Application of Fuzzy - AHP - Topsis Model Integration to Select Green C2C Websites in Online Shopping

Tran Trung Dung

Master of Science Hanoi University of Natural Resources and Environment <u>https://orcid.org/0009-0004-1990-2474</u>

Abstract:

In today's digital age, online shopping has become an indispensable part of daily life. The strong development of e-commerce platforms helps consumers easily search and choose products from around the world with just a few clicks. Making purchasing decisions is not simple when buyers have to consider many factors such as price, quality, brand and many other factors. To support smart consumers in shopping, the study applied the Fuzzy - AHP - Topsis integrated model to evaluate purchasing criteria on 4 popular C2C websites: Shopee, Tiki, Lazada and Sendo.

Keywords: Online shopping choice, online shopping, C2C website, fuzzy set theory, Fuzzy - AHP model, TOPSIS model, C2C e-commerce transaction model.

1. Introduce

Online shopping through C2C websites has become a popular trend in the digital age. However, consumers faced with choosing between thousands of products with uncertain reliability often have difficulty making the appropriate decision. Factors such as price, quality and many other criteria make the process of evaluating and choosing between products complicated. To help consumers more easily choose optimal products, the study applied the Fuzzy - AHP - TOPSIS integrated model to support consumers in optimizing shopping decisions on C2C websites.

2. Theoretical basis of research

Fuzzy Logic theory (fuzzy theory) was introduced by the Azerbaijani-American mathematician, Professor Lotfi A. Zadeh, in 1965. Up to now, fuzzy logic theory has developed very strongly and is applied in many fields. many areas of life. The AHP method proposed by Satty in 1977 is a widely used analytical tool in researching and solving complex multi-criteria decision problems and providing flexibility in qualitative and quantitative data analysis. quantity. TOPSIS is another multi-criteria decision-making method developed to rank alternatives based on their similarity to the ideal solution. The idea of this algorithm is built on the crisp values set, based on the positive ideal solution (PIS-positive ideal solution) and negative ideal solution (NIS-negative ideal solution). The research process is as shown in Table 1.

3. Research results

Based on the customer survey results and expert survey opinions, we have Table 2.

To perform pairwise comparisons between fuzzy parameters will be used (Table 3).

The results of comparing pairs of criteria are shown in tables 4 and 5.

The results of determining the weight of the criteria are shown in Table 6.

The websites selected for evaluation are Shopee, Lazada, Sendo, and Tiki, which will be denoted as W1, W2, W3, W4, respectively. The results of building the standardized matrix are as shown in Table 7.

Determine PIS, NIS, selection distance and CCi with results as shown in Table 8.

The final results in table 9 show that the closeness value of option W1 is the highest, indicating that this option is closest to the positive ideal solution. Therefore, the Shopee website is a more advantageous C2C online shopping option than Tikki, Lazada, and Sendo websites.

Step 1: Create a hierarchical structure diagram			
Step 2: Choose criteria for evaluating B2C websites	Information base		
Step 3: Survey customers and experts			
Step 4: Set up the pair comparison matrix			
Step 4: Determine the weight of each criterion	FUZZY - AHP		
Step 6: Defuzzify the weights			
Step 7: Set up the decision standard matrix			
Step 8: Determine the normalization matrix			
Step 9: Calculate PIS and NIS index	TOPSIS		
Step 10: Determine priority ranking order			
Step 11: Select C2C website			

Table 1. Research protocol

Table 2. Table of criteria for evaluating C2C online shopping websites

No.	Criteria code	Criterion name			
1	TC1	Green prices			
2	TC2	Green product quality			
3	TC3	Green brand			
4	TC4	Green processing and delivery times			
5	TC5	Green after-sale service			
6	TC6	Green payment			
7	TC7	Green product catalog			
8	TC8	Green web interface			
9	TC9	reen promotion			
10	TC10	Green communication			

Table 3. Table of criteria evaluation levels according to the triangular Fuzzy coefficient

Language variation	Language variable code	Corresponding triangular fuzzy numbers	Inverse triangular fuzzy numbers
Equally important (BN)	1	(1, 1, 3)	(1/3, 1/1, 1/1)
More important (TH)	3	(1, 3, 5)	(1/5, 1/3, 1/1)
More important (NH)	5	(3, 5, 7)	(1/7, 1/5, 1/3)
Very important (RT)	7	(5, 7, 9)	(1/9, 1/7, 1/5)
Extremely important (CT)	9	(7, 9, 9)	(1/9, 1/9, 1/7)

Table 4. Evaluation matrix comparing pairs of criteria TC1 - TC5

Matrix	TC1	TC2	TC3	TC4	TC5
TC1	(1, 1, 1)	(1, 7/3, 13/3)	(11/3, 17/3,	(17/3, 23/3,	(11/3, 17/3,
	(1, 1, 1)	(1, 7/3, 15/3)	23/3)	9)	23/3)
TC2	(3/13, 3/7, 1)	$(1 \ 1 \ 1)$	(19/3, 25/3,	(17/3, 23/3,	(13/3, 19/3,
102	(3/13, 3/7, 1)	(1, 1, 1)	9)	9)	25/3)
TC3	(3/23, 3/17,	(1/9, 3/25,	$(1 \ 1 \ 1)$	(17/3, 23/3,	(13/3, 19/3,
103	3/11)	3/19)	(1, 1, 1)	9)	25/3)

TC4	(1/9, 3/17)	3/23,	(1/9, 3/17)	3/23,	(1/9, 3/17)	3/23,	(1, 1, 1))	(11/3, 23/3)	17/3,
TC5	(3/23, 3/11)	3/17,	(3/25, 3/13)	3/19,	(3/25, 3/13)	3/19,	(3/23, 3/11)	3/17,	(1, 1, 1)
TC6	(1/9, 3/17)	3/23,	(1/9, 3/19)	3/25,	(3/11, 3	3/5, 1)	(3/21, 3/11)	1/5,	(3/13, 3	3/7, 1)
TC7	(3/25, 3/13)	3/19,	(3/25, 3/17)	3/23,	(3/11, 3	3/5, 1)	(3/25, 3/13)	3/19,	(3/13, 3	3/7, 1)
TC8	(1/9, 3/19)	3/25,	(3/19, 3/7)	3/13,	(3/17, 3/5)	3/11,	(1/9, 3/19)	3/25,	(1/9, 3/19)	3/25,
ТС9	(1/5, 3/7)	1/3,	(3/17, 3/7)	3/13,	(1/5, 3/5)	1/3,	(1/5, 3/7)	1/3,	(3/19, 3/13,3/	7)
ТС10	(3/17, 3/5)	3/13,	(3/19, 3/7)	3/13,	(3/11, 3	3/5, 1)	(3/17, 3/5)	3/11,	(3/19, 3/7)	3/13,

 Table 5. Evaluation matrix comparing pairs of criteria TC6 - TC10

Matrix	TC6	TC7	TC8	TC9	TC10
TC1	(17/3, 23/3, 9)	(13/3, 19/3, 25/3)	(19/3, 25/3, 9)	(7/3, 3, 5)	(5/3, 11/3, 17/3)
TC2	(19/3, 25/3, 9)	(17/3, 23/3, 25/3)	(7/3, 13/3, 19/3)	(7/3, 11/3, 17/3)	(7/3, 13/3, 19/3)
ТС3	(1, 5/3, 11/3)	(1, 5/3, 11/3)	(5/3, 11/3, 17/3)	(5/3, 3, 5)	(1, 5/3, 11/3)
TC4	(11/3, 5, 7)	(13/3, 19/3, 25/3)	(19/3, 25/3, 9)	(7/3, 3, 5)	(5/3, 11/3, 17/3)
TC5	(1, 7/3, 13/3)	(1, 7/3, 13/3)	(19/3, 25/3, 9)	(7/3, 13/3, 19/3)	(7/3, 13/3, 19/3)
TC6	(1, 1, 1)	(13/3, 19/3, 23/3)	(13/3, 19/3, 23/3)	(1, 5/3, 11/3)	(1, 5/3, 11/3)
TC7	(3/23, 3/19, 3/13)	(1, 1, 1)	(1, 7/3, 13/3)	(1, 7/3, 13/3)	(1, 7/3, 13/3)
TC8	(3/23, 3/19, 3/13)	(3/13, 3/7, 1)	(1, 1, 1)	(1, 5/3, 11/3)	(5/3, 11/3, 17/3)
ТС9	(3/11, 3/5, 1)	(3/13, 3/7, 1)	(3/11, 3/5, 1)	(1, 1, 1)	(7/3,13/3, 19/3)
ТС10	(3/11, 3/5, 1)	(3/13, 3/7, 1)	(3/17, 3/11, 3/5)	(3/19, 3/13, 3/7)	(1, 1, 1)

Table 6. Table of weighted values of criteria

Coefficient \tilde{r}_j	Value	Weight \widetilde{w}_j	Value	Weight \overline{w}_j	Value	Weight <i>w_j</i>	Value
			obtained				
$ ilde{r}_1$	(2.926,	\widetilde{w}_1	(0.142,	\overline{w}_1	0.341	<i>w</i> ₁	0.291
	4.372,		0.298,				
	5.810)		0.585)				
\tilde{r}_2	(2.638,	\widetilde{W}_2	(0.128,	\overline{W}_2	0.301	<i>W</i> ₂	0.258
	3.874,	_	0.264,	_		_	
	5.082)		0.512)				
\tilde{r}_3	(0.998,	\widetilde{W}_3	(0.048,	\overline{W}_3	0.127	<i>W</i> ₃	0.109
_	1.485,	_	0.101,	_		-	

	2.319)		0.233)				
$ ilde{r}_4$	(1.070,	\widetilde{W}_4	(0.051,	\overline{W}_4	0.113	W_4	0.096
	1.432,		0.097,	_			
	1.904)		0.191)				
\tilde{r}_5	(0.620,	\widetilde{w}_{5}	(0.029,	\overline{W}_5	0.077	W_5	0.065
-	0.959,		0.065,				
	1.389)		0.139)				
$ ilde{r}_6$	(0.539,	\widetilde{w}_6	(0.026,	\overline{w}_6	0.066	<i>W</i> ₆	0.056
	0.785,		0.053,				
	1.196)		0.120)				
\tilde{r}_7	(0.327,	\widetilde{W}_7	(0.015,	\overline{w}_7	0.044	W_7	0.038
	0.527,		0.035,				
	0.840)		0.084)				
$ ilde{r}_8$	(0.268,	\widetilde{w}_8	(0.013,	\overline{w}_8	0.022	<i>w</i> ₈	0.019
	0.367,		0.025,				
	0.586)		0.059)				
$ ilde{r}_9$	(0.312,	\widetilde{W}_9	(0.015,	\overline{W}_9	0.044	W_9	0.038
	0.515,		0.035,				
	0.814)		0.082)				
\tilde{r}_{10}	(0.227,	\widetilde{w}_{10}	(0.011,	\overline{w}_{10}	0.034	<i>w</i> ₁₀	0.030
	0.355,		0.024,				
	0.665)		0.067)				

Table 7. Decision matrix according to criteria

Criteria	Decision matrix				Norma	alized n	natrix	MT normalizes the weig			reights	
	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
TC1	8.33	5.00	5.67	9.00	0.578	0.347	0.393	0.624	0.168	0.100	0.114	0.181
TC2	9.00	4.33	4.33	9.00	0.637	0.306	0.306	0.637	0.164	0.078	0.078	0.164
TC3	7.67	8.33	7.00	9.00	0.477	0.518	0.435	0.560	0.051	0.056	0.047	0.061
TC4	7.67	5.67	7.67	8.33	0.518	0.382	0.518	0.562	0.049	0.036	0.049	0.053
TC5	8.33	5.67	5.67	8.33	0.584	0.397	0.397	0.584	0.037	0.025	0.025	0.037
TC6	9.00	7.00	6.33	7.67	0.594	0.462	0.418	0.506	0.033	0.025	0.023	0.028
TC7	7.00	8.33	9.00	7.67	0.435	0.518	0.560	0.477	0.016	0.019	0.021	0.018
TC8	7.67	5.00	6.33	7.67	0.567	0.369	0.468	0.567	0.010	0.007	0.008	0.010
TC9	7.67	4.33	6.33	5.67	0.626	0.353	0.517	0.463	0.023	0.013	0.019	0.017
TC10	5.67	3.67	3.67	5.67	0.593	0.384	0.384	0.593	0.017	0.011	0.011	0.017

Table 8. PIS and NIS table for each criterion

Criteria	\mathbf{A}^+	A
TC1	0.181	0.100
TC2	0.164	0.078
TC3	0.061	0.047
TC4	0.053	0.036
TC5	0.037	0.025
TC6	0.033	0.023
TC7	0.021	0.016
TC8	0.010	0.007
TC9	0.023	0.013
TC10	0.017	0.011

Table 9. Table of distance between options and closeness index

	Distance	Choice plan							
	Distance	W1	W2	W3	W4				

d_i^+	0.070	0.088	0.090	0.083
d_i^-	0.088	0.070	0.054	0.089
$d_{i}^{+} + d_{i}^{-}$	0.158	0.158	0.144	0.172
CCi	0.556	0.443	0.375	0.517
Rating	1	3	4	2

The combined model Fuzzy - AHP - TOPSIS provides a comprehensive method to evaluate rankings and prioritize online shopping on C2C websites according to appropriate criteria.

References

- 1. Pham Thi Thanh Thuy (2017). Construction management tools and techniques Part 3: Multi-criteria decision method, Ho Chi Minh City University of Architecture Publishing House, Ho Chi Minh City.
- 2. H. H. Chang, Y. H. Yeh (2011), "A survey analysis of service quality for domestic airlines," Expert Systems with Applications, vol. 38, no. 1, pp. 38-46.
- 3. G. A. Montibeller, F. H. A. J. Liberatore (2005), "Using decision aiding methods to enhance the design of conjoint analysis experiments in non-market valuation: A case study," Journal of Multi-Criteria Decision Analysis, vol. 13, no. 5-6, pp. 285-303, 2005.
- 4. H. J. Zimmerman (2012), "Fuzzy Multiattribute Decision-Making: Methods and Applications," Springer Science & Business Media.
- 5. Opricovic, S. (2013). Fuzzy AHP and TOPSIS methods for machine tool selection. Procedia CIRP, 7, 692-697.