International Journal of Scientific Research and Management (IJSRM)
|[Volume||12||Issue||09||Pages||1422-1427||2024||

Website: https://ijsrm.net ISSN (e): 2321-3418

DOI: 10.18535/ijsrm/v12i09.ec01

Text Compression Using the Shannon-Fano, Huffman, and Half-
Byte Algorithms
Eko Priyono’, Hindayati Mustafidah®*
L2Informatics Engineering, Universitas Muhammadiyah Purwokerto, Indonesia

Abstract

Background and Objectives: File sizes increase as technology advances. Large files require more
storage memory and longer transfer times. Data compression is changing an input or original data into
another data stream as output or compressed data which is smaller in size. EXxisting compression
techniques include the Huffman, Shannon-Fano, and Half-Byte algorithms. Like algorithms in computer
science, these three algorithms offer advantages and disadvantages. Therefore, testing is needed to
determine which algorithm is most effective for data compression, especially text data.

Methods: Applying the Huffman, Shannon-Fano, and Half-Byte algorithms to test their effectiveness in
compressing text data. The text data as a sample in the research carried out is a text file containing
abstracts from research articles published in scientific publications randomly selected from 100 journals.
The abstract text used as data is in Indonesian.

Results: Based on test findings, the Huffman algorithm outperforms the Shannon-Fano and Half-Byte
algorithms in terms of compression ratio. The Half-Byte algorithm has the lowest compression ratio
compared to the Huffman and Shannon-Fano algorithm. The Half-Byte compression algorithm is based
on the similarity of the first four bits of seven consecutive characters, whereas Huffman and Shannon-
Fano algorithms employ the number of character appearances. The Huffman method can be considered
for use in compressing Indonesian language text data according to its average compression ratio of
46.05%, while Shannon-Fano of 40.36%, and Half-Byte of 5.04%.

Keywords: compression ratio, text data, effectiveness in compressing

1. Introduction

The size of files increases as technology advances. This necessitates additional storage memory and
significant transmission times. Not everyone has a significant storage capacity and a high-speed internet
connection for file transfers. This issue can be addressed by the development of many file compression
technologies, including data compression.

Data compression is a technique that converts an input data stream, namely original data, into another data
stream, known as output or compressed data. Compressed output data has a smaller size (Salomon, 2007).
Some extant compression techniques are the Huffman algorithm, Lempel Ziv Storer Szymanski (LZSS),
Shannon-Fano, Half-Byte, Lempel Ziv Welch (LZW), and others.

Several research have created text compression techniques, including (Mizwar et al., 2017) which
implemented the J-Bit Encoding Algorithm, and (Irliansyah et al., 2017), which implemented the Deflate
method and the Goldbach Codes Algorithm. Two years later, (Darnita et al., 2019) invented the Sequitur
method, which was also used to compress text data. Aside from that, (Saragih and Utomo, 2020) used the
Prefix Code Algorithm to compress text data, (Rizky et al., 2020) used the Elias Delta Codes Algorithm, and
(Simanjuntak, 2020) applied the Elias Delta Code Algorithm with Levenstein to compress text files.

The Huffman, Shannon-Fano, and Half-Byte algorithms investigated in this study offer advantages and
downsides, as have previous studies (Siahaan, 2016) and (Puspabhuana, 2016). Other research that used the
Huffman method include (Supiyandi and Frida, 2018), (Widatama and Saputro, 2019), (Mahmoudi and
Zare, 2020), and (Pujianto et al., 2020). As a result, it is required to conduct tests to determine which
technique is best for text data compression. The efficacy of a compression technique can be assessed by

Eko Priyono, 1JSRM Volume 12 Issue 09 September 2024 EC-2024-1422

comparing file sizes before and after compression. It can also be measured based on the algorithm's
processing time (Sayood, 2017).

2. Method

The research was conducted using a qualitative and experimental technique. The experiment in question
involves compressing text data with a compression method developed in Python computer language. The
experiment data will next be examined to determine the most optimal algorithm, following the processes
outlined in Figure 1.

Abstract texts in Indonesian were used to collect research data from journal articles selected at random from
100 sources. This text data is then converted in the *.txt format.

The three text data compression techniques, Huffman, Shannon-Fano, and Half-Byte, will be implemented
next. The algorithm is implemented by creating a program in Python. Visual Studio coding, a coding editor,
was utilized to assist with this process. After all of the algorithms have been implemented in a program, the
files are compressed one at a time. Before compressing, it needs to be noted the size of each file.

Data collecting

v

Algorithm Implementation

v

Testing

v

Algorithm comparation

End

Figure 1: Research stages
The compression of each text file yields compressed characters in bit size. Each compressed file's
compression ratio is then measured. The compression ratio measurements are then compared to see which
algorithm is the most effective.
In this study, the three methods were compared based on their average compression ratio. The higher the
compression ratio, the more efficient the algorithm is at compressing data. The algorithm with the highest
average compression ratio is the most efficient or optimal.
The compression ratio calculation is shown in (1).

Ratio =100% — (original file capacity x 100%) (1)

The ratio is the result of compression and is used to assess the performance of a compression method
(Supiyandi and Frida, 2018).

compression yield capacity

3. Results and Discussion

a. Research Data

The data in this study is presented in the form of abstract text from scientific articles. The sample size was
100 Indonesian language text data. Indonesian was chosen to standardize the data parameters. The abstract
text was chosen because it is written in the form of sentences with a range of characters but a consistent
systematic structure. The diversity of characters has an impact on the compression process. Abstract
systematic homogeneity was employed as a benchmark for comparison. Aside from that, text in the form of
sentences is more similar to how text is used in everyday life than repeated letters such as
"AAAAABAAACCD".

The abstract content in the journal article retrieved is in the form of a PDF document, which must be
translated into TXT format. The size of each text file is recorded before compression is performed so that it
can be compared later to the compression results. Figure 2 shows an example of abstract text transferred into
a text file.

Eko Priyono, 1JSRM Volume 12 Issue 09 September 2024 EC-2024-1423

b. Compression Process

The compression process is carried out by creating source code in Python to implement three compression
algorithms: Huffman, Shannon-Fano, and Half Byte. The Huffman algorithm’s initial step is to determine the
probability or frequency with which a particular character appears. For example, the probabilities for the
word "goods" are: a:2, b:1, r:1, n:1, and g:1. From this data, a binary tree known as a Huffman tree is
produced. The following source code employs the Huffman technique to encode tree data in bit form. This
bit format seeks to reduce file size.

The Shannon-Fano algorithm works similarly to Huffman. This approach creates a binary tree in order to
obtain the binary code and then encodes it. The distinction between these two algorithms is the creation of a
binary tree. Shannon-Fano creates binary trees from the bottom up, whereas Huffman does so from the top
down.

Bl 001.txt - Notepad = [m] X

File Edit Format View Help

Pemerintah Daerah Daerah Istimewa Yogyakarta mengeluarkan kebijakan baru dengan
membentuk Dinas Komunikasi dan Informatika. Namun terjadi kontroversi karena
kewenangan urusan bidang kominfo daerah tidak sesuai dengan UU Momer 23 Tahun 2814
tentang Pemerintahan Daerah. Penelitian ini bertujuan untuk mendapatkan gambaran
mengenail implementasi kebijakan pembentukan Dinas Komunikasi dan Informatika.
Metode yang digunakan adalah studi kasus dengan jenis penelitian deskriptif
kualitatif. Hasil penelitian menunjukkan bahwa kebijakan membentuk Dinas
Komunikasi dan Informatika membawa pengaruh positif terhadap dinamisasi bidang
komunikasi dan informatika di DIY.Temuan lain, ketidak taatan kepada UU Nomor 23
Tahun 2814 dikarenakan UU Nomor 13 tahun 2812 memberi keistimewaan kepada Pemda
Daerah Istimewa Yogyakarta untuk mengatur kelembagaan daerah.

Ln1, Coll 100% Windows (CRLF) UTF-8

Figure 2: Example of a text file in txt format

The Shannon-Fano method is implemented in stages, beginning with counting and sorting character
occurrences. Then, these sequences are divided into two to form a binary tree, which is repeated until all
characters have their corresponding values. Once all of the characters have a binary representation, they are
encoded using the new binary.

The Half-Byte algorithm uses the same four binary bits in consecutive characters. For example, in the word
"yaaaaaay", the letter a has the same four sequential left bits, 0110, as seen in Table 1. The Half-Byte
algorithm exploits this circumstance. When seven or more characters with the same first four bits are
received in sequence, this algorithm compresses the data with a marker bit, then the first character of the
same four-bit sequence, followed by the last pair of four bits in the next sequence, and finally with a closing
bit.

Table 1: Binary words "yaaaaaaay" before and after compression

Binary Word "yaaaaaaay" Binary Word "yaaaaaaay"
Before Compression After Compression
character binary character binary

y 0111 1001 y 0111 1001
a 0110 0001 marker 11111110
a 0110 0001 aa 0001 0001
a 0110 0001 aa 0001 0001
a 0110 0001 aa 0001 0001
a 0110 0001 marker 1111 1110
a 0110 0001 y 0111 1001
y 0111 1001

The initial step in implementing the Half-Byte technique is to transform the input text to binary. Following
that, the start or left bit is split from the right or end bit. Next, we look for commonalities in each character's
left bits. If there is, the left bit is removed, and a marker bit is assigned to the start and end bounds. The file
is then encoded as a new compressed file.

c. Testing
Tests were conducted on 100 text sample files. The compression ratio and size of the findings are used in
testing. The three approaches were tested by compiling a program in Python. Running the program produces

Eko Priyono, 1JSRM Volume 12 Issue 09 September 2024 EC-2024-1424

the following output: the original uncompressed text, symbols or letters in the text, symbol likelihood, size
before and after compression, and bit representation after compression.

Figure 3 shows an example of a 6792-bit txt file used to test the Huffman method. The compression ratio
attained was 45.45%, or 3785 bits. Similarly, we tested the Shannon-Fano (Figure 4) and the Half-Byte
algorithm (Figure 5). With the identical text data example, the following two algorithms show compression
file values of 4090 bits for the Shannon-Fano algorithm, namely with a compression ratio of 39.78%, and
6444 bits for the Half-Byte algorithm or with a compression ratio of 5.12%. The compression ratio produced
by the evaluated algorithm is used to determine its effectiveness. The higher the compression ratio, the better
the compression, or in other words, the more successful the algorithm.

Pemerintah Daerah Daerah Istimews Yogyakarta mengeluarkan kebijakan baru dengan membentuk Dinas Komunikasi dan Informatika. Mamun terjadi
rusan bidang kominfo daerah tidak sesuai dengan UU Nomer 23 Tahun 2014 tentang Pemerintahan Daerah. Penelitian ini bertujuan umtuk mendapa
tasi kebijakan pembentukan Dinas Komunikasi dan Informatika. Metode yang digunakan adalah studi kasus dengan jenis penelitian deskriptif k
unjukkan bahwa kebijakan membentuk Dinas Komunikasi dan Informatika membawa pengaruh positif terhadap dinamisasi bidang komunikasi dan inf
tidak taatan kepada UU Nomor 23 Tahun 20814 dikarenakan UU Nomor 13 tahun 2012 memberi keistimewaan kepada Pemda Daerah Istimewa Yogyakarta
rah.
symbols: dict keys(['P*, 'e’, 'm", 'r', 'i", 'n", 't", 'a", 'h", " ", D', 'I', 's%, w', 'Y, o, ‘gl 'y', 'k, 1Y, wf, 'Y, '3, d
C2n, 3, T, R, 10, A, pt, W, CH L)
probabilities: dict values([4, 67, 39, 32, &1, 81, 20, 122, 15, 165, 8, 6, 24, 6, 3, 21, 17, 3, 43, 16, 31, 15, 7, 27, 3, &, 6, 4, 1, 6,
symbols with codes {'m': '8@008', ‘g': "86ee18', "1': '@oe0llee’, 'N': 'eeesllsl’, °f': '0eeelll’, 'e': '@eel’, 'r’: 'Seles’, 'u': '8elel’
'@110866', P': '01168018°, "@': "@1160611°, 'b': '@116e1’, 'h°: '©11818°, 'j': 'ellelle’, 'T': 'e1161118°, "3': '81161111°, 'd': '©1118°
e1', '2': 'ellliel’, 'U': ‘'el1l11e’, '.': 'e111111°, * ': *188', 's': '181e8', 'w': ‘1818180, 'I': '1eielel’, 'p': '1e1011', 'k': ‘1e11’,
‘111g1e, 'Y": '111eliee’, °,': '1liellele’, 'H': '111ei1e1l’, ‘M': "11i1611iee”, 'v': ‘111611161, '4': ‘11101111, 't°: '1111'}
Space usage before compression (in bits): 6792
Space usage after compression (in bits): 3765
elleoelcoealooasoeealoaloseslllielllleleallslaleeollseoselconalooloceleallelolceallcoseslonsalonloealeolloleiealelalellalealllicellsoee0se
@leallllseielelallelealaalll161610s600008001116600010066111161000101016061661611616116166161100616116010011611611001616116161161606110016
16681611016686006060160600611001886111611116616116111666116066681111661616166166011116661116680066061611160811161181816166681116861116681011
BEeeRe181111061116116160111111166000611616160506008161116100111160616016061161106166111600111061611111061161111661081116011161116106816016
oglelesislicealicleleseallleolalioeecalealelicleosaleloelootalallaleealnllalecelleeloellallileelalicascelolealallllleane0es001111600061111
181661111661161116616161116810165606116166001616106611166811165061116606010616116166011111661111161606060116111165000600001001681606111161

Figure 3: Huffman algorithm’s data compression

BA: 6792

B1: 4899

the encoded version

111111111181 @10 1861 618 11880 @11 6811 181 968 111181 6616 11111181 60 019 11888 086 111101 6a1e 11111181 608 918 11600 606 111101 @819 11111111

80 11108 101 e11 1001 618 1111111191 960 8916 11111111111168 11181 111186 1111111111181 656 1600 968 11606 161 006 0ale 1081 016 @01l 11110 018 1

1111106 11681 #09 11006 1086 £AG BA11 AA16 1088 #19 1111188 611 111111181 046 1968 4G A1l 0A16 1111169 660 11808 11981 AA16 1161 818 #A1l 111180
800 9011 8916 1081 A16 1881 1111180 819 0811 181 11651 1608 6816 11111181 611 AA11 ABG 1116 BA18 111111111111168 11181 1681 11661 Ba1l A11 1006 08
8 11100 811 8810 1181 66@ 9811 8E18 111111110 @411 111111168 11181 11806 1081 868 181 A11 1000 @A 11111111109 #A18 1111111111166 #a6 1681 11081 8
811 8016 161 818 11800 111111181 @A8 1101 811 8818 1060 11161 @811 181 11006 11181 11111111111111181 #18 11006 11188 811 AA16 1069 0A9 11960 @16 00
11 560 8916 186 618 1111111181 610 6611 A6A AAL1 111100 ARG HA11 GA1A 11001 11888 11861 11100 ARG AB11 6610 1111184 811 1181 006 A1l 111188 0Al8
1006 11181 1881 @11 @411 111111186 11181 #616 1161 60 019 11600 606 111101 AA18 161 611 1181 A6A 1904 A1 11180 416 11169 11001 @08 611 6618 1101
810 9011 111160 666 @911 8916 11111111181 11111111181 0616 1111111111166 11161 1661 610 11600 661 111111111180 111111111111161 8616 1111111111111

Figure 4: Shannon-Fano algorithm’s data compression

b8: 6792

bl: 6444

encode text: 91918660116818191161161011661016111A01081141661811611165111014651 10600161 10106041 0004001 06010861 10006816116816101116616011606810118168
£316600001660100611600610116610161110016011660816110166601006606166106816111661161116166611016610116116161108161011161116110606141666600161 168161161
111611601116111168161168661611016110116666161116616011161000116660101666601111111611616161111661116161111111161106611101616116666161110616611618118
1168661111111101110606616116191661610011616069111111116161161166661011611106166600611666101111111666610016616160066160111111161111111009161111661118
8611116111111160660011011616116616161161 1610116681061 165101611611 160111410061 11610161 16101161 6000601 60016661 1616016116111661 1006616111661 1610666881
661611611611110116116161116161011611166116166161161611611006616111661161101661410666061100166611066616116111661006606106166101161116611661160116111
161116616611611616110066161110166611016616116181161106661016111681600656100111601166061611011610111616161161116016600001110100611681610111601681161

Figure 5: Half-Byte algorithm’s data compression

Table 2 displays the compression results of the three methods, Huffman, Shannon-Fano, and Half-Byte,
together with the average compression ratio shown in Figure 6.

Table 2: Test results for the Huffman, Shannon-Fano, and Half-Bye algorithms

Fil File size (Bit) Compression ratio
nalrr(:e Original | Huffman | Shannon- Half- | Huffman | Shannon- Half-
Fano Byte Fano Byte
001.txt 6792 3705 4090 6444 45.45% 39.78% 5.12%
002.txt 6640 3465 3724 6338 47.82% 43.92% 4.55%
003.txt 6432 3493 3797 6056 45.69% 40.97% 5.85%
004.txt 7392 4015 4599 7035 45.68% 37.78% 4.83%

Eko Priyono, 1JSRM Volume 12 Issue 09 September 2024 EC-2024-1425

005.txt 7552 4108 4498 7214 45.60% 40.44% 4.48%
006.txt 10920 5822 6254 10521 | 46.68% 42.73% 3.65%
007.txt 8680 4527 4860 8330 47.85% 44.01% 4.03%
008.txt 18632 10342 11842 17679 | 44.49% 36.44% 5.11%
009.txt 10576 5736 6238 10050 | 45.76% 41.02% 4.97%
010.txt 10704 5706 6210 10170 | 46.69% 41.98% 4.99%
100.txt 7256 3778 4012 6892 47.93% 44.71% 5.02%

Huffman | 46,05%
shannon-Fano | - 0.36%
Half-Byte [5.04%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Figure 6: Graph of the average compression ratio of the Huffman, Shannon-Fano, and Half-Byte algorithms
Figure 6 shows that the Huffman method outperforms the other two algorithms. Because of differences in
features, the Half-Byte algorithm has a low compression ratio compared to the Huffman and Shannon-Fano
algorithm. Half-Byte compression is based on the similarity of the first four bits of seven consecutive
characters, whereas Hufman and Shannon-Fano algorithms employ the number of character appearances.
The sentences in the sample contain different characters or letters. Because of the wide range of characters,
the likelihood of characters having the same and consecutive prefix bits is low. This has an effect on the
characters that can be compressed; specifically, just a few characters can be compressed. As a result, there is
only a tiny change in bit size between before and after compression.

The findings of comparing the text data compression algorithm with the more successful Huffman algorithm
were also revealed in study results (Supiyandi and Frida, 2018), with a compression ratio of 71.43%
compared to the Half-Byte technique's compression ratio of 22.33%. According to (Pujianto et al., 2020), the
Huffman approach performed better in compression than the Run Length Encoding method. The Huffman
method outperforms the Shannon-Fano technique in terms of compression gain for images of the same size
and number of colors (Widatama and Saputro, 2019).

The Huffman algorithm is said to offer a higher compression ratio than numerous other compression
algorithms for text and graphic data. However, this contradicts the research findings of [15]. The research
focused on audio file compression (*.wav). According to the research findings, the Huffman approach has a
compression ratio of 28.954%, whereas Run Length Encoding has a ratio of 46.77%.

4. Conclusion

The results of the investigation reveal that the Huffman algorithm outperforms the Shannon-Fano and Half-
Byte methods. The Huffman method has an average compression ratio of 46.05%, Shannon-Fano at 40.36%,
and Half-Byte at 5.04%. Thus, the Huffman method can be considered for use in compressing Indonesian
language text data. Data compression techniques require further testing to determine their effectiveness on
data other than text, such as video data, in order to acquire comprehensive information about the optimal
compression algorithm.

Conflicts of Interest: “This research was carried out collaboratively between authors and there was no
conflict of interest.”

References
3. Darnita, Y., Khairunnisyah, K. and Mubarak, H. (2019), “Text Data Compression Using the
Sequitur Algorithm”, SISTEMASI, Vol. 8 No. 1, pp. 104-113.
4. Fatmawaty, F. and Mufty, M. (2020), “Comparative Analysis of Wav File Compression Using
the Huffman Method and Run Length Encoding”, Jurnal Teknologi Informasi Dan Terapan,
Vol. 7 No. 1, pp. 61-65.

Eko Priyono, 1JSRM Volume 12 Issue 09 September 2024 EC-2024-1426

10.

11.

12.

13.

14.

15.

16.

17.

Irliansyah, M.R., Nasution, S.D. and Ulfa, K. (2017), “Application of the Deflate Method and
Goldbach Codes Algorithm in Text File Compression”, KOMIK (Konferensi Nasional
Teknologi Informasi Dan Komputer), VVol. 1 No. 1.

Mahmoudi, R. and Zare, M. (2020), “Comparison of Compression Algorithms in text data for
Data Mining”, Int. J. Adv. Eng. Manag. Sci., Vol. 6, pp. 231-235.

Mizwar, T., Ginting, G.L., Mesran, M., Fau, A., Aripin, S. and Siregar, D. (2017),
“Implementation of the J-Bit Encoding Algorithm in Text File Compression”, KOMIK
(Konferensi Nasional Teknologi Informasi Dan Komputer), Vol. 1 No. 1.

Pujianto, M., Prasetyo, B.H. and Prabowo, D. (2020), “Comparison of the Huffman Method and
Run Length Encoding in Document Compression”, InfoTekJar J. Nas. Inform. Dan Teknol. Jar,
Vol. 5 No. 1, pp. 216-223.

Puspabhuana, A. (2016), “Three Steps Comparison of Text Compression Techniques”,
President University.

Rizky, N.F., Nasution, S.D. and Fadlina, F. (2020), “Application of the Elias Delta Codes
Algorithm in Text File Compression”, Building of Informatics, Technology and Science (BITS),
Vol. 2 No. 2, pp. 109-114.

Salomon, D. (2007), A Concise Introduction to Data Compression, Springer Science &
Business Media.

Saragih, S.R. and Utomo, D.P. (2020), “Application of the Prefix Code Algorithm in Text Data
Compression”, KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), Vol. 4 No.
1.

Sayood, K. (2017), Introduction to Data Compression, Morgan Kaufmann.

Siahaan, A.P.U. (2016), “Implementation of Huffman Text Compression Technique”, Jurnal
Informatika Ahmad Dahlan, Universitas Ahmad Dahlan, Vol. 10 No. 2, p. 101651.
Simanjuntak, L.V. (2020), “Comparison of the Elias Delta Code and Levenstein Algorithms for
Text File Compression”, Journal of Computer System and Informatics (JoSYC), Vol. 1 No. 3,
pp. 184-190.

Supiyandi, S. and Frida, O. (2018), “Comparative Analysis of Text Data Compression Using
Huffman and Half-Byte Methods”, ALGORITMA: JURNAL ILMU KOMPUTER DAN
INFORMATIKA, Vol. 2 No. 1.

Widatama, K. and Saputro, W.T. (2019), “Comparison of the Performance of the Huffman
Algorithm and the Shannon-Fano Algorithm in Compressing Image Files”, INTEK: Jurnal
Informatika Dan Teknologi Informasi, VVol. 2 No. 2, pp. 70-77.

Eko Priyono, 1JSRM Volume 12 Issue 09 September 2024 EC-2024-1427

