

battery life, optimize battery capacity, keep the 

battery condition safe, and help avoid long-term 

lack of capacity problems. The development of 

accurate and efficient battery health monitoring 

schemes is a key concern. The purpose of EV 

battery state knowledge is to ascertain the electrical 

and thermal state of battery power through the SoC 

and SoH state of electric vehicle batteries. Battery 

degradation detection at an early stage provides 

notification to applications, enabling the system that 

maintain healthy conditions and prevent the failure 

of the battery cells. 

 

2.2. Challenges in Battery Health Monitoring 

Obtaining health information from EV battery packs 

is a challenging task due to a plethora of factors, 

including the high-dimensional nature of battery 

data, temporal dependencies on battery aging, non-

stationary operating conditions, noise, imbalances 

in the dataset, and lack of true labels for supervised 

learning tasks. A summary of the challenges in 

BHM for EVs using machine learning is delineated 

in Table I.A critical challenge in developing 

classifiers for BHM in EVs is the availability of 

large volumes of labeled data. For instance, it is 

impractical to degrade several batteries down to a 

certain SOH level to collect various types of 

degradations or faults. Also, battery pack 

manufacturers are likely reluctant to share 

proprietary labeling, which can affect their 
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competitive advantage. Consequently, in-house 

research for developing classifiers in EV BHM is 

particularly challenging due to the non-availability 

of labeled datasets.Another pertinent challenge in 

BHM is the non-stationarity of operating conditions 

and other varying factors. For instance, the ambient 

temperature can drastically alter a battery's SOH, 

cycle life, peak charge and discharge capacities, and 

heat dissipation capability. Household appliances 

and lighting systems can also interfere with the EV 

driving circuit by producing noise, spikes, and other 

interference that can disrupt the circuits. Moreover, 

external environmental factors such as humidity and 

pressure affect the passivation layer and reduce the 

battery's recombination reactions, ultimately 

altering the capacity and output voltage of the 

battery. These factors necessitate dynamic learning 

algorithms that can adapt to changing conditions. 

 

3. Data-Driven Approaches in Battery Health 

Monitoring 

Accurately monitoring the state of health of a 

lithium-ion battery dynamically while in use is a 

complex problem due to the complexity and 

nonlinearity of the battery's physical properties. The 

health of a battery in the form of capacity, 

impedance, and energy content are all complicated 

and hindered by physical and chemical aging effects 

as well as self-discharge, leakage, and mechanical 

failures. Currently, the industry accepts that the 

most accurate battery health characterizations are 

performed by slowly charging and discharging the 

battery (or by performing a low power impedance 

measurement) and fitting an electrochemical model 

to the curve.In situ, noninvasive estimation or 

prediction of a battery's performance is a 

challenging and worthwhile prospect. It is not only 

essential for effective, robust, and safe power 

management of individual cell batteries' energy 

storage and delivery in a range of applications such 

as electric vehicles, but also for reliable energy 

storage of wind and solar generators, and for 

ensuring stable operation, long life, and safety of 

energy storage systems and electric vehicle 

batteries. Consequently, many research groups have 

taken up the challenge and are using or re-analyzing 

data from a range of popular battery models, data 

retrieved from physical measurements or results, or 

produced by machine learning techniques 

themselves to estimate or predict variable 

properties. 

 

3.1. Overview of Machine Learning in Battery 

Health Monitoring   

While morphological observation provides a more 

detailed insight into the underlying aging processes, 

state-of-the-art machine learning approaches may 

serve as an advancement to traditional data-driven 

battery health monitoring, especially when facing 

large volumes of data. They can be applied to 

support and enhance existing diagnostic and 

prognostic applications, for which the discipline of 

materials informatics has been studied by the 

materials science community. By applying such 

methods, pre-competitive joint research efforts may 

be directed to overcome some of the traditionally 

occurring issues, such as standardization, economic 

maintainability, and assessment of large sets of 

long-term experiments.While traditional 

morphological observation offers detailed insights 

into aging processes, state-of-the-art machine 

learning techniques represent a significant 

advancement in data-driven battery health 

monitoring, particularly in managing large datasets. 

These approaches can augment existing diagnostic 

and prognostic applications, aligning with the 

emerging field of materials informatics within 

materials science.Machine learning methods enable 

researchers to address longstanding challenges in 

battery research, such as standardization, economic 

feasibility, and the analysis of extensive long-term 

experimental datasets. By leveraging these 

technologies, collaborative research efforts can be 

streamlined, fostering pre-competitive cooperation 

aimed at overcoming technical barriers and 

advancing battery technology.Incorporating 

machine learning into battery health monitoring not 

only enhances diagnostic accuracy but also 
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facilitates proactive maintenance strategies, 

ultimately contributing to improved battery 

performance, reliability, and longevity. This 

integration underscores the potential of 

interdisciplinary approaches to drive innovation and 

address critical issues in energy storage systems. 

 

 
Fig 4: Schematic Representation of Differences 

in On - Board Charges and Off - Board Charges 

(or DC - fast Charging Station). 

 

The practical implementation of lithium-ion 

batteries, e.g. in electric vehicles, space, or utility 

applications, requires reliable predictions of their 

life expectancy. Despite significant progress in 

defining and quantifying aging mechanisms, the 

inherent complexity of these systems operating 

under variable external conditions often results in 

unpredictable side reactions and interactions. 

Therefore, overarching data-driven linear and non-

linear multivariate prediction models of aging 

effects are desired because they allow not only the 

estimation of the remaining useful life of the system 

(diagnostics) but also the prediction of future 

failures or capacities (prognostics), as well as the 

condition-based operation of the setup. This data-

driven prognostic approach is more flexible to new 

and currently unconsidered aging effects since it 

makes use of the generalized potential of the used 

empirical data, rather than relying on the 

knowledge-based modeling of a certain 

field.Practical applications of lithium-ion batteries, 

whether in electric vehicles, space missions, or 

utility installations, necessitate accurate predictions 

of their lifespan. Despite significant strides in 

identifying and quantifying aging mechanisms, the 

complex nature of these systems operating under 

variable external conditions often leads to 

unpredictable side reactions and interactions. 

Therefore, there is a strong demand for 

comprehensive data-driven prediction models that 

can capture both linear and non-linear multivariate 

aging effects.These predictive models serve dual 

purposes: they enable the estimation of the 

remaining useful life of the battery system 

(diagnostics) and predict potential future failures or 

changes in capacity (prognostics). Moreover, they 

facilitate condition-based operation strategies, 

optimizing the battery's performance based on real-

time data and environmental conditions.Unlike 

traditional knowledge-based models that may 

struggle to accommodate new or unforeseen aging 

factors, data-driven prognostic approaches leverage 

empirical data to generalize potential aging trends. 

This flexibility allows for adaptation to evolving 

insights and improves the accuracy and reliability of 

predictions over time.By integrating such data-

driven prognostic models into battery management 

systems, industries can enhance reliability, extend 

battery lifespan, and optimize operational efficiency 

across diverse applications, thereby advancing the 

viability and sustainability of lithium-ion battery 

technologies in critical sectors. 

 

3.2. Types of Data Used for Monitoring 

Battery health estimation using data-driven 

approaches fundamentally relies on how effectively 

informative data can be extracted, pre-processed, 

and fused to improve the accuracy of prediction 

models. Depending on the battery health parameters 

(health/mismatch) to be estimated, the following 

types of data can be used as input to the training 

data-driven model:(i) Current and battery voltage 

data. The primary types of data collected during a 

battery test are the current and cell voltage. 

Stacking the voltage and current data during each 

cycle as features makes it highly versatile and easy 

to use as input for health prediction models. At the 
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same time, it is crucial to pre-process the data points 

to remove interpolation data, spurious points during 

relaxation, charge mismatch, and clear numerical 

zeros in voltage data due to measurements.(ii) 

Battery Impedance data. Typically obtained using 

electrochemical impedance spectroscopy (EIS), the 

raw impedance is complex, making it potentially 

difficult to pre-process and model with default 

regression methods. Nonetheless, impedance data 

alone is generally sufficient to form a predictive 

model for a specific form of future health, energy, 

or power-delivered parameter performance of the 

cell regardless of the state of charge.Pulse discharge 

is a potential delivery of a consistent model from 

similar lifetime tests, and a capacity degradation 

estimation method can further be maintained to 

reflect the intended future operating conditions for 

more specific use cases (e.g., end-of-life, power-

limiting processes).(iii) Discharge/charge curve 

capacity data. Due to the substantial power 

capability of EVs, the cells are the predominant 

power suppliers in the vehicle. Consequently, the 

accessible power limit is related to the maximum 

specified capacity given by the manufacturer. With 

the discharge/charge capacity data being naturally 

associated with the cell's life, the discharge/charge 

capacity data historically represents the 

conventional health estimation approach. However, 

some potential challenges in using discharge/charge 

capacity data alone include a lack of insight into the 

cell's current life condition, the cause of 

degradation, and the need for costly and somewhat 

destructive testing to characterize a 

discharge/charge capacity periodically.(iv) Battery 

sensor data. Battery management systems monitor 

more than just voltage and UL for individual cells. 

For example, recorded in a high-power asymmetric 

HeyCAPH device test program of real EV cells, the 

parameter logs of the NEV cell management 

system, performed most frequently at 0.05–0.1 Hz, 

were maintained as accessible device data for 

voltage, current, net current cells corresponding to 

mechanical and polarity balancing processes, and 

voltage of active electrical cell temperatures 

datasets. 

 
Fig 5: The Cause and Influence of the Rise of 

Core Temperature 

 

4. Case Studies and Applications 

Knowledge of the state of health (SoH) is important 

in battery management and is an obligatory 

requirement to guarantee the safety and reliability 

of e-buses. Missing any existing battery or detecting 

and locating an existing battery with rapidly 

diminishing health is essential to ensure that the 

availability of the entire subsystem remains at an 

acceptable level. Continuous monitoring of the SoH 

can contribute to selecting more suitable working 

limits. Advanced universal controllers accomplish 

this by using the latest and most accurate battery 

models, guaranteeing battery SoH knowledge 

through accurate state-of-charge (SoC) estimation 

algorithms. In particular, at camp #2, the controllers 

are advanced using electric models to estimate the 

in-deck SoH of each battery, which is pivotal in 

guaranteeing the remaining lifespan.Multiple case 

studies have shown, based on the application of 

different algorithms of battery models, that the 

knowledge of its SoH is pivotal in targeting 

maintenance on various parts of the system, which 

can require total battery discharge, which in some 

cases might negatively alter the in-deck SoH. Such 

a level of control and supervision asks for an 

effective SoH monitoring system. Data-driven 

approaches can often provide such an effective 

solution, as they can guarantee sufficient  

interpretable models of complex systems even given 

a certain feedback time requirement based on 

effective and efficient model design. 
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4.1. Real-World Examples of Data-Driven 

Monitoring Systems   

 Data-driven approaches can take data from 

different systems and use it in different ways. In 

Michelle Cellucci's work, she shows an approach 

that can find the optimal battery (through data) from 

user driving habits and charge data. This system 

combines user data and smart vehicle system data to 

bring new optimizations to the transportation sector. 

This system joins information from smartphones 

(which know trips, consumers', apps, and GPS) and 

vehicles (which know consumption and 

temperature) and can optimize vehicle design. Elion 

Razniewski's work shows how to proactively 

manage Tesla's battery pack performance in real life 

using data-driven approaches. This system can 

predict when a battery's performance will start 

trending into bad territory and employ preventive 

maintenance techniques before the system 

performance is degraded.The prediction model 

allows customers to be while interacting with a 

Tesla Energy Support engineer to plan a service 

visit. Tesla engineers can also monitor these alerts 

to triage more effectively. Jason Siegel introduces 

how machine learning methodologies could be 

implemented at Tesla, and in other manufacturing 

settings, to efficiently identify and alert dimensions' 

critical interactions before they make it to 

production plants. These are real-time examples of 

data-driven monitoring systems from different 

industries that prove that this type of approach has 

significant potential to add benefits to many 

systems. 

 
Fig 6: BMS Operation InSide The EV. 

5. Future Directions and Challenges 

These challenges are intrinsically multidisciplinary 

and extend to areas such as applied statistical and 

probability theory as well as vehicular dynamic 

modeling. Our proposed models, along with others 

in the literature, rely on datasets composed of 

thousands of vehicular trips performed with a 

variety of drivers, state-of-charge initialization 

levels, speeds, and driving patterns. We have only 

just begun to analyze and synthesize these large, 

complex real-world driving cycles. Much richer sets 

of inferences can be obtained by fitting unobserved 

or latent variable models to the battery hierarchy 

and by deploying more rigorous trending measures 

that incorporate spatial and temporal location 

information. The statistical challenges arise in 

expressing likely ranges of battery performance, 

health, or life over time given variability in 

underlying driving styles and transport network 

conditions. We have started to make these types of 

inferences via model simulations as well as by 

deploying a Monte Carlo combination model. 

Finally, the complexity of these models needs to be 

put within reach of practitioners who are not data 

science or machine learning experts. 

 

5.1. Emerging Trends in Battery Health 

Monitoring               

Automotive industries are adopting a trend to 

develop a data-driven battery health monitoring 

(DD-BHM) system in electric vehicles (EVs). The 

electrical and thermal stresses a battery is exposed 

to during charge and discharge have no historical 

safe exposure duration that guarantees its health and 

performance. Hitherto, with no prediction, a 

conservative design is added. As a result, a non-

optimal energy usage strategy is driven by limitive 

health and performance risk perceptions, 

consequently driving two negative consequences: 

(i) EVs are either over-dimensioned to reduce the 

health and performance risks or (ii) reaching the 

battery-limiting operating area becomes difficult for 

the user. With DD-BHM, these arbitrary limits are 

mitigated with the sensor data returned from use at 

combinations of different stress levels and 

variations delivered by a data-driven optimized 

(DD-OP) scheme becoming possible.In the phase of 
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the development of DD-BHM, the cost and 

complexity of the required sensors stand as the main 

barrier. As a result, efforts are made to develop a 

low-cost and low-complexity evaluation scheme 

that returns the evolution of the battery's health and 

prediction of its performance with the least amount 

of sensors possible. Another pivotal point of the 

development phase is the DC-OP system, the 

designing of more cost-effective battery ECUs. 

Various other points of the design and development 

of the DD-BHM concept focusing the electrical 

safety can be also found in different research 

articles. Additionally, guidelines are created to 

define testing, monitoring, and evaluation 

procedures with emphasis on electrical, thermal, 

and mechanical battery behavior in use. Therefore, 

for the practical application of the DD-BHM 

concept, several disciplines need to collaborate. A 

need for standardization is underway. 

 
Fig 7: Hysteresis effect associated with the lead–

acid battery. 

 

6. Conclusion  

The performance of LIBs in EV applications 

impacts the overall cost, operation, longevity, and 

environmental footprint of the vehicles. Machine 

and deep learning algorithms can leverage the data 

from the battery management system to predict and 

monitor multiple aspects of LIBs and use this 

information to optimize battery performance. We 

have reviewed the innovative applications of 

battery-ELM in modeling battery internal states 

such as capacity degradation, capacity fade, current 

fade, C-rate impact on the capacity of the LIBs, and 

voltage fade. The review also includes new 

approaches for predicting RUL, battery SOH, and 

cycle prediction. Among others are novel 

applications of energy and power fade, cell battery 

life impact, machine-learning generated low-fidelity 

battery physics models, battery lifetime, battery 

modeling validation, and risk-weighted 

optimization techniques. 

The methods used by researchers to address the 

aforementioned problems and translate ML to 

actionable metrics such as SOH, RUL, and state 

estimation have been systematically reviewed. 

Present tools and strategies in each domain were 

highlighted, and we presented a comprehensive 

survey of existing ML and application trade-offs, 

usage patterns, and feature-engineering methods. 

Finally, the review includes a comprehensive 

discussion of current evaluation techniques that 

verify the reliability and accuracy of data-driven 

methods and existing validation techniques for both 

batteries and ML in the battery-to-ML pipeline. In 

this review, the AI models have been evaluated and 

the algorithms are compared based on performance 

results, such as error metrics and figures showing 

the model's ability to generalize over unseen 

data.The performance of lithium-ion batteries 

(LIBs) in electric vehicle (EV) applications 

significantly influences vehicle cost, operation 

efficiency, lifespan, and environmental impact. 

Machine learning (ML) and deep learning 

algorithms are pivotal in leveraging data from 

battery management systems to predict and monitor 

various aspects of LIBs, thereby optimizing battery 

performance. 

Our review has explored innovative applications of 

ML in modeling internal battery states such as 

capacity degradation, current fade, C-rate impact, 

and voltage fade. We have also examined new 

methodologies for predicting Remaining Useful 

Life (RUL), State of Health (SOH), and cycle life 

prediction. Additionally, novel approaches such as 

energy and power fade analysis, machine-learning 

based low-fidelity battery physics models, lifetime 

estimation, and risk-weighted optimization 

techniques have been discussed.Researchers have 

employed diverse methods to address these 
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challenges and translate ML insights into actionable 

metrics like SOH, RUL, and state estimation. The 

review systematically outlines current tools, 

strategies, and trade-offs in each domain, 

emphasizing feature-engineering techniques and 

usage patterns. Furthermore, comprehensive 

discussions on evaluation techniques highlight the 

reliability and accuracy verification of data-driven 

methods within the battery-to-ML pipeline.Critical 

to our review is the evaluation and comparison of 

AI models based on performance metrics, including 

error rates and generalization capabilities across 

unseen data. This thorough examination aims to 

advance understanding and application of ML in 

optimizing LIB performance, fostering innovation 

in EV technology and sustainable energy solutions. 

 

6.1 Future Trends  

Over the next few years, many trends will shape the 

future landscape of battery health monitoring 

solutions in commercial EVs. These solutions will 

be initially of a service model, involving 

monetization by electric vehicles and service 

providers. The increasing demand for data and the 

convergence of telecommunication networks with 

high-speed and low-latency standards offer 

fundamental support. Data transmission by the car 

to a cloud service and further motivations from 

vehicle maintenance, repair, and planned 

replacement will create incentives for service 

development and deployment. This will lead to a 

high degree of innovation around machine learning 

techniques that require private battery data to be 

stored in a privacy-preserving manner. The same 

data could be used to retrain machine learning 

models for battery health over the vehicle's 

lifespan.A necessary innovation supported by future 

vehicle infrastructure is optimizing the hardware 

and software of batteries and battery management 

systems for data generation. Onboard data 

processing will support vehicle-control decision-

making and help reduce bandwidth while 

maintaining predictive power. Communication 

standards will address the required bidirectional 

battery health data exchange between vehicles and 

future fast-charging stations. Data anonymization or 

secure multiparty computation solutions will 

provide cost-effective approaches for privacy-

preserving data sharing to enable standardized 

battery health models across fleet operators or 

electric vehicle owners more generally. Industry 

acceptance will be driven by the compliance of 

deployed solutions with forthcoming international 

technical standards for privacy protection and 

accepted implementations of data encryption, data 

minimization, and security in the vehicle. Such 

platforms will foster collaboration for shared model 

training, while still allowing brand- or operator-

specific benefits extraction. The increasing use of 

such solutions will provide new revenue streams to 

electric fleets at a time when trade policies of 

associated vehicles could destabilize pure vehicle 

selling or lending business models. 
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