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Abstract 

This paper focused on the fundamental concept and solution approaches to the combinatorial optimisation 

techniques. The construct of the effective methods of this paper are based on the integrations of Constraints 

Programming (CP), Integer Programming (IP) and local search (LS) to tackle combinatorial optimization 

problem from different application areas like the nurse scheduling and the portfolio selection problems. 

These techniques demonstrate the effectiveness of the method as well as knowledge of the quality of the 

solution 

. 

1. Introduction 

     The combinatorial optimization has 

been the subject of an enormous amount of 

research, fundamental concepts and solution 

approaches to the combinatorial optimisation 

problems. Initially we give the definitions of the 

general optimisation problem and the general 

combinatorial optimisation problem. Then we 

define the scope of the research in this thesis by 

listing several important classes of combinatorial 

optimisation problems. These particular classes of 

combinatorial optimisation problems capture the 

basic structures of the two application problems 

that will be extensively investigated in this thesis. 

Hereafter, the term “combinatorial optimisation 

problems” refer to this list of particular problems.  

After that, we summarize the solution 

approaches to the combinatorial optimisation 
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problems by generally categorising the techniques 

into two groups: exact solution approaches and 

heuristic solution approaches. Next, we examine 

the Constraint Programming techniques to solve 

the combinatorial optimisation problems. The 

important concepts and techniques in Constraint 

Programming are introduced. Continuing that, 

present another exact solution approach Integer 

Programming and the related techniques from 

Operational Research. Then we present 

decomposition methods and the corresponding 

solution approaches. These methods include 

domain independent, general decomposition 

methods as well as ones related with the 

application problems we will tackle in this these. 

We review the current mainstream integration 

approaches based on Constraint Programming, 

Integer Programming and local search. We do not 

intend to give an exclusive review of the 

integration methods. We focus on the integration 

methods related with the two application problems 

to tackle the model. 

2. Combinatorial optimisation problems 

2.1 The optimisation problem 

In mathematics and computer sciences, an 

optimisation problem, or a mathematic 

program, is the problem of finding the best 

solution from all the feasible solutions [1]. More 

formally, an optimisation (minimization) problem 

can be stated as:  

 

                                             min 𝑓(𝑋)/𝑋 ∈ 𝐹 ⊂ 𝑅𝑛                            

-----------------------            (1) 

 

where x∈ Rn is the vector of problem variables, R 

denotes the real number, Rn denotes an n-

dimensional vector space over R , F is the feasible 

region (the set of all feasible solutions), and f: F 

→ R is the objective function. Every x ∈ F is 

called a feasible solution to (1). If there is a x* ∈ 

F satisfying:  

                                    f (x*) ≤ f (x),∀x ∈ F 

 

then x* is called the (global) optimal solution and 

f (x* ) is called the (global) minimum with regard 

to (1). Equivalently, an optimisation problem can 

be stated as follows where x ∈ F is explicitly 

expressed by constraint (2) and (3) 

                                                 

   min f (x) 

                                                𝑆. 𝑇. 𝐶    𝑔𝑖(𝑋) ≥ 0 ; 𝑖 =

1 … … . . 𝑛              ------------------------ (2) 

                                                                 ℎ𝑗(𝑋) =

0 ; 𝑗 = 1 … … . . 𝑚           ------------------------ (3) 

Where i g and j h are the functions → R , and (2), 

(3) represent the constraints of  the optimisation 

problem. 

2.2  The combinatorial optimisation problem  

When an optimisation problem has a finite 

number of feasible solutions, the problem is called 

combinatorial optimisation problem [8]. 

Several important classes of combinatorial 

optimisation problems will be extensively 

investigated in this thesis. These problems capture 

the basic structures of the two application 

problems we will tackle in this thesis. They are 

listed as follows: 

 Linear Program: a combinatorial 

optimisation problem is a Linear Program 

if the objective function f in (2-1) and 
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constraints i g , j h in (2) and (3) are the 

linear functions. 

 Finite domain optimisation problem: a 

combinatorial optimisation problem is a 

finite domain optimisation problem if the 

domain of variable x is a finite set: xi∈ [ai 

,bi ],i = 1...n . In this thesis, the Constraint 

Satisfaction Problem and Constraint 

Optimisation Problem in Constraint 

Programming paradigm are finite domain 

optimisation problems. 

 Integer Program: If the unknown variables 

are all required to be integers, then the 

problem is called an Integer Program or 

Integer Linear Program.  

 Quadratic Program: If the objective 

function f is a quadratic function and 

constraints  𝑔𝑖, ℎ𝑗 are linear functions, the 

problem is a quadratic program. When 

some or all of the variables are required to 

be integers, the problem is called Mixed 

Integer Quadratic Program or Integer 

Quadratic Program. In this thesis, we only 

focus on the convex quadratic objective 

function. 

3. Constraint Programming 

         In this paper, the term of Constraint 

Programming (CP) refers to the techniques that 

are used to represent and solve the Constraint 

Satisfaction Problem and Constraint Optimisation 

Problem arising from Artificial Intelligence. This 

section gives a brief introduction and basic 

notation of CP. A large part of this section is 

written based on the books [1] and [2]. 

 

Definition 1 (Variable and domain): Let x be a 

variable. The domain of x is a set of values that 

can be assigned to x. A single value is assigned to 

a variable. In this thesis we only consider   the 

variables with finite domains. 

Definition 2 (Constraint): Consider a finite 

sequence of variables X = x1, x2 … xn where n > 0, 

with respective domains D = D1, D2… Dn such 

that xi ∈Di  for all i. A constraint C on X is 

defined as a subset of the Cartesian product of the 

domains of the variables in X,  

i.e. C ⊆ D1×D2×…× Dn. A constraint C is 

called a unary constraint if it is defined on one 

variable. A constraint C is called a binary 

constraint if it is defined on two variables. If C is 

defined on more than two variables, we call it a 

global constraint. 

Definition 3 (Constraint Optimisation 

Problem): Often we want to find a solution to a 

CSP that is optimal with respect to a certain 

criteria. A Constraint Optimisation Problem 

(COP) is a CSP(X, D, C) where D = D1, D2… Dn, 

together with an objective  function f: D1×D2×… 

Dn  → R to be optimised. An optimal solution to a 

constraint optimisation problem is a solution to P 

that is optimal with respect to f. The objective 

function value is often represented by a variable z, 

together with maximizing z or minimizing z for 

maximization or a minimization problem, 

respectively. In CP, the goal is to find a solution 

(or all solutions) to a given CSP, or an optimal 

solution (or all optimal solutions) to a given COP. 

The solution process interleaves constraint 

propagation or propagation in short, and search 

4. Operational Research techniques 
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       Instead of following a definition, we 

will use the term Operational Research to specify 

a particular set of methods and solution techniques 

for the combinatorial optimisation problems. This 

set includes for example the techniques from 

Linear Programming, Integer Programming and 

Convex Quadratic Programming. 

4.1 Linear Programming 

     There are many textbooks on Linear 

Programming and Integer Linear Programming .A 

very good introduction to Linear Programming 

and Integer Programming are given by Wolsey 

and Nemhauser [8]. 

Linear Program: A Linear Program (LP) 

problem is characterized by a linear objective 

function in decision variables and by constraints 

described by linear inequalities or equations: 

min   𝑐1𝑥1 +-----------𝑐𝑛𝑥𝑛 

S.T.C 𝑎11𝑥1 +---------𝑎1𝑛𝑥𝑛 =  𝑏1 

            𝑎21𝑥1 +---------𝑎2𝑛𝑥𝑛 =  𝑏2 

-------------------- 

               𝑎𝑚1𝑥1 +---------𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑛 

 

where x ∈ 𝑹𝒏 is the vector of decision 

variables, c∈ 𝑹𝒎 is the cost coefficient vector, b∈

𝑹𝒎 is the constraint vector and A is the constraint 

coefficient matrix with elements𝑎𝑖𝑗 . For 

simplicity, we assume n ≥ m , and the columns of 

A are indexed by the set I= {1,…n}.  

Let 𝐴𝐵 be a basis of A, i.e. a non-singular 

square sub matrix of A, where the set B indexes 

over the columns. Let 𝐴𝑁 be the sub matrix of A 

indexed by the columns in N=I/B. Then the set of 

constraints Ax = b can be written as:  

                                               𝐴𝐵𝑥𝐵 + 𝐴𝑁𝑥𝑁 = 𝑏 

A solution to this equation is given by 

𝑥 𝐵 = 𝐴𝐵
−1𝑏  and 𝑥𝐵 = 0 . This solution is called 

a basic solution, and it is feasible if   𝐴𝐵
−1𝑏 ≥ 0  . 

The vector 𝑥𝐵 contains the basic variables and the 

vector 𝑥𝑁  constrains the non-basic variables. The 

reduced cost vector 𝑐−𝑇 is defined as: 

 

    𝑐−𝑇 = 𝑐𝑇 −

𝑐𝑇
𝑩𝐴𝐵

−1𝐴 

 The importance of the reduced cost vector 

is described by the following fundamental 

theorem: 𝑥 = ( 𝑥𝐵,  𝑥𝑁) is an optimal solution if 

and only if �̃� ≥ 0. 

4.2 Integer Programming Problem 

            A Linear Programming Problem in 

which over all or some of the decision variables 

are constrained to assume non-negative values is 

called an Integer Programming Problem .This type 

of problem is of particular importance in business 

and industry, where quite often, the fractional 

solutions and unrealistic because the unit are not 

divisible .The integer solution to a problem can, 

however, be obtained by rounding off the 

optimum values of the variables to the nearest 

integer values. But, it is generally inaccurate to 

obtain an integer solution by rounding off in this 

manner, for there is no guarantee that the 

deviation from the ‘exact’ integer solution will not 

be too large to retain the feasibility. 

   The linear programming problem 

with the additional requirement that the variable 

can take on only, integer values may have the 

following mathematical form 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑖𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧

=  𝑐1𝑥1 + 𝑐2𝑥2 + − − −  

+ 𝑐𝑛𝑥𝑛       

                                                  𝑆. 𝑡. 𝑐           𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +

 − − − − −+𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖           𝑖 = 1,2, … … . . 𝑚 

                                                                                   𝑥𝑗

≥ 0,                                              𝑗

= 1,2, … … . . , 𝑛 

Where 𝑥𝑗  are valued for 𝑗 = 1,2, … … . , 𝑝 (𝑝 ≤ 𝑛) 

We do not know exactly where on this line 

the objective value of optimal solution lies. We 

denote this optimal value as arbitrarily on the line. 

This optimal solution value conceptually divides 

the value line into two parts: 

• above the optimal solution value are upper 

bounds, values which are above the (unknown)     

   optimal solution value . 

• below the optimal solution value are lower 

bounds, values which are below the (unknown)     

   optimal solution value. 

4.3 Quadratic Programming 

Quadratic Program problems have linear 

constraints, but the objective function f must be 

quadratic. Thus, the only difference between such 

a problem and a Linear Program problem is that 

some of the terms in the objective function 

involve the square of a variable or the product of 

two variables. A number of special algorithms 

based upon the extending Simplex method have 

been developed for the Quadratic Program with 

convex quadratic objective function (for the 

minimization problem) [5]. These algorithms have 

been implemented in many Quadratic Program 

solvers. 

4. Decomposition and solution algorithm 

In this, the decomposition methods and 

corresponding solution algorithms applied to solve 

the two combinatorial optimisation problems. We 

first introduce domain independent general 

decompositions methods and corresponding 

solution algorithms. These methods include 

Danzig-Wolfe decomposition and column 

generation algorithm, variable fixing applied as 

decomposition method when solving a MIP. We 

can introduce some ideas of decomposition 

methods applied in solving a specific application 

problem, Nurse Scheduling Problems (NRP) s. 5.1 

Decomposition in NRPs 

     The idea of intelligently breaking up 

larger problems into smaller, easier to handle sub 

problems and then dealing with each sub problem 

in turn has been shown to work well on nurse 

rostering [52] and on other scheduling/timetabling 

problems [5]. In [7], constraints are categorised 

into shift constraints (which considered the 

number of staff and the skill category required for 

each shift), and nurse constraints (which 

considered the workload for each nurse including 

nurse preferences, consecutive shifts and the 

intervals between shifts). The nurse constraints 

were used to produce all feasible shift patterns of 

the whole scheduling period for each nurse, 

independently from shift constraints. The best 

combinations of these shift patterns are found 

using mathematical programming and meta-

heuristics [7]. 

In [18], all the feasible weekly shift patterns 

are pre-defined and associated with costs which 

are related with preferences, requests, and the 

number of successive days, etc. These shift 

patterns are then used to construct nurse rosters by 
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employing different heuristic decoders within a 

genetic algorithm to schedule both shifts and 

patterns for the best permutations of nurses. In 

[10], high quality pre-defined schedules are 

employed to construct cyclic schedules for a 

group of nurses with the same requirements. 

Based on these partial cyclic schedules, the rest of 

the shifts are assigned to the rest of the nurses 

with different requirements. The problems can 

thus be seen as being decomposed into cyclic and 

noncyclical parts. 

5. Conclusion 

This paper presents a review of 

optimisation techniques: CP, OR techniques and 

local Search. CP and Integer Programming are 

exact optimisation methods to combinatorial 

optimisation problems. Global constraints, 

together with their propagation algorithms, serve 

as building blocks for both the problem modelling 

and the problem solving. They can be well used to 

model and solve the complex and large set of 

constraints presented in real-world combinatorial 

optimisation problems. The OR techniques, e.g. 

Linear Programming, can perform optimality 

reasoning through the solution to the relaxed 

problem of the original one, and they can also be 

used to reduce the search space of the problem. 

The basic problem can be modelled and solved by 

Linear Programming or Quadratic Programming. 

These hybrid methods can seek good quality 

solutions, not necessary the optimal one, in a very 

limited computational time. At the same time, we 

can have the knowledge of the quality of this 

solution. 

References 

1. Apt, K.R., Principles of Constraint 

Programming. 2003: Cambridge 

University Press.    Rossi, F., P.v. Beek, 

and T. Walsh, Handbook of Constraint 

Programming. Foundations of Artificial 

Intelligence, ed. J.Hendler, H.Kitano, and 

B.Nebel. 2006: Elsevier. 

2. Wolsey, L.A. and G.L. Nemhauser, 

Integer and Combinatorial 

Optimization.1999: Wiley 

3. Reeves, C., Modern Heuristic Techniques 

for Combinatorial Problems. 1995,NY, 

USA: John Wiley&Sons, Inc. 

4. Rardin, R.L., Optimization in Operations 

Research. 1998: Prentice Hall, Inc.  

5. van Hoeve, W.J. and I. Katriel, Global 

Constraints, in Handbook of Constraint 

Programming, F. Rossi, P.v. Beek, and 

T.Walsh, Editors. 2006, Elsevier B.V. p. 

169-208 

6. Burke, E.K. and J.P. Newall, Solving 

examination tinetabling problems through 

adaptation of heuristic orderings. Annals 

of Operations Research, 2004. 129: p. 107-

134. 

7.  Ikegami, A. and A. Niwa, A Subproblem-

centric Model and Approach to theNurse 

Scheduling Problem. Mathematical 

Programming, 2003. 97(3): p. 517- 541.  

8. Gilmore, P.C. and R.E. Gomory, A linear 

programming approach to the cuttingstock 

problem. Operations Research, 1961. 9: p. 

849- 859. 

9. Brucker, P., et al., A decomposition, 

construction and post processing 

approach for a specific nurse rostering 



B.Satheesh kumar,  IJSRM volume3  issue4 April 2015 [www.ijsrm.in] Page 2588 

problem, in Multidisciplinary 

International Scheduling Conference. 

2005: New York, USA. p. 397-406. 

10. Junker, U., et al., A Framework for 

Constraint Programming Based Column 

Generation, in Principles and Practice of 

Constraint Programming. 1999. p. 261- 

275. 

11. Lubbecke, M.E. and J. Desrosiers, 

Selected topics in column generation. 

Operations Research, 2002. 53: p. 1007- 

1023.  


