
International Journal of Scientific Research and Management (IJSRM)

||Volume||5||Issue||05||Pages||5331-5335||2017||

Website: www.ijsrm.in ISSN (e): 2321-3418

Index Copernicus value (2015): 57.47 DOI: 10.18535/ijsrm/v5i5.08

Sachin saraswat
1
, IJSRM Volume 5 Issue 05 May 2017 [www.ijsrm.in] Page 5331

Design and Analysis of Multimode Single Precision Floating Point

Arithmetic Unit Using Verilog
Sachin saraswat

1
, and Sunita Malik

2

Deenbandhu chhotu ram university of science & technology Murthal (sonepat)

Abstract—This Paper Presents a Design and Analysis of Multimode Single Precision Floating Point

Arithmetic Unit Using VERILOG Hardware Description Language on FPGA. The multimode floating

point arithmetic unit have addition, subtraction, multiplication and division operations. The device used

is Zed Board Zynq Evaluation and Developed Kit (xc7z020clg484-1) on which the proposed design will

be physically verified. We design and analyse the efficient multimode floating point arithmetic unit for

IEEE 754 floating point number system, which gives a better implementation in terms of area of

hardware. We have four separate units for four different arithmetic operations, by combining addition

and subtraction unit into one and multiplication and division unit into one and by efficient optimization.

The result of this combination is to reduce the number of LUTs used in FPGA. Thus the total area of

hardware required will be reduced. The LUTs reduction is 14% and area reduction is 19%.

Keywords— Floating Point, Look Up Tables (LUTs), VERILOG, HDL, Adder, Multiplier.

I INTRODUCTION

Floating point numbers represents real numbers

in binary format. The floating point arithmetic

operations is generally used in business,

financial and web based applications. The

scientific applications are basically depends on

the multimode computation. Multimode based

computation are used to avoid underflow by

removing multiplication by addition. Recent

FPGA have a large number of look up tables

(LUTs), registers, hardware multipliers and

microprocessors [1]. Using these features the

designs of multimode based arithmetic and

floating point based circuits to be applicable to

FPGAs. FPGA designers design a floating point

arithmetic units on FPGA in 90‟s decade. Area

is the main factor in all design. Even though

scientific computations prefer floating point

representation compared to fixed point

representation, floating point arithmetic designs

has increased complexity. Hence logarithmic

number systems gains advantages over floating

point systems [2]. So it is essential to seek out

an option to feed binary numbers directly as

input for these applications. By using this

method the time is save and the method is

easier, in current situation, this is unattainable,

because within this adder/subtraction, input

ought to lean in IEEE 754 format [3]. In

floating point data format single precision

consists of 32 bits and double precision consists

of 64 bits. There are lots of efforts that are made

over the past few decades to improve

performance of floating point computation [4].

Floating point units are not only complex but

also require more area and hence there are more

power consumption as compared to fixed point

multiplier and the complexity of the floating

point unit increases as accuracy becomes the

major issue. Even a small error in accuracy can

cause large consequences. There are some

scientific applications such as geometry

computational, climate modelling require good

computational requirements, for this it is

required to have extreme precision in floating

DOI: 10.18535/ijsrm/v5i5.08

Sachin saraswat
1
, IJSRM Volume 5 Issue 05 May 2017 [www.ijsrm.in] Page 5332

point calculations. But some applications do not

require good precision. In that type of

applications, such as even and approximate

value will be sufficient for the correct operation

[5]. It would be a luxury for applications which

require lower precision to use double precision

of quadruple precision floating point units. But

it waste area and also increases latency. These

all numerous modules are written in Verilog

Hardware Description Language [6] and is

simulated in Xilinx. After that they are

synthesized in Xilinx integrated software

environment (ISE) design suite.

This paper is presented as follows:

section II discus the binary to floating point

conversion, section III discuss the single

precision floating point multiplier, section

IV define the detection of

underflow/overflow and section V discuss

simulation and result.

II CONVERSION BINARY TO FLOATING

POINT

Convert a decimal quantity into an

associate degree IEEE 754 binary 32 format

[7], the subsequent outline is

 Consider an associate degree number with a

true range and a fraction like twelve half.

375

 Normalize and convert the number half into

binary.

 The subsequent methodology shown below

to convert the half fraction.

 For correct final conversion, add 2 results

and modify.

 Conversion of half fraction is shown below,

we take a fraction zero.375. To convert this into

binary fraction, multiply the fraction by two, and

take the full number and remaining half is then

re-multiply by two till a fraction of zero is found

or till the preciseness limit is reached that is a

twelve fraction digits for IEEE 754 binary 32

format.

 0.375 * 2 = 0.750 = 0 + 0.750 = > b-2 = 0

 Then half number represents the binary fraction

digit. Next step is to re-multiply by two and

proceed.

 0.750 * 2 = 1.500 = 1 + 0.500 => b-2 = 1

 0.500 * 2 = 1.000 = 1 + 0.000 => b-2 = 1

 Fraction = 0.000 i.e. terminated

We can say that the (0.375)10 will be accurately

converted into binary as (0.011)2. Not all decimal

fraction will be described in a very finite digit

binary fraction as an example we take 0.1 cannot

be describe in precisely binary form [8].

III FLOATING POINT SINGLE

PRECISION MULTIPLIER

Floating point number is the way to represent the

real number into binary form, the IEEE 754 is

the standard way to represents two different

floating point font like binary interchange format

and decimal interchange format [9]. For DSP

application multimode floating point

representation is required because the DSP

applications involves large dynamic range. Fig 1.

Shows the single precision floating point format

IEEE 754; which consists of one bit for sign (S),

for exponent (E) eight bit required, and for

mantissa (M) twenty three bit required. An extra

bit is added to the fraction to form what is called

the significant. If the value of exponent is greater

than 0 and less than 255, and MSB is 1, then the

number is said to be normalized number, and the

real number is represented by 1.

Figure 1.IEEE single precision floating point

format.

When we multiply two floating point format, 1-

added to the exponent of the number then

subtracting the bias from their result, 2-

multiplying the significant of the numbers, and

3- calculating the sign by XORing the sign of

the two numbers [10].

DOI: 10.18535/ijsrm/v5i5.08

Sachin saraswat
1
, IJSRM Volume 5 Issue 05 May 2017 [www.ijsrm.in] Page 5333

Multiplication algorithm of Floating Points

We discussed in introduction, the normalized

floating point numbers are written in the

form of [11]

Z = (-1
S
) * 2

(E – Bias)
 * (1.M) (1)

For multiplying two floating numbers, the

following steps are done

 Multiply the significant; i.e. (1.M * 1.M)

 In the result placing the decimal point.

 Exponents are adding; i.e. (E1 + E2 - Bias)

 The sign bits are obtained; i.e. s1xor s2.

 The results are normalized i.e. obtaining 1 at

the MSB of the result significant.

 Rounding the result to fit in the available

bits.

 Underflow/ overflow occurrence are

checked.

 A floating point representation is similar to

the IEEE 754 single precision floating point

format, but the mantissa bits are reduced, while

still retaining the hidden. The single precision

floating number range is ± (2-2
-23

) * 2
127

in

binary and ±10
38.53

in decimal format [12].

Normalized numbers for „1‟ bit is

A = 0 10000100 0100 = 40, B = 1 10000001

1110 = -7.5.

Now multiply A and B

1. Multiply significant : 1.0100

*1.1110

 00000

 10100

 10100

 10100

 10100

 1001011000

2. Place the decimal point: 10.01011000

3. Exponent adding: 10000100

 + 10000001

 100000101

The two number exponent is already

shifted/biased by the bias value (127) and is not

the true exponent; i.e. EA = EA-true + bias and EB =

EB-true + bias

And

EA + EB = EA- true + EB- true + 2 bias

After that the bias is subtracted from the resultant

exponent, otherwise the twice bias is added.

 100000101

- 01111111

 100001101

4. Sign bit is obtained and put this value with

result

 1 10000110 10.01011000

5. After that we will normalizes the result so

that there is a 1 just before the radix point

(decimal point). The radix point is moved by

one place left to increment the exponent by

1; and moving one place by right to

decrements the exponent by 1.

1 10000110 10.01011000 (before normalized)

1 10000111 1.001011000 (normalized)

 This result is without the hidden bit result:

 1 10000111 00101100

6. After that the mantissa are more than 4 bits

(mantissa available bits); there are much

needed rounding. If the rounding truncation

mode is applied then the stored value is:

1 10000111 0010

Figure 2. Floating point multiplier block

diagram [4].

The sign-magnitude format explain the

multiplication operation in floating point

multiplication because it was similar to an

integer format [13]

DOI: 10.18535/ijsrm/v5i5.08

Sachin saraswat
1
, IJSRM Volume 5 Issue 05 May 2017 [www.ijsrm.in] Page 5334

IV DETECTION OF OVERFLOW/

UNDERFLOW

 From the result exponent we decide

overflow/underflow. If the exponent is large or

small decided by the exponent field. The

exponent size is must be 11 bit. And the value

must be in between 1 and 2048 otherwise the

value is not normalized one. When two exponent

is added then overflow occurs during

normalization. These overflow is compensated

by subtraction the bias; after that the resulting is

normal output value. Underflow occurs when

subtracting bias from the intermediate exponent.

The underflow is compensated only and only if

the intermediate exponent is > 0. If intermediate

exponent is < 0 then it can‟t be compensated and

if the intermediate exponent is =0 then it is

underflow and it may be compensated by adding

1 during normalization. When if the overflow

occurs and the overflow flag signal goes to high

and the result may be ± infinity. Similarly when

underflow occurs, then the underflow flag signal

goes high and the underflow result may be ±

zero. The renormalized numbers are signed to

zero with the appropriate sign calculation.

Assume the E1 and E2 are the exponent of two

numbers A and B respectively. The overall

exponent is calculated by this below formula.

Eresult =E1 + E2 – 1023

V SIMULATION RESULTS

In this paper all the simulation are done

using Xilinx simulator and are shown below.

Figure 3. RTL schematic block-log LUT

multiplication.

Figure 4. Simulation result for single precision

Floating point multiplier.

 VI CONCLUSION

This paper presented a design and analysis

of Multimode Single Precision Floating Point

Arithmetic Unit Using Verilog. To improve

speed of arithmetic operation, we use Dadda

multiplier replacing Carry save multiplier. This

design the total area of hardware required will be

reduced. The LUTs reduction is 14% and area

reduction is 19%.

 REFERENCES

1. Smaranika Rout, Dr. S.K.Mandal,

“Implementation of Low Power and High

Speed Single Precession Floating” in

International Journal of VLSI System

Design and Communication System, vol.04,

Issue.09, pp.0688-0674, sep-2016.

2. N.Ramya Rani, V.Subbiah and

L.Sivakumar, “Design of Logarithm Based

Floating Point Multiplication and Division

on FPGA” in ARPN journal of engineering

and applied sciences, vol. 11, no. 2, January

2016.

3. Mohamed Al-Ashrfy, Ashraf Salem and

WagdyAnis “An Efficient implementation of

Floating Point Multiplier” IEEE Transaction

on VLSI 978-1-4577-0069-9/11, 2011.

4. G.Sruthi, M.Rajendra Prasad, “An Efficient

Implementation of Floating Point Multiplier

DOI: 10.18535/ijsrm/v5i5.08

Sachin saraswat
1
, IJSRM Volume 5 Issue 05 May 2017 [www.ijsrm.in] Page 5335

using Verilog”, in international journal of

innovation technologies, vol.03, issue.11,

pp.2107-2112, dec-2015.

5. Elby C Varghese, Merlin Thomas,

“Implementation of Single Precision

Floating Point Processor Using Residue

Number

6. System” in internal journal of advanced

research in electrical Electronics and

Instrumentation Engineering, vol.04, Issue

11, pp.227-231, nov-2015.

7. Whytney J. Townsend, Earl E. Swartz, “A

Comparison of Dadda and Wallace

multiplier delays”. Computer Engineering

Research Center, the University of Texas.

8. L. Louca, T. A. Cook, and W. H. Johnson,

“Implementation of IEEE Single Precision

Floating Point Addition and Multiplication

on FPGAs,” Proceedings of 83 the IEEE

Symposium on FPGAs for Custom

Computing Machines (FCCM‟96), pp. 107-

116, 1996.

9. B. Fagin and C. Renard, “Field

Programmable Gate Arrays and Floating

Point Arithmetic,” IEEE Transactions on

VLSI, vol. 2, no. 3, pp. 365-367, 1994.

10. B. Fagin and C. Renard, “Field

Programmable Gate Arrays and Floating

Point Arithmetic,” IEEE Transactions on

VLSI, vol. 2, no. 3, pp. 365-367, 1994.

11. Zichu Qi; Qi Guo; Ge Zhang; Xiangku Li;

Weiwu Hu, "Design of Low-Cost High-

Performance Floating-Point Fused Multiply-

Add with Reduced Power," VLSI Design,

2010. VLSID '10. 23rd International

Conference on, vol., no., pp.206,211, 3-7

Jan. 2010.

