Some theorems on the class M-A(n*) operators on Hilbert space

Shaymaa Shawkat Al-shakarchi

Department of Mathematics, Faculty of Basic Education University of Kufa, Najaf, Iraq

Abstract:

An operator $T_1 \in B(H)$ is referred to as $M - A(n^*)$ operators if $(T_1^*|T_1|^{2n}T_1)^{\frac{1}{n+1}} - M|T_1^*|^2 \ge 0$ for a positive integer n. The well-known Fuglede–Putnam's theorem states that the operator equation $T_1X = XT_2$ implies $T_1^*X = XT_2^*$ when T_1 and T_2 are normal operators. This work demonstrates that if X is a Hilbert-Schmidt operator, T_1 belongs to the class $M - A(n^*)$ operators and T_2^* is an invertible operator belonging to the class $M - A(n^*)$ operators such that $T_1X = XT_2$, then $T_1^*X = XT_2^*$.

Keywords: Hilbert space, Fuglede-Putman, A(n*) operators,

1- Introduction:

Let *H* denote a separable complex Hilbert space characterized by the inner product $\langle \cdot, \cdot \rangle$. The space denoted as B(H) represents the set of all bounded linear operators on *H*, whereas I = IH represents the identity operator.

An operator $T \in B(H)$ is said to be positive (denoted $T \ge 0$) if $\langle T x, xi \rangle \ge 0$ for all $x \in H$. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^* is its adjoint, and $||T|| = ||T^*||$. We shall denote the set of all complex numbers by \mathbb{C} , the set of all non-negative integers by N and the complex conjugate of a complex number λ by $\overline{\lambda}$. The closure of a set M will be denoted by \overline{M} and we shall henceforth shorten $T - \lambda I$ to $T - \lambda$. We write $\sigma(T), \sigma_p(T)$ and $\sigma_a(T)$ for the spectrum, point spectrum and approximate point spectrum, respectively. Sets of isolated points and accumulation points of $\sigma(T)$ are denoted by $iso\sigma(T)$ and $acc\sigma(T)$, respectively.

For an operator *T*, as usual, $|T| = (T^*T)^{\frac{1}{2}}$ and $[T^*, T] = T^*T - TT^*$ (the self-commutator of T). In the following we will mention some known classes of operators defined in Hilbert space *H*. An operator *T*, is said to be normal, if $[T^*, T] = 0$, and *T* is said to be a hyponormal, if $[T^*, T]$ is nonnegative, equivalently if $|T|^2 \ge |T^*|^2$. An operator *T* is a paranormal if $||T^2x|| \ge ||Tx||^2$, [4], and it is *M*-paranormal if $M ||T^2x|| \ge ||Tx||^2$ (see [3]) for every unit vector $x \in H$. In [5] authors, Furuta, Ito and Yamazaki introduced the A class of operators, respectively class A(n) of operators defined as follows: for each n > 0, an operator *T* is a class A(n) operator if

 $(T^*|T|^{2n}T)^{\frac{1}{n+1}} \ge |T|^2,$

(for n = 1 it defines the class *A* operators) which includes the class of log-hyponormal operators (see Theorem 2, in [5]) and it is included in the class of paranormal operators, in case where n = 1 (see Theorem 1 in [5]). In the same paper the absolute-n-paranormal operators were introduced as follows: For each n > 0, an operator T is an absolute-*n*-paranormal operator if

$$\| \| T \|^n T x \| \ge \| T x \|^{n+1} ,$$

for every n > 0. In case where n = 1 it defines the class A^* operators. Every class A^* operator is a *paranormal operator, Theorem 1.3 in [4]. In paper [10] the absolute-n * -paranormal class of operators was introduced as follows: $|||T|^n T x|| \ge ||T^* x||^{n+1}.$

For each n > 0, every class $A(n^*)$ operator is an absolute-n * - paranormal operator, Theorem 2.4 in [10].

Definition 1-1

For each n > 0, M > 0 an operator T is a class $M - A(n^*)$ operator if $(T^*|T|^{2n}T)^{\frac{1}{n+1}} \ge M |T^*|^2$.

Any an absolute-n * - M-paranormal operator, if for each n > 0, M > 0 $||T|^n T x|| \ge M ||T^* x||^{n+1}$, for every unit vector $x \in H$ and every class $A(n^*)$ is an absolute-n * - M-paranormal operator [10].

The primary objective of this work is to demonstrate that a-Browder's and Fuglede-Putnam theorems are applicable to $M - A(n^*)$ operator.

2. Browder's theorem

If there is a vector $x \neq 0$ that satisfies $(T - \lambda)x = 0$, then a complex number $\lambda \in \mathbb{C}$ is said to be in the point spectrum $\sigma_p(T)$ of the operator *T*. If $T \in B(H)$, we may refer to the null space as N(T) and the range as R(T).

The spectrum and the approximate point spectra of T are indicated as $\sigma(T)$ and $\sigma_a(T)$ respectively. The Fredholm operator T is defined as follows: R(T) is closed, $\alpha(T) = \dim N(T) < \infty$, and $\beta(T) = \dim H/R(T) < \infty$.

Furthermore, if the $ind(T) = \alpha(T) - \beta(T) = 0$, then T is known as the Weyl operator. The essential spectrum, denoted as $\sigma_e(T)$, and the Weyl spectrum, denoted as $\sigma_w(T)$, are theoretically defined as follows:

 $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\}, and$

 $\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \}.$

An operator $T \in B(H)$ has the finite ascent if $N(T^m) = N(T^{m+1})$ for a positive integer *m*, and finite descent if $R(T^n) = R(T^{n+1})$ for a positive integer *n*. If the operator *T* is Fredholm of finite ascent and descent, it is referred to be Browder. The Browder spectrum of T may be expressed as:

 $\sigma_b(T) = \{\lambda \in \mathbb{C}: T - \lambda \text{ is not a Browder compound}\}.$

The Browder's theorem applies to *T* if $\sigma_w(T) = \sigma_b(T)$.

The operator T has the single valued extension property, which is known as SVEP. This property is defined as follows: if f(z) is an analytic vector valued function on an open set $D \subset \mathbb{C}$, such that $(T - \lambda)f(z) = 0$ for all $z \in D$, then f(z) = 0 for all $z \in D$.

This section demonstrates that a-Browder's theorem applies to the class $M - A(n^*)$ operators.

Let $T \in B(H)$ be an operator in the class $M - A(n^*)$. If $(T - \lambda)x = 0$, then $(T^* - \overline{\lambda})x = 0$ for all $\lambda \in \mathbb{C}$.

Proof:

Since
$$\langle M|T^*|^2 x, x \rangle \leq \langle (T^*|T|^{2n}T)^{\frac{1}{n+1}} x, x \rangle = \langle T^*T x, x \rangle = |\lambda|^2 ||x||^2$$
.
Thus, $||T^*x - \overline{\lambda}x||^2 = \langle T^*x - \overline{\lambda}x, T^*x - \overline{\lambda}x \rangle$
 $= \langle T^*x, T^*x \rangle - \overline{\lambda} \langle x, T^*x \rangle - \overline{\lambda} \langle T^*x, x \rangle + |\lambda|^2$
 $= \langle |T^*|^2 x, x \rangle - \overline{\lambda} \langle Tx, x \rangle - \overline{\lambda} \langle x, Tx \rangle + |\lambda|^2$

$$\leq |\lambda|^2-|\lambda|^2-|\lambda|^2+|\lambda|^2=0.$$

Hence, $T^*x = \overline{\lambda}x$.

<u>Lemma</u> 2.3

If T belongs to the class $M - A(n^*)$, then $T - \lambda$ has finite ascent for each $\lambda \in \mathbb{C}$.

Proof:

Since T is a class $M - A(n^*)$ operator, it follows that $N(T - \lambda) \subset N(T^* - \lambda)$, for each $\lambda \in C$ by Theorem 2.2. Therefore, it is possible to express $T - \lambda$ as the following 2x2 operator matrix in relation to the decomposition $N(T - \lambda) \bigoplus N(T - \lambda)^{\perp}$:

$$T - \lambda = \begin{bmatrix} 0 & 0 \\ 0 & T_1 \end{bmatrix}.$$

Let $x \in N((T - \lambda)^2)$, and let's write x = a + b, where $a \in N(T - \lambda)$ and $b \in N(T - \lambda)^{\perp}$. Then $0 = (T - \lambda)^2 x = (T - \lambda)^2 b$, so that $(T - \lambda)b \in N(T - \lambda) \cap N(T - \lambda)^{\perp} = \{0\}$, which implies that $b \in N(T - \lambda)$, and hence $x \in N(T - \lambda)$. Therefore $N(T - \lambda) = N(T - \lambda)^2$.

Corollary 2.4

If $T \in$ the class $M - A(n^*)$ operator, then T possess the property of SVEP.

Proof:

The Proof may be derived straight from Lemma 2.3 and Proposition 1.8 as presented in reference [8].

In this demonstration, we shall establish the validity of a-Browder's theorem for the class M-A(n*) operator. To do this, we require the subsequent definitions.

Definition 2.5

The Browder essential approximate point spectrum $\sigma_{ab}(T)$ of T is defined by

 $\sigma_{ba}(T) = \cap \{\sigma_a(T + K) : TK = KT, K \text{ is a compact operator}\}.$

Definition 2.6

We say that *a*-Browder's theorem holds for T if $\sigma_{ea}(T) = \sigma_{ba}(T)$. It is well known that *a*-Browder's theorem \Rightarrow Browder's theorem.

Theorem 2.7

Let $T \in B(H)$ be a class $M - A(n^*)$ operator. Then *T* obeys *a*-Browder's theorem.

Proof:

The SVEP of any operator in the class M-A(n*) operator implies that T satisfies a-Browder's theorem, as stated in Theorem 2.8 in reference [11].

3- Fuglede-Putnam theorem

The use of the Fuglede-Putnam theorem has significant importance within the realm of products, encompassing sums, which are composed of normal operators. An instance illustrating the use of this theory is the Kaplansky theorem [6]. Many scholars in the field of mathematics strive to further develop this theorem within the framework of nonnormal operators (see to [11]).

This is the well-known Fuglede-Putnam theorem, as stated in reference [3].

Theorem 3-1

Consider two operators T_1 and T_2 be normal operator and X be an operator such that $T_1X = XT_2$, then $T_1^*X = XT_2^*$.

Assume *T* is an operator in the space B(H) and $\{e_i\}$ be an orthonormal basis for *H*. We define the Hilbert-Schmidt norm as $||T||_2 = (\sum_{i=1}^{\infty} ||Te_i||^2)^{\frac{1}{2}}$. This definition is independent of the choice of basis (see [2]). If $||T||_2 < \infty$, then *T* is said to be a Hilbert-Schmidt operator and we denote the Hilbert-Schmidt class by $C_2(H)$. The set $C_2(H)$ form an ideal of the algebra B(H). The ideal is a Hilbert space with an inner product $\langle X_1, X_2 \rangle = \sum_{i=1}^{\infty} \langle X_1 e_i, X_2 e_i \rangle = tr(X_2^*X_1) = tr(X_1X_2^*)$. For each pair of operators $T_1, T_2 \in B(H)$, there is an operator Γ_{T_1,T_2} defined on $C_2(H)$ via the formula $\Gamma_{T_1,T_2}(X) = T_1XT_2$ in [3]. Obviously $||\Gamma|| \leq ||T_1|| ||T_2||$. The adjoint of Γ is obtained by the formula $\Gamma *_{T_1,T_2} X = T_1^*XT_2^*$, as stated in the reference [1].

Theorem 2.1. If T is an invertible $M - A(n^*)$ operator for M > 0, then T^{-1} is also be an absolute $M - A(n^*)$ operator.

Proof:

Given that
$$(T^*|T|^{2n}T)^{\frac{1}{n+1}} = (T^{*(n+1)}T^{(n+1)})^{\frac{1}{n+1}}$$
, it follows that $(TT^*)^{(n+1)} \le (T^*T)^{(n+1)}$.
 $(T^*T)^{\frac{-(n+1)}{2}}(T^*T)^{(n+1)} - (TT^*)^{(n+1)})(T^*T)^{\frac{-(n+1)}{2}} \ge 0$.
Thus, $(T^*T)^{\frac{-(n+1)}{2}}(TT^*)^{(n+1)}(T^*T)^{\frac{-(n+1)}{2}} \le I$ and $(T^*T)^{\frac{(n+1)}{2}}(TT^*)^{-(n+1)}(T^*T)^{\frac{(n+1)}{2}} \ge I$.
 $(T^*T)^{\frac{(n+1)}{2}}((TT^*)^{-(n+1)} - (T^*T)^{-(n+1)})(T^*T)^{\frac{(n+1)}{2}} \ge 0$.

This is equivalent to $(TT^*)^{-(n+1)} - (T^*T)^{-(n+1)} = (T^{-1*}T^{-1})^{(n+1)} - (T^{-1}T^{-1*})^{(n+1)} \ge 0.$

The class $M - A(n^*)$ operator includes the operator T^{-1} .

Theorem 3-2 If T_1 , T_2 and T_2^* are $M - A(n^*)$ operators, then the operator Γ_{T_1,T_2} belongs to $M - A(n^*)$ operators' class.

Proof:

Since $\Gamma *_{T_1,T_2} \Gamma_{T_1,T_2} X = T_1 * T_1 X T_2 T_2^*$ and $\Gamma_{T_1,T_2} \Gamma *_{T_1,T_2} X = T_1 T_1 * X T_2 * T_2$ for any operator X in $C_2(H)$. We get $|\Gamma_{T_1,T_2}|X = |T_1|X|T_2^*|$ and $|\Gamma *_{T_1,T_2}|X = |T_1^*|X|T_2|$ As well as, $|\Gamma_{T_1,T_2}|^2 X = |T_1|^2 X |T_2^*|^2$ and $|\Gamma *_{T_1,T_2}|^2 X = |T_1^*|^2 X |T_2|^2$. We have $|\Gamma_{T_1,T_2}|^{2n} X = |T_1|^{2n} X |T_2^*|^{2n}$ and $|\Gamma *_{T_1,T_2}|^{2n} X = |T_1^*|^{2n} X |T_2|^{2n}$ for each n > 0. Thus, $(\Gamma *_{T_1,T_2} |\Gamma_{T_1,T_2}|^{2n} \Gamma_{T_1,T_2}) X = (T_1^*|T_1|^{2n} T_1) X (T_2^*|T_2^*|^{2n} T_2)$ $\geq (|T_1^*|^2)^{n+1} X (|T_2|^2)^{n+1}$ $= (|\Gamma *_{T_1,T_2}|^2)^{n+1} X.$

Theorem 3-3

Let T_1 and T_2 be $M - A(n^*)$ operator such that T_2^* is invertible operator in the class of $M - A(n^*)$ operators, and let X be a Hilbert-Schmidt operator. If $T_1X = XT_2$, then $T_1^*X = XT_2^*$.

Proof:

Let Γ_{T_1,T_2} be the Hilbert-Schmidt operator defined by $\Gamma_{T_1,T_2}X = T_1X(T_2)^{-1}$. Since T_1, T_2 are in the class $M - A(n^*)$ operators, by Theorem 3-2, Γ_{T_1,T_2} is $M - A(n^*)$ operator. The hypothesis $T_1X = XT_2$, implies that $T_1X(T_2^*)^{-1} = X$. And $\Gamma_{T_1,T_2}X = X$, $\Gamma *_{T_1,T_2}X = X$ by Theorem. Hence, we have $T_1^*X(T_2^{-1})^* = X$. Therefore, $T_1^*X = XT_2^*$.

4-Conclusion

In this paper, we have considered the class of operators $M - A(n^*)$. We have presented some properties of these operators. We also proved that a-Browder's theorem and the Fuglede-Putnam theorem hold for it.

5-Acknowledgement

Regarding this paper, the authors wish to extend their gratitude to the anonymous referees for their diligent review, insightful feedback, and constructive suggestions.

6. <u>References</u>

- 1. Berberian, S.K. Extensions of a theorem of Fuglede and Putnam. Proc. Am. Math. Soc. 71, 113–114 (1978).
- 2. 4. Braha N., Lohaj M., Marevci F. and Lohaj Sh., Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl., V.1, Issue 2,23–35 (2009).
- 3. Conway, J.B. Subnormal operators. Research notes in mathematics, 5, Pitman advanced pub. program, (1981).
- 4. Dugall B.P., Jeon I.H. and Kim I.H., On *-paranormal contractions and properties for *-class A operators, Linear Alg. Appl. 436, 954–962, (2012).
- 5. Furuta T., On the Class of Paranormal Operators, Proc. Jap. Acad. 43(1967), 594-59
- 6. Kaplansky, I. Products of normal operators. Duke Math. J. 20(2), 257–260 (1953).
- 7. Laursen K.B., Operators with finite ascent, Pacific J. Math. 152, 323-336, (1992).
- 8. Mecheri S., On quasi-*-paranormal operators, Ann. Funct. Anal 3,86–91, (2012).
- 9. Mecheri.S and Makhlouf.S, Weyl Type theorems for posinormal operators, Math. Proc. Royal Irish. Acad. 108, no.1, 68–79, (2008).
- 10. Panayappan.S and Radharamani. A, A Note on p-*-paranormal Operators and Absolute k * Paranormal Operators, Int. J. Math. Anal. 2, no. 25-28, 1257–1261, (2008)
- 11. Yuan, J.T., Wang, C.H. Fuglede–Putnam type theorems for (p, k)-quasihyponormal operators via hyponormal operators. J. Inequal. Appl. 2019, Article ID 122 (2019).