
International Journal of Scientific Research and Management (IJSRM) 

||Volume||5||Issue||05||Pages||5331-5335||2017|| 

Website: www.ijsrm.in ISSN (e): 2321-3418 

Index Copernicus value (2015): 57.47 DOI: 10.18535/ijsrm/v5i5.08 

 

 

Sachin saraswat
1
, IJSRM Volume 5 Issue 05 May 2017 [www.ijsrm.in]                                             Page 5331  

Design and Analysis of Multimode Single Precision Floating Point 

Arithmetic Unit Using Verilog 
Sachin saraswat

1
, and Sunita Malik

2
 

Deenbandhu chhotu ram university of science & technology Murthal (sonepat)

 

Abstract—This Paper Presents a Design and Analysis of Multimode Single Precision Floating Point 

Arithmetic Unit Using VERILOG Hardware Description Language on FPGA. The multimode floating 

point arithmetic unit have addition, subtraction, multiplication and division operations. The device used 

is Zed Board Zynq Evaluation and Developed Kit (xc7z020clg484-1) on which the proposed design will 

be physically verified. We design and analyse the efficient multimode floating point arithmetic unit for 

IEEE 754 floating point number system, which gives a better implementation in terms of area of 

hardware. We have four separate units for four different arithmetic operations, by combining addition 

and subtraction unit into one and multiplication and division unit into one and by efficient optimization. 

The result of this combination is to reduce the number of LUTs used in FPGA. Thus the total area of 

hardware required will be reduced. The LUTs reduction is 14% and area reduction is 19%. 
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I  INTRODUCTION  

Floating point numbers represents real numbers 

in binary format. The floating point arithmetic 

operations is generally used in business, 

financial and web based applications. The 

scientific applications are basically depends on 

the multimode computation. Multimode based 

computation are used to avoid underflow by 

removing multiplication by addition. Recent 

FPGA have a large number of look up tables 

(LUTs), registers, hardware multipliers and 

microprocessors [1]. Using these features the 

designs of multimode based arithmetic and 

floating point based circuits to be applicable to 

FPGAs. FPGA designers design a floating point 

arithmetic units on FPGA in 90‟s decade. Area 

is the main factor in all design. Even though 

scientific computations prefer floating point 

representation compared to fixed point 

representation, floating point arithmetic designs 

has increased complexity. Hence logarithmic 

number systems gains advantages over floating 

point systems [2]. So it is essential to seek out 

an option to feed binary numbers directly as 

input for these applications. By using this 

method the time is save and the method is 

easier, in current situation, this is unattainable, 

because within this adder/subtraction, input 

ought to lean in IEEE 754 format [3].  In 

floating point data format single precision 

consists of 32 bits and double precision consists 

of 64 bits. There are lots of efforts that are made 

over the past few decades to improve 

performance of floating point computation [4]. 

Floating point units are not only complex but 

also require more area and hence there are more 

power consumption as compared to fixed point 

multiplier and the complexity of the floating 

point unit increases as accuracy becomes the 

major issue. Even a small error in accuracy can 

cause large consequences. There are some 

scientific applications such as geometry 

computational, climate modelling require good 

computational requirements, for this it is 

required to have extreme precision in floating 
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point calculations. But some applications do not 

require good precision. In that type of 

applications, such as even and approximate 

value will be sufficient for the correct operation 

[5]. It would be a luxury for applications which 

require lower precision to use double precision 

of quadruple precision floating point units.  But 

it waste area and also increases latency. These 

all numerous modules are written in Verilog 

Hardware Description Language [6] and is 

simulated in Xilinx. After that they are 

synthesized in Xilinx integrated software 

environment (ISE) design suite.  

This paper is presented as follows: 

section II discus the binary to floating point 

conversion, section III discuss the single 

precision floating point multiplier, section 

IV define the detection of 

underflow/overflow and section V discuss 

simulation and result. 

 

II CONVERSION BINARY TO FLOATING 

POINT 

Convert a decimal quantity into an 

associate degree IEEE 754 binary 32 format 

[7], the subsequent outline is 

 Consider an associate degree number with a 

true range and a fraction like twelve half. 

375 

 Normalize and convert the number half into 

binary. 

 The subsequent methodology shown below 

to convert the half fraction. 

 For correct final conversion, add 2 results 

and modify. 

    Conversion of half fraction is shown below, 

we take a fraction zero.375. To convert this into 

binary fraction, multiply the fraction by two, and 

take the full number and remaining half is then 

re-multiply by two till a fraction of zero is found 

or till the preciseness limit is reached that is a 

twelve fraction digits for IEEE 754 binary 32 

format. 

   0.375 * 2 = 0.750 = 0 + 0.750 = &gt; b-2 = 0 

 Then half number represents the binary fraction 

digit. Next step is to re-multiply by two and 

proceed. 

 0.750 * 2 = 1.500 = 1 + 0.500 =&gt; b-2 = 1 

 0.500 * 2 = 1.000 = 1 + 0.000 =&gt; b-2 = 1 

 Fraction = 0.000 i.e. terminated 

We can say that the (0.375)10 will be accurately 

converted into binary as (0.011)2. Not all decimal 

fraction will be described in a very finite digit 

binary fraction as an example we take 0.1 cannot 

be describe in precisely binary form [8].  

 

III FLOATING POINT SINGLE 

PRECISION   MULTIPLIER 

Floating point number is the way to represent the 

real number into binary form, the IEEE 754 is 

the standard way to represents two different 

floating point font like binary interchange format 

and decimal interchange format [9]. For DSP 

application multimode floating point 

representation is required because the DSP 

applications involves large dynamic range. Fig 1. 

Shows the single precision floating point format 

IEEE 754; which consists of one bit for sign (S), 

for exponent (E) eight bit required, and for 

mantissa (M) twenty three bit required. An extra 

bit is added to the fraction to form what is called 

the significant. If the value of exponent is greater 

than 0 and less than 255, and MSB is 1, then the 

number is said to be normalized number, and the 

real number is represented by 1. 

 
Figure 1.IEEE single precision floating point 

format. 

 

When we multiply two floating point format, 1- 

added to the exponent of the number then 

subtracting the bias from their result, 2- 

multiplying the significant of the numbers, and 

3- calculating the sign by XORing the sign of 

the two numbers [10]. 
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Multiplication algorithm of Floating Points 

We discussed in introduction, the normalized 

floating point numbers are written in the 

form of [11] 

Z = (-1
S
) * 2 

(E – Bias)
 * (1.M)                            (1) 

For multiplying two floating numbers, the 

following steps are done 

 Multiply the significant; i.e. (1.M * 1.M) 

 In the result placing the decimal point. 

 Exponents are adding; i.e. (E1 + E2 - Bias) 

 The sign bits are obtained; i.e. s1xor s2. 

 The results are normalized i.e. obtaining 1 at 

the MSB of the result significant. 

 Rounding the result to fit in the available 

bits. 

 Underflow/ overflow occurrence are 

checked. 

      A floating point representation is similar to 

the IEEE 754 single precision floating point 

format, but the mantissa bits are reduced, while 

still retaining the hidden. The single precision 

floating number range is ± (2-2
-23

) * 2
127 

in 

binary and ±10
38.53 

in decimal format [12]. 

Normalized numbers for „1‟ bit is  

A = 0 10000100 0100 = 40, B = 1 10000001 

1110 = -7.5. 

Now multiply A and B 

 

 

1. Multiply significant : 1.0100 

*1.1110 

 

    00000 

               10100 

             10100 

           10100 

         10100 

 

         1001011000 

2. Place the decimal point: 10.01011000 

3. Exponent adding:  10000100 

       + 10000001 

        100000101 

The two number exponent is already 

shifted/biased by the bias value (127) and is not 

the true exponent; i.e. EA = EA-true + bias and EB = 

EB-true + bias 

And  

EA + EB = EA- true + EB- true + 2 bias 

After that the bias is subtracted from the resultant 

exponent, otherwise the twice bias is added. 

                      100000101 

- 01111111 

 

      100001101 

4. Sign bit is obtained and put this value with 

result 

      1 10000110 10.01011000 

5. After that we will normalizes the result so 

that there is a 1 just before the radix point 

(decimal point). The radix point is moved by 

one place left to increment the exponent by 

1; and moving one place by right to 

decrements the exponent by 1. 

1 10000110 10.01011000 (before normalized) 

1 10000111 1.001011000 (normalized) 

 This result is without the hidden bit result: 

           1 10000111 00101100  

6. After that the mantissa are more than 4 bits 

(mantissa available bits); there are much 

needed rounding. If the rounding truncation 

mode is applied then the stored value is:  

1 10000111 0010 

Figure 2. Floating point multiplier block 

diagram [4]. 

 

The sign-magnitude format explain the 

multiplication operation in floating point 

multiplication because it was similar to an 

integer format [13] 
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IV DETECTION OF OVERFLOW/ 

UNDERFLOW 

        From the result exponent we decide 

overflow/underflow. If the exponent is large or 

small decided by the exponent field. The 

exponent size is must be 11 bit. And the value 

must be in between 1 and 2048 otherwise the 

value is not normalized one. When two exponent 

is added then overflow occurs during 

normalization. These overflow is compensated 

by subtraction the bias; after that the resulting is 

normal output value. Underflow occurs when 

subtracting bias from the intermediate exponent. 

The underflow is compensated only and only if 

the intermediate exponent is > 0. If intermediate 

exponent is < 0 then it can‟t be compensated and 

if the intermediate exponent is =0 then it is 

underflow and it may be compensated by adding 

1 during normalization. When if the overflow 

occurs and the overflow flag signal goes to high 

and the result may be ± infinity. Similarly when 

underflow occurs, then the underflow flag signal 

goes high and the underflow result may be ± 

zero. The renormalized numbers are signed to 

zero with the appropriate sign calculation. 

Assume the E1 and E2 are the exponent of two 

numbers A and B respectively. The overall 

exponent is calculated by this below formula. 

Eresult =E1 + E2 – 1023 

 

V SIMULATION RESULTS 

In this paper all the simulation are done 

using Xilinx simulator and are shown below. 

 
Figure 3. RTL schematic block-log LUT 

multiplication. 

 

 
Figure 4. Simulation result for single precision 

Floating point multiplier. 

 

     VI CONCLUSION 

This paper presented a design and analysis 

of Multimode Single Precision Floating Point 

Arithmetic Unit Using Verilog. To improve 

speed of arithmetic operation, we use Dadda 

multiplier replacing Carry save multiplier. This 

design the total area of hardware required will be 

reduced. The LUTs reduction is 14% and area 

reduction is 19%. 
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