
International Journal of Scientific Research and Management (IJSRM)

||Volume||12||Issue||09||Pages||1422-1427||2024||

Website: https://ijsrm.net ISSN (e): 2321-3418

DOI: 10.18535/ijsrm/v12i09.ec01

Eko Priyono, IJSRM Volume 12 Issue 09 September 2024 EC-2024-1422

Text Compression Using the Shannon-Fano, Huffman, and Half–

Byte Algorithms

Eko Priyono
1
, Hindayati Mustafidah

2*

1,2
Informatics Engineering, Universitas Muhammadiyah Purwokerto, Indonesia

Abstract

Background and Objectives: File sizes increase as technology advances. Large files require more

storage memory and longer transfer times. Data compression is changing an input or original data into

another data stream as output or compressed data which is smaller in size. Existing compression

techniques include the Huffman, Shannon-Fano, and Half-Byte algorithms. Like algorithms in computer

science, these three algorithms offer advantages and disadvantages. Therefore, testing is needed to

determine which algorithm is most effective for data compression, especially text data.

Methods: Applying the Huffman, Shannon-Fano, and Half-Byte algorithms to test their effectiveness in

compressing text data. The text data as a sample in the research carried out is a text file containing

abstracts from research articles published in scientific publications randomly selected from 100 journals.

The abstract text used as data is in Indonesian.

Results: Based on test findings, the Huffman algorithm outperforms the Shannon-Fano and Half-Byte

algorithms in terms of compression ratio. The Half-Byte algorithm has the lowest compression ratio

compared to the Huffman and Shannon-Fano algorithm. The Half-Byte compression algorithm is based

on the similarity of the first four bits of seven consecutive characters, whereas Huffman and Shannon-

Fano algorithms employ the number of character appearances. The Huffman method can be considered

for use in compressing Indonesian language text data according to its average compression ratio of

46.05%, while Shannon-Fano of 40.36%, and Half-Byte of 5.04%.

Keywords: compression ratio, text data, effectiveness in compressing

1. Introduction

The size of files increases as technology advances. This necessitates additional storage memory and

significant transmission times. Not everyone has a significant storage capacity and a high-speed internet

connection for file transfers. This issue can be addressed by the development of many file compression

technologies, including data compression.

Data compression is a technique that converts an input data stream, namely original data, into another data

stream, known as output or compressed data. Compressed output data has a smaller size (Salomon, 2007).

Some extant compression techniques are the Huffman algorithm, Lempel Ziv Storer Szymanski (LZSS),

Shannon-Fano, Half-Byte, Lempel Ziv Welch (LZW), and others.

Several research have created text compression techniques, including (Mizwar et al., 2017) which

implemented the J-Bit Encoding Algorithm, and (Irliansyah et al., 2017), which implemented the Deflate

method and the Goldbach Codes Algorithm. Two years later, (Darnita et al., 2019) invented the Sequitur

method, which was also used to compress text data. Aside from that, (Saragih and Utomo, 2020) used the

Prefix Code Algorithm to compress text data, (Rizky et al., 2020) used the Elias Delta Codes Algorithm, and

(Simanjuntak, 2020) applied the Elias Delta Code Algorithm with Levenstein to compress text files.

The Huffman, Shannon-Fano, and Half-Byte algorithms investigated in this study offer advantages and

downsides, as have previous studies (Siahaan, 2016) and (Puspabhuana, 2016). Other research that used the

Huffman method include (Supiyandi and Frida, 2018), (Widatama and Saputro, 2019), (Mahmoudi and

Zare, 2020), and (Pujianto et al., 2020). As a result, it is required to conduct tests to determine which

technique is best for text data compression. The efficacy of a compression technique can be assessed by

Eko Priyono, IJSRM Volume 12 Issue 09 September 2024 EC-2024-1423

comparing file sizes before and after compression. It can also be measured based on the algorithm's

processing time (Sayood, 2017).

2. Method

The research was conducted using a qualitative and experimental technique. The experiment in question

involves compressing text data with a compression method developed in Python computer language. The

experiment data will next be examined to determine the most optimal algorithm, following the processes

outlined in Figure 1.

Abstract texts in Indonesian were used to collect research data from journal articles selected at random from

100 sources. This text data is then converted in the *.txt format.

The three text data compression techniques, Huffman, Shannon-Fano, and Half-Byte, will be implemented

next. The algorithm is implemented by creating a program in Python. Visual Studio coding, a coding editor,

was utilized to assist with this process. After all of the algorithms have been implemented in a program, the

files are compressed one at a time. Before compressing, it needs to be noted the size of each file.

Figure 1: Research stages

The compression of each text file yields compressed characters in bit size. Each compressed file's

compression ratio is then measured. The compression ratio measurements are then compared to see which

algorithm is the most effective.

In this study, the three methods were compared based on their average compression ratio. The higher the

compression ratio, the more efficient the algorithm is at compressing data. The algorithm with the highest

average compression ratio is the most efficient or optimal.

The compression ratio calculation is shown in (1).

 (

) (1)

The ratio is the result of compression and is used to assess the performance of a compression method

(Supiyandi and Frida, 2018).

3. Results and Discussion

a. Research Data

The data in this study is presented in the form of abstract text from scientific articles. The sample size was

100 Indonesian language text data. Indonesian was chosen to standardize the data parameters. The abstract

text was chosen because it is written in the form of sentences with a range of characters but a consistent

systematic structure. The diversity of characters has an impact on the compression process. Abstract

systematic homogeneity was employed as a benchmark for comparison. Aside from that, text in the form of

sentences is more similar to how text is used in everyday life than repeated letters such as

"AAAAABAAACCD".

The abstract content in the journal article retrieved is in the form of a PDF document, which must be

translated into TXT format. The size of each text file is recorded before compression is performed so that it

can be compared later to the compression results. Figure 2 shows an example of abstract text transferred into

a text file.

Start

End

Data collecting

Algorithm Implementation

Testing

Algorithm comparation

Eko Priyono, IJSRM Volume 12 Issue 09 September 2024 EC-2024-1424

b. Compression Process

The compression process is carried out by creating source code in Python to implement three compression

algorithms: Huffman, Shannon-Fano, and Half Byte. The Huffman algorithm's initial step is to determine the

probability or frequency with which a particular character appears. For example, the probabilities for the

word "goods" are: a:2, b:1, r:1, n:1, and g:1. From this data, a binary tree known as a Huffman tree is

produced. The following source code employs the Huffman technique to encode tree data in bit form. This

bit format seeks to reduce file size.

The Shannon-Fano algorithm works similarly to Huffman. This approach creates a binary tree in order to

obtain the binary code and then encodes it. The distinction between these two algorithms is the creation of a

binary tree. Shannon-Fano creates binary trees from the bottom up, whereas Huffman does so from the top

down.

Figure 2: Example of a text file in txt format

The Shannon-Fano method is implemented in stages, beginning with counting and sorting character

occurrences. Then, these sequences are divided into two to form a binary tree, which is repeated until all

characters have their corresponding values. Once all of the characters have a binary representation, they are

encoded using the new binary.

The Half-Byte algorithm uses the same four binary bits in consecutive characters. For example, in the word

"yaaaaaay", the letter a has the same four sequential left bits, 0110, as seen in Table 1. The Half-Byte

algorithm exploits this circumstance. When seven or more characters with the same first four bits are

received in sequence, this algorithm compresses the data with a marker bit, then the first character of the

same four-bit sequence, followed by the last pair of four bits in the next sequence, and finally with a closing

bit.

Table 1: Binary words "yaaaaaaay" before and after compression

Binary Word "yaaaaaaay"

Before Compression

Binary Word "yaaaaaaay"

After Compression

character binary character binary
y 0111 1001 y 0111 1001
a 0110 0001 marker 1111 1110

a 0110 0001 a a 0001 0001
a 0110 0001 a a 0001 0001

a 0110 0001 a a 0001 0001

a 0110 0001 marker 1111 1110
a 0110 0001 y 0111 1001

y 0111 1001

The initial step in implementing the Half-Byte technique is to transform the input text to binary. Following

that, the start or left bit is split from the right or end bit. Next, we look for commonalities in each character's

left bits. If there is, the left bit is removed, and a marker bit is assigned to the start and end bounds. The file

is then encoded as a new compressed file.

c. Testing

Tests were conducted on 100 text sample files. The compression ratio and size of the findings are used in

testing. The three approaches were tested by compiling a program in Python. Running the program produces

Eko Priyono, IJSRM Volume 12 Issue 09 September 2024 EC-2024-1425

the following output: the original uncompressed text, symbols or letters in the text, symbol likelihood, size

before and after compression, and bit representation after compression.

Figure 3 shows an example of a 6792-bit txt file used to test the Huffman method. The compression ratio

attained was 45.45%, or 3785 bits. Similarly, we tested the Shannon-Fano (Figure 4) and the Half-Byte

algorithm (Figure 5). With the identical text data example, the following two algorithms show compression

file values of 4090 bits for the Shannon-Fano algorithm, namely with a compression ratio of 39.78%, and

6444 bits for the Half-Byte algorithm or with a compression ratio of 5.12%. The compression ratio produced

by the evaluated algorithm is used to determine its effectiveness. The higher the compression ratio, the better

the compression, or in other words, the more successful the algorithm.

Figure 3: Huffman algorithm’s data compression

Figure 4: Shannon-Fano algorithm’s data compression

Figure 5: Half-Byte algorithm’s data compression

Table 2 displays the compression results of the three methods, Huffman, Shannon-Fano, and Half-Byte,

together with the average compression ratio shown in Figure 6.

Table 2: Test results for the Huffman, Shannon-Fano, and Half-Bye algorithms

File

name

File size (Bit) Compression ratio

Original Huffman Shannon-

Fano

Half-

Byte

Huffman Shannon-

Fano

Half-

Byte

001.txt 6792 3705 4090 6444 45.45% 39.78% 5.12%
002.txt 6640 3465 3724 6338 47.82% 43.92% 4.55%

003.txt 6432 3493 3797 6056 45.69% 40.97% 5.85%

004.txt 7392 4015 4599 7035 45.68% 37.78% 4.83%

Eko Priyono, IJSRM Volume 12 Issue 09 September 2024 EC-2024-1426

005.txt 7552 4108 4498 7214 45.60% 40.44% 4.48%

006.txt 10920 5822 6254 10521 46.68% 42.73% 3.65%
007.txt 8680 4527 4860 8330 47.85% 44.01% 4.03%

008.txt 18632 10342 11842 17679 44.49% 36.44% 5.11%

009.txt 10576 5736 6238 10050 45.76% 41.02% 4.97%
010.txt 10704 5706 6210 10170 46.69% 41.98% 4.99%

...
100.txt 7256 3778 4012 6892 47.93% 44.71% 5.02%

Figure 6: Graph of the average compression ratio of the Huffman, Shannon-Fano, and Half-Byte algorithms

Figure 6 shows that the Huffman method outperforms the other two algorithms. Because of differences in

features, the Half-Byte algorithm has a low compression ratio compared to the Huffman and Shannon-Fano

algorithm. Half-Byte compression is based on the similarity of the first four bits of seven consecutive

characters, whereas Hufman and Shannon-Fano algorithms employ the number of character appearances.

The sentences in the sample contain different characters or letters. Because of the wide range of characters,

the likelihood of characters having the same and consecutive prefix bits is low. This has an effect on the

characters that can be compressed; specifically, just a few characters can be compressed. As a result, there is

only a tiny change in bit size between before and after compression.

The findings of comparing the text data compression algorithm with the more successful Huffman algorithm

were also revealed in study results (Supiyandi and Frida, 2018), with a compression ratio of 71.43%

compared to the Half-Byte technique's compression ratio of 22.33%. According to (Pujianto et al., 2020), the

Huffman approach performed better in compression than the Run Length Encoding method. The Huffman

method outperforms the Shannon-Fano technique in terms of compression gain for images of the same size

and number of colors (Widatama and Saputro, 2019).

The Huffman algorithm is said to offer a higher compression ratio than numerous other compression

algorithms for text and graphic data. However, this contradicts the research findings of [15]. The research

focused on audio file compression (*.wav). According to the research findings, the Huffman approach has a

compression ratio of 28.954%, whereas Run Length Encoding has a ratio of 46.77%.

4. Conclusion

The results of the investigation reveal that the Huffman algorithm outperforms the Shannon-Fano and Half-

Byte methods. The Huffman method has an average compression ratio of 46.05%, Shannon-Fano at 40.36%,

and Half-Byte at 5.04%. Thus, the Huffman method can be considered for use in compressing Indonesian

language text data. Data compression techniques require further testing to determine their effectiveness on

data other than text, such as video data, in order to acquire comprehensive information about the optimal

compression algorithm.

Conflicts of Interest: “This research was carried out collaboratively between authors and there was no

conflict of interest.”

References

3. Darnita, Y., Khairunnisyah, K. and Mubarak, H. (2019), “Text Data Compression Using the

Sequitur Algorithm”, SISTEMASI, Vol. 8 No. 1, pp. 104–113.

4. Fatmawaty, F. and Mufty, M. (2020), “Comparative Analysis of Wav File Compression Using

the Huffman Method and Run Length Encoding”, Jurnal Teknologi Informasi Dan Terapan,

Vol. 7 No. 1, pp. 61–65.

Eko Priyono, IJSRM Volume 12 Issue 09 September 2024 EC-2024-1427

5. Irliansyah, M.R., Nasution, S.D. and Ulfa, K. (2017), “Application of the Deflate Method and

Goldbach Codes Algorithm in Text File Compression”, KOMIK (Konferensi Nasional

Teknologi Informasi Dan Komputer), Vol. 1 No. 1.

6. Mahmoudi, R. and Zare, M. (2020), “Comparison of Compression Algorithms in text data for

Data Mining”, Int. J. Adv. Eng. Manag. Sci., Vol. 6, pp. 231–235.

7. Mizwar, T., Ginting, G.L., Mesran, M., Fau, A., Aripin, S. and Siregar, D. (2017),

“Implementation of the J-Bit Encoding Algorithm in Text File Compression”, KOMIK

(Konferensi Nasional Teknologi Informasi Dan Komputer), Vol. 1 No. 1.

8. Pujianto, M., Prasetyo, B.H. and Prabowo, D. (2020), “Comparison of the Huffman Method and

Run Length Encoding in Document Compression”, InfoTekJar J. Nas. Inform. Dan Teknol. Jar,

Vol. 5 No. 1, pp. 216–223.

9. Puspabhuana, A. (2016), “Three Steps Comparison of Text Compression Techniques”,

President University.

10. Rizky, N.F., Nasution, S.D. and Fadlina, F. (2020), “Application of the Elias Delta Codes

Algorithm in Text File Compression”, Building of Informatics, Technology and Science (BITS),

Vol. 2 No. 2, pp. 109–114.

11. Salomon, D. (2007), A Concise Introduction to Data Compression, Springer Science &

Business Media.

12. Saragih, S.R. and Utomo, D.P. (2020), “Application of the Prefix Code Algorithm in Text Data

Compression”, KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), Vol. 4 No.

1.

13. Sayood, K. (2017), Introduction to Data Compression, Morgan Kaufmann.

14. Siahaan, A.P.U. (2016), “Implementation of Huffman Text Compression Technique”, Jurnal

Informatika Ahmad Dahlan, Universitas Ahmad Dahlan, Vol. 10 No. 2, p. 101651.

15. Simanjuntak, L.V. (2020), “Comparison of the Elias Delta Code and Levenstein Algorithms for

Text File Compression”, Journal of Computer System and Informatics (JoSYC), Vol. 1 No. 3,

pp. 184–190.

16. Supiyandi, S. and Frida, O. (2018), “Comparative Analysis of Text Data Compression Using

Huffman and Half-Byte Methods”, ALGORITMA: JURNAL ILMU KOMPUTER DAN

INFORMATIKA, Vol. 2 No. 1.

17. Widatama, K. and Saputro, W.T. (2019), “Comparison of the Performance of the Huffman

Algorithm and the Shannon-Fano Algorithm in Compressing Image Files”, INTEK: Jurnal

Informatika Dan Teknologi Informasi, Vol. 2 No. 2, pp. 70–77.

