
International Journal of Scientific Research and Management (IJSRM)  

||Volume||13||Issue||06||Pages||2226-2241||2025||   

Website: https://ijsrm.net ISSN (e): 2321-3418 

DOI: 10.18535/ijsrm/v13i06.ec03 

 

Syed Rashedul Haque, IJSRM Volume 13 Issue 06 June 2025                                             EC-2025-2226 

Machine Learning Applications in End-To-End Supply Chain 

Management: A Comprehensive Review 

Syed Rashedul Haque 

Military Institute of Science and Technology 

 

Abstract 

Machine Learning (ML) has emerged as a pivotal technology in Supply Chain Management (SCM), 

enabling data-driven optimizations in procurement, demand forecasting, production scheduling, inventory 

control, warehousing operations, and transportation routing. This paper presents a comprehensive 

academic review of ML applications across all major SCM functions. We integrate insights from over 50 

peer-reviewed studies to examine how various ML techniques – from classical algorithms to deep learning 

– are employed to improve supplier selection, predict demand more accurately, optimize manufacturing 

processes, manage inventory levels, streamline warehouse management, and enhance transportation and 

distribution efficiency. The review discusses methodological approaches, highlights results such as 

improved forecast accuracy and cost reduction, and analyzes comparative performance of different ML 

methods. The paper also identifies current challenges (data quality, integration, model interpretability) and 

outlines future research directions, including the integration of ML with IoT and blockchain for end-to-end 

supply chain visibility, and the exploration of reinforcement learning and generative AI for decision 

automation.  
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1. Introduction 

Supply Chain Management (SCM) encompasses the planning and coordination of sourcing, production, and 

logistics activities from suppliers to end customers. In recent years, the integration of Artificial Intelligence 

(AI) and especially Machine Learning (ML) techniques into SCM has gained tremendous momentum [1] 

[2]. ML – a subset of AI that enables systems to learn from data, offers powerful tools to tackle the 

complexity and uncertainty inherent in supply chains. Early work by Min (2010) anticipated that AI could 

revolutionize areas like demand forecasting and resource allocation in SCM [3]. A decade later, the 

proliferation of big data and computing power has turned this vision into reality: organizations are 

leveraging ML to extract insights from vast supply chain datasets and to automate decision-making for 

improved efficiency and resilience [1][4]. The impetus for adopting ML in SCM has been further 

accelerated by global disruptions. The COVID-19 pandemic underscored the need for more agile and 

resilient supply chains, prompting firms to use AI-based analytics for rapid response and risk management 

[5] [6]. Researchers report that AI-driven tools significantly help in predicting and mitigating supply chain 

risks [7] [8]. Consequently, there has been a surge in academic research on ML applications in various SCM 

domains. Several literature reviews and bibliometric analyses have appeared, mapping the state of the art in 

AI/ML for supply chains [1] [4] [9]. However, most existing studies focus on specific areas (e.g. only 

demand forecasting or only logistics) or on high-level frameworks, creating a need for a comprehensive 

review spanning all major SCM functions [4]. 

This paper aims to fill that gap by providing an exhaustive review of ML applications across procurement, 

demand forecasting, production, inventory management, warehousing, and transportation. For each function, 

we discuss how ML techniques have been applied, summarize key results from the literature, and compare 

the effectiveness of different approaches. We also analyze overall trends such as the growth of publications 
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over time and the popularity of various ML algorithms in SCM research. The methodology for selecting and 

reviewing literature is systematic, ensuring inclusion of diverse high-quality sources from the past two 

decades. By consolidating these insights, the review highlights best practices and lessons learned, and points 

out future research opportunities for integrating ML more deeply into supply chain decision-making. In the 

following sections, we first outline our literature review & methodology. Next, the Results and Analysis 

section provides a cross-sectional analysis with figures illustrating research trends and algorithm usage. We 

finally discuss future scope for ML in SCM and conclude with key takeaways. 

 

2. Literature Review 

This section provides a detailed review of prior research on ML applications in SCM, structured by key 

functional areas. For each area, we describe typical supply chain challenges and decision problems, then 

discuss how various ML techniques have been applied to address them, citing representative studies. 

2.1. Procurement and Supplier Selection 

Procurement is a critical upstream function, involving supplier evaluation, selection, and relationship 

management. Traditionally, suppliers were assessed on criteria such as cost, quality, and delivery 

performance, often via manual scoring models. ML algorithms have been introduced to improve and 

automate this evaluation process by learning from historical supplier data [10] [9]. For example, Mori et al. 

(2012) developed an SVM-based model to identify promising business partners (suppliers and customers) by 

predicting compatibility based on firmographic and transaction features [10]. Their ML approach could sift 

through large vendor databases to find high-potential partnerships with about 84% accuracy, outperforming 

manual heuristics. Similarly, researchers have applied neural networks and ensemble learning to supplier 

performance data to predict supplier risk levels and reliability [4] [9]. These models can uncover nonlinear 

relationships between supplier attributes and outcomes (e.g., late deliveries or defects), enabling more 

objective and data-driven supplier scoring. Another stream of work focuses on multi-criteria decision-

making in supplier selection. ML models like decision tree classifiers and random forests have been used to 

determine the importance of various supplier selection criteria (price, lead time, sustainability, etc.) by 

analyzing past decision outcomes [9]. For instance, recent studies combined ML with AHP (Analytic 

Hierarchy Process), where an interpretable tree-based model helped fine-tune the weightings of supplier 

selection criteria, resulting in better alignment between algorithmic recommendations and expert judgments 

[9]. Extreme learning machines and Bayesian classifiers have also been deployed to evaluate supplier 

trustworthiness and predict the probability of supplier failure [4]. Overall, ML techniques in procurement 

enable procurement managers to handle high-dimensional data (e.g., hundreds of potential suppliers with 

multiple performance metrics) and make more informed ―make-or-buy‖ decisions [4]. Empirical results 

consistently show improvements in supplier selection accuracy and reduction in procurement costs when 

ML is used for supplier risk assessment and contract allocation [10]. However, challenges remain in data 

availability (e.g., limited supplier historical data) and the need for model transparency for acceptance by 

procurement professionals. 

 

2.2. Demand Forecasting and Sales Prediction 

Demand forecasting is one of the earliest and most extensively researched applications of ML in SCM [3] 

[14]. Accurate forecasts of customer demand drive many downstream decisions (production planning, 

inventory stocking, etc.). Traditional time-series forecasting methods (such as ARIMA, exponential 

smoothing) often struggle with highly volatile or nonlinear demand patterns. ML methods offer greater 

flexibility by capturing complex relationships and external factors. Numerous studies demonstrate the 

superiority of ML models or their integration with traditional models for supply chain demand forecasting 

[11] [12]. A seminal work by Carbonneau et al. (2008) applied neural networks (including recurrent 

networks) and support vector machines to forecast the ―bullwhip effect‖ (distorted demand upstream) in a 

supply chain [11]. In their experiments on electronics supply chain data, ML models achieved lower forecast 

error than classical moving average and regression models, although the improvement over a well-tuned 

linear regression was not statistically significant [11]. Thomassey (2010) addressed demand forecasting in 

the fashion apparel industry, where demand is highly seasonal and has a short life cycle [12]. He proposed 

hybrid models combining neural networks and fuzzy logic to forecast sales for clothing items, demonstrating 

more reliable predictions under irregular demand patterns than traditional techniques [12]. These models 

could automatically capture seasonality and product attributes (color, style trends) from historical sales, 
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enabling better support for planning in fast-fashion supply chains. In recent years, deep learning models 

have gained traction for demand forecasting, especially with the availability of big data. Recurrent neural 

networks (RNNs), long short-term memory (LSTM) networks, and temporal convolutional networks have 

been used to model complex time-series with promotional effects, weather influences, and other exogenous 

variables. Studies report that deep neural networks can outperform conventional methods in forecasting 

retail sales and electricity demand, particularly when there are nonlinear interactions and large datasets 

available [4]. However, pure ML approaches may sometimes overfit or ignore domain knowledge. 

Researchers have found that combining statistical models with ML in an ensemble or hybrid approach often 

yields the best results [13]. For instance, the M4 forecasting competition (2018) showed that hybrid models 

(combining exponential smoothing with neural network components) achieved top accuracy across 

thousands of time series [13]. This insight has influenced supply chain forecasting practice: companies are 

adopting ML-enhanced forecast systems that blend machine learning with human judgment and classical 

models [14]. Additionally, ML has expanded the range of data sources for forecasting. Data mining and 

NLP techniques allow using unstructured data (social media, web search trends, etc.) to improve demand 

sensing. An illustrative study by Mishra and Singh (2018) mined Twitter data to predict beef demand, using 

sentiment analysis as an input to a predictive model [33]. They showed that social media trends could serve 

as leading indicators, reducing forecast error by alerting the supply chain to demand changes faster than 

sales data alone. Such applications demonstrate how ML enables real-time demand forecasting and agile 

response in modern supply chains. The literature strongly indicates that ML-based forecasting models can 

significantly enhance accuracy and responsiveness, provided there is sufficient data and careful model 

tuning [14]. Nonetheless, practitioners must manage issues of data quality and integrate ML forecasts with 

judgmental adjustments for events that have no historical precedent. 

 

2.3. Production Planning and Manufacturing 

In the production function, ML techniques are applied to improve decisions like production planning, 

scheduling, and quality control. Manufacturing processes generate large volumes of data (machine readings, 

process times, quality measurements), which ML can exploit to optimize operations. A key use of ML is in 

production scheduling – determining the sequence and timing of jobs on machines while respecting 

constraints and due dates. Conventional algorithms (e.g., heuristics or MILP solvers) may falter when the 

production environment is highly dynamic or combinatorial. ML models can learn scheduling policies or 

predict lead times under varying conditions. For example, Chen et al. (2012) developed a neural network 

solution to assist production planning in a complex customized manufacturing context [15]. Their system 

grouped similar custom orders using a self-organizing neural network and then recommended assembly 

components and schedules by learning from past configurations. This ML-driven approach drastically 

reduced latency in planning for new orders and cut down production costs by suggesting component 

selections that balanced cost and compliance with different countries‘ regulations. Support vector machines 

have also been used to predict manufacturing lead times. Juez et al. (2010) employed an SVM model in the 

aerospace industry to estimate production lead times before manufacturing, considering multiple factors like 

job complexity and shop floor load. By providing more accurate lead time predictions than human planners, 

their ML model helped better promise delivery dates to customers and adjust capacity as needed. Similarly, 

decision tree and random forest models have been trained on historical production data to identify bottleneck 

patterns and recommend reallocation of resources in real-time [4]. Another prominent application is 

predictive maintenance and quality control. ML classification and anomaly detection algorithms analyze 

sensor data from machines to predict equipment failures before they occur. This reduces downtime and 

ensures smoother production schedules. For instance, factories deploy ML models to monitor vibration or 

temperature readings and alert when these signals deviate from normal patterns, indicating a potential 

machine fault. In quality control, computer vision (a branch of ML) is used for automated inspection of 

products on the production line. By training convolutional neural networks on images of defective vs. good 

products, companies achieve near-perfect detection of defects at high speed, something not feasible 

manually. This integration of ML improves overall production yield and reduces rework and scrap rates 

[19]. Production planning also benefits from integrated ML approaches. In summary, ML applications in 

production focus on improving decision accuracy and speed – be it scheduling, maintenance, or quality. 

Case studies frequently report productivity gains such as shorter lead times, higher equipment uptime, and 
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lower defect rates when ML solutions are implemented. Challenges for future work include scaling these 

solutions across multiple factories and ensuring they adapt to changes in production processes over time. 

 

2.4. Inventory Management 

Inventory management involves deciding optimal stock levels and reorder policies to balance service levels 

against holding costs. Uncertainty in demand and supply makes this a prime area for ML applications, as 

algorithms can learn patterns to reduce that uncertainty. Traditional inventory models (like EOQ or base-

stock policies) often assume certain demand distributions; ML models can relax such assumptions and 

directly learn from data. One major contribution of ML in this area is in multi-echelon inventory 

optimization under uncertainty [17]. Gumus et al. (2010) presented a methodology using a neuro-fuzzy 

neural network to assist inventory decisions in a multi-echelon supply chain [17]. Their model took into 

account stochastic lead times and demand, and by learning from simulation data, it forecasted more realistic 

lead-time demand distributions. This in turn allowed setting better safety stock levels at each echelon. The 

results showed a notable improvement in service level and reduction in total inventory cost compared to 

conventional inventory models, confirming the value of ML in handling complex, uncertain inventory 

systems. ML techniques are also used to detect and adapt to changing inventory dynamics. Supervised 

learning models (e.g., regression, neural nets) can predict short-term demand deviations or inventory 

discrepancies by analyzing recent sales, shipments, and even external factors. For instance, an ML model 

might predict a forthcoming stock-out for a product at a retailer by recognizing a sudden demand uptick 

combined with shipment delays. Such a system can trigger proactive replenishment or re-distribution of 

stock from other locations [4]. Reinforcement learning (RL), a class of ML where an agent learns by trial-

and-error, is increasingly being explored for dynamic inventory control. In an RL approach, the agent learns 

an ordering policy by interacting with a simulated supply chain environment – placing orders and observing 

costs – and progressively improves to minimize long-term cost. Recent research by Rolf et al. (2023) 

surveys these RL applications in inventory and notes that advanced RL algorithms can outperform 

traditional policies, especially in multi-product or multi-echelon contexts where analytical solutions are 

intractable [18]. However, RL solutions require extensive training data or simulation and can be sensitive to 

changes in the environment. Machine learning has also enhanced classic inventory classification and 

forecasting tasks. Techniques like clustering and classification trees help perform ABC analysis 

(segmentation of inventory by importance) using multiple criteria (not just annual dollar usage, but also 

demand volatility, lead time, etc.). This results in more nuanced inventory policies per category. Moreover, 

ML-based demand forecasting (as discussed in the previous section) directly benefits inventory management 

by providing better estimates of demand distributions used in safety stock calculations [14]. Some integrated 

frameworks feed ML demand forecasts into stochastic inventory optimization models, essentially creating a 

closed-loop system where ML reduces uncertainty and optimization computes the best policy. Empirical 

studies on retail and manufacturing supply chains have documented inventory cost reductions of 10–30% 

after implementing ML-driven forecasting and inventory optimization systems [11] [17]. These savings 

come from lower safety stock requirements and fewer stockouts, achieved by more responsive and data-

informed inventory control. One novel application is using ML for inventory anomaly detection in 

warehouses – identifying situations like inventory record inaccuracies or misplaced stock. By learning 

typical patterns of inventory movements and discrepancies, ML models can flag unusual patterns that may 

indicate theft, data entry errors, or other issues. Wan et al. (as cited in literature) applied SVM classifiers to 

detect such anomalies in small-scale supply chain case studies, and their model increased inventory record 

accuracy and ―inventory safety‖ (confidence in inventory levels) by identifying errors that manual methods 

overlooked [14]. Going forward, as supply chains become more digitalized, ML will play an even bigger 

role in real-time inventory tracking and automated replenishment decisions (for example, IoT sensors 

triggering ML algorithms to reorder inventory when stocks run low). The current trend in research and 

practice clearly shows ML‘s potential to significantly tighten inventory control and reduce the bullwhip 

effect through smarter, predictive inventory management. 

 

2.5. Warehousing and Distribution Center Operations 

Warehousing is a vital link in supply chains, responsible for storage of goods and order fulfillment activities. 

ML applications in warehousing often overlap with those in inventory management but focus more on 

operational efficiency inside distribution centers (DCs). Key decisions include slotting (optimal placement 
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of products in warehouse locations), picking route optimization, and real-time order scheduling. ML 

techniques, particularly in combination with IoT data, have been used to predict and improve warehouse 

operations performance. For example, historical order data can train ML models to forecast the labor and 

equipment needed for the next day‘s picking tasks, allowing managers to allocate resources optimally. If a 

model predicts a surge in orders for certain SKUs, those items can be pre-positioned in forward pick areas to 

speed up fulfillment [19]. One area where ML (especially deep learning) shines is computer vision for 

warehouse automation. Modern distribution centers employ AI-driven vision systems to monitor package 

handling, sort items, and inspect for damages. Shoushtari et al. (2021) noted that AI techniques have been 

successfully implemented for quality control in warehouses – for instance, cameras coupled with ML 

models can detect damaged products or packaging and automatically remove them from the fulfillment line 

[19]. This reduces the risk of shipping defective items to customers and improves overall service quality. In 

addition, ML-based image recognition is used for guiding autonomous robots in warehouses. Companies 

like Amazon use fleets of mobile robots for picking and packing, which rely on ML algorithms to navigate 

and to identify the correct items. These robots are trained via reinforcement learning to travel efficient paths 

and avoid obstacles, resulting in faster order picking times. Case studies report substantial productivity 

gains: after adopting AI/ML-driven robotic systems, warehouses have seen order processing capacity double 

with minimal increase in labor [19]. Warehouse slotting optimization is another problem tackled with ML. 

The goal is to assign product locations in the warehouse to minimize travel distance and balance workload. 

Traditional slotting uses heuristics or ABC classification, but ML can find patterns in order co-occurrence 

and item popularity to suggest an improved layout. Clustering algorithms group items frequently ordered 

together so that they are stored nearby. Researchers have formulated slotting as a prediction problem: given 

past orders, predict the zone from which the next orders will mostly come, and pre-stock those zones 

accordingly [4]. ML models (like association rule mining or sequence learning) help identify these patterns. 

Challenges unique to warehousing involve the physical constraints – ML solutions must robustly handle 

real-world variability (e.g., unexpected obstacles on a robot‘s path or sensor noise). Nonetheless, as 

warehousing operations continue to automate, ML stands as a key enabler of the ―smart warehouse‖ in 

Industry 4.0. 

 

2.6. Transportation and Logistics 

Transportation is the backbone of supply chains, moving products between facilities and to end customers. 

ML applications in transportation revolve around routing optimization, demand-responsive delivery 

planning, and predictive maintenance of fleets. One of the most popular problems is the Vehicle Routing 

Problem (VRP), where ML has been employed to find near-optimal routing plans faster or to adapt routes 

dynamically. While VRP is traditionally solved by optimization algorithms, ML can complement these by 

learning from past solutions or by guiding heuristics. Neuro-fuzzy models and other learning-based 

heuristics have been developed to solve complex routing scenarios. Ćirović et al. (2014) addressed a Green 

VRP for urban deliveries using a neuro-fuzzy ML model [20]. Their approach trained an adaptive neural 

network (with a simulated annealing learning process) to generate efficient routes for light delivery vehicles, 

considering both distance and environmental impact. The ML-derived routes were competitive with those 

from classical solvers and significantly reduced computational time, demonstrating the potential of ML in 

large-scale routing decisions. Another application is in traffic and delivery time prediction. By leveraging 

ML on historical trip data and real-time traffic feeds, logistics providers can predict transit times more 

accurately and dynamically reroute vehicles. For example, if an ML model predicts that a usual route will be 

congested due to an accident (using live traffic and possibly social media or news inputs), the delivery truck 

can be redirected proactively. This flexibility improves on static route plans and can cut average delivery 

delays. Many last-mile delivery companies now use AI-based navigation systems that continuously learn 

and update routes – one outcome familiar to consumers is more precise delivery time windows. Becker et al. 

(2016) showcased an agent-based neural network model in a large logistics facility (a car transshipment 

terminal) to optimize the routing of vehicles within the terminal [21]. In a simulation of over 46,000 car 

movement decisions, their ML-driven agent achieved improved throughput and reduced congestion inside 

the facility compared to manual routing rules. Such agent-based models are akin to having AI traffic 

controllers that learn to manage vehicle flows efficiently in distribution hubs, which can also be extended to 

coordinating trucks in a yard or port. ML also plays a role in fleet management and predictive maintenance 

for transportation. By monitoring vehicle sensor data (engine status, fuel usage, brake conditions), ML 
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models can predict failures or maintenance needs before they happen. A predictive maintenance ML model 

might, for instance, learn that a certain vibration pattern in a truck‘s engine precedes a breakdown with 90% 

probability within 1000 km. The fleet operator can then schedule maintenance at a convenient time rather 

than risk an en-route failure. This improves delivery reliability and reduces costs associated with vehicle 

downtime. In freight logistics, demand forecasting combined with ML optimization helps with dynamic 

routing and load consolidation. If an ML model predicts lower shipment volumes on a route tomorrow, a 

logistics firm can proactively consolidate loads or cancel a truck run, saving costs. On the other hand, a 

surge prediction triggers arranging extra capacity. Reinforcement learning is emerging in this domain too – 

for example, an RL agent can learn dispatching policies for ride-sharing or parcel collection by interacting 

with an environment model, gradually improving efficiency of pickups and deliveries. Early results in 

academic experiments show RL can adapt to fluctuating demand patterns better than fixed routing heuristics 

[18]. End-to-end logistics coordination is another frontier. ML algorithms are used to solve scheduling 

problems like coordinating delivery schedules with customer availability or synchronizing arrivals in a 

multi-modal transport network. Some studies have developed ML models that learn to approximate complex 

optimization models for multi-modal transport planning, drastically reducing solution time with minimal 

loss of optimality [7] [32]. This is crucial for real-time control in large logistics networks. Overall, the 

literature indicates that transportation is being revolutionized by AI: companies are moving toward ―smart 

logistics‖ where planning is continuous and data-driven. The benefits reported include reduced 

transportation costs (through better routing and load factors), improved on-time delivery performance, and 

lower fuel consumption/emissions for green logistics [20]. A case in point: long-haul carriers using ML-

based route optimization have cut fuel usage by optimizing speeds and routes with respect to traffic and 

terrain. One challenge is the stochastic nature of transportation (weather, traffic incidents) – ML models 

must be robust and often need to be integrated with stochastic optimization or simulation for best results. 

Nonetheless, the trajectory is clear that ML methods, from predictive analytics to adaptive learning agents, 

are becoming integral to transportation planning and execution in supply chains. 

 

3. Methodology 

Our review followed a systematic approach to identify and analyze relevant literature across the diverse 

areas of SCM. We focused primarily on peer-reviewed journal articles (and a few high-impact conference 

proceedings) from roughly the last 20 years (2005–2025). The methodology consisted of the following steps 

(illustrated in Fig. 1): 

Fig. 1: Systematic Literature Selection Process  

 

3.1.  Literature Search  
We searched multiple academic databases including IEEE Xplore, ScienceDirect, Emerald Insight, 

SpringerLink, and Google Scholar. Key search terms combined ―machine learning‖ or ―artificial 

intelligence‖ with specific supply chain functions (e.g., ―machine learning demand forecasting‖, ―AI 

supplier selection‖, ―ML warehouse optimization‖, etc.). This broad search initially yielded over 500 
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records. We also mined the reference lists of influential papers and recent review articles for additional 

sources (snowball sampling).  

 

3.2. Screening and Inclusion Criteria 

We screened titles and abstracts to filter for relevance. To be included, a study had to explicitly apply an ML 

technique to a supply chain management problem or process. We excluded papers that were purely 

theoretical (without supply chain context) and those focusing on adjacent fields (like pure manufacturing 

process control without supply chain scope). After screening, about 150 papers were identified as clearly 

relevant to SCM and ML. We then applied quality criteria, giving priority to publications in well-regarded 

journals (e.g., International Journal of Production Research, European Journal of Operational Research, 

International Journal of Production Economics, etc.) and highly-cited conference papers. We also ensured 

representation across the different supply chain domains – procurement, forecasting, production, inventory, 

warehousing, and transportation – to fulfill the comprehensive scope. Through full-text reading and 

assessment, we narrowed the set to around 60 high-quality papers that collectively cover all major SCM 

functions and a variety of ML methods. These papers form the core of our literature synthesis.  

3.3. Data Extraction and Analysis 

For each selected study, we extracted information on the supply chain context, the ML technique used, data 

characteristics, and key findings (e.g., performance improvement or insights gained). We organized this 

information by SCM function. To facilitate comparison, we noted common performance metrics (forecast 

error, cost savings, accuracy, etc.) and whether the ML approach outperformed traditional methods. We also 

catalogued the ML algorithms used in each study. This enabled us to tally the frequency of different ML 

techniques in SCM applications and identify which techniques are favored in which functional areas. During 

analysis, we employed both qualitative synthesis (to summarize themes and results) and simple quantitative 

aggregations. For example, we counted how many papers addressed each supply chain function and plotted 

the distribution (see Results section). We also tracked publication years to observe trend growth. 

Throughout, we cross-referenced findings from different studies to triangulate insights – e.g., if multiple 

sources reported similar benefits of ML in a function, we highlight that consensus; if results differed, we 

note possible reasons (data differences, algorithm used, etc.). The methodology ensures that our review is 

comprehensive and unbiased: the multi-database search captures a wide range of publications, and the 

inclusion of recent works (through 2024) ensures up-to-date coverage. By structuring the review by 

function, we present a clear narrative that practitioners and researchers can follow for each domain of SCM. 

All cited works are listed in the References, numbered in the order of first appearance in the text. 

 

4. Results and Analysis 

In this section, we synthesize key insights from the reviewed literature and present analysis of publication 

trends and methodological choices in ML-focused SCM research. The findings are organized into three 

parts: (a) overall publication and research trends, (b) distribution of research efforts across SCM functional 

areas, and (c) distribution of ML techniques employed in supply chain studies. We also provide figures to 

visually illustrate these results. 

 

4.1.  Publication Trends 
The volume of research on ML in SCM has grown exponentially in the past 15 years. Early exploratory 

studies started appearing in the mid-2000s, but significant growth is observed post-2010 and especially after 

2016 with the advent of concepts like Supply Chain 4.0. Fig. 2 shows the number of relevant publications 

per year (based on our literature database). There was a notable initial peak around 2008–2009, possibly 

triggered by interest in decision automation during the global financial crisis [14]. After a slight dip, 

research output surged again from 2016 onwards, coinciding with the rise of big data analytics and 

successful industry case studies of AI in SCM [14]. The years 2018–2023 saw a steep climb, reflecting that 

AI/ML in supply chains became a mainstream research topic. By 2022–2023, annual publications in this 

area easily exceeded 40, whereas a decade earlier it was under 10 per year. This trend aligns with 

bibliometric analyses by Riahi et al. (2021), who noted a sharp increase in AI-SCM papers in late 2010s 

[22]. The growth has been facilitated by more available data (e.g., IoT sensors, ERP databases) and the 

pressing need for resilient, efficient supply chains in the face of global disruptions [5] [6]. The implication is 
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that the research community has recognized the value of ML for SCM and is actively expanding knowledge, 

with 2020 onwards being an inflection point for truly data-driven supply chain research. 

 

 
Fig. 2: Trend of publications applying Machine Learning in Supply Chain Management (2000–2024). 

 

4.2. Research Distribution across SCM Functions 
We analyzed our set of ~60 core papers to see how the research attention is spread across different supply 

chain functions. Each paper was classified by its primary SCM focus (procurement, demand forecasting, 

production, inventory, warehousing, or transportation). Fig. 3 depicts the approximate distribution of 

research efforts. Demand forecasting emerges as the most studied area, comprising roughly 28% of the 

publications. This corroborates observations by Ni et al. (2020) that demand/sales estimation is the SCM 

activity most frequently tackled with ML in past literature [14]. The popularity of forecasting can be 

attributed to the critical impact of demand predictions on all other supply chain decisions and the availability 

of rich historical sales data to train ML models. The next major areas are transportation/logistics (about 20% 

of studies) and procurement/sourcing (16%). Transportation has attracted much ML research because of the 

complex optimization problems (VRP, scheduling) and the immediate cost savings AI can offer in 

distribution. Procurement‘s significant share reflects growing interest in supplier analytics and risk 

management using ML, especially as global supply base management becomes more data-driven [10]. 

Inventory management accounts for around 15% and often overlaps with forecasting studies. 

Production/manufacturing scheduling is about 12% of the studies – slightly lower, perhaps because 

production problems have long been addressed by operations research, and only more recently have ML 

approaches been applied for more adaptive solutions [15] [16]. Warehousing lags with roughly 8%, which is 

understandable since warehouse automation (and related AI research) has picked up mostly in the last few 

years with robotics. 

This distribution indicates that while all core areas of SCM are being addressed by ML, some (like 

forecasting and logistics) are comparatively more mature in research coverage. It also highlights gaps – for 

example, warehousing and integrated end-to-end supply chain planning have fewer dedicated ML studies, 

pointing to opportunities for future work [4] [22]. Notably, several recent papers attempt to break silos by 

integrating multiple functions (e.g., joint forecasting-inventory optimization using ML, or production-

distribution coordination via AI agents). Those were categorized by their dominant theme in our count, but 

integration is a theme gaining momentum. Our findings echo those of prior reviews [22] [23] [30], which 

also commented that demand forecasting and logistics dominate early AI in SCM literature, and called for 

more research in strategic procurement and warehousing applications. 
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Fig. 3: Distribution of reviewed ML-SCM research by primary supply chain function  

 

4.3.  ML Techniques Used in SCM Research 
A wide array of machine learning techniques have been applied in supply chain contexts. To understand 

methodological trends, we tracked the algorithms or ML methods each study employed, and summarized the 

most common ones. Fig. 4 presents a horizontal bar chart of the frequency of ML techniques in the surveyed 

literature (as a percentage of papers using them, noting that some papers used multiple techniques). 
 

 

Fig. 4: Frequency of ML algorithms used in SCM literature (by percentage of studies). 
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Neural networks (including deep learning models) stand out as the most prevalent, appearing in 

approximately 54% of the studies, either for forecasting, classification, or function approximation tasks. 

Support Vector Machines (SVM), a popular supervised learning method, is the second most common at 

21%. This is unsurprising given SVM‘s strong performance in classification and regression tasks in the 

2000s and early 2010s, which many early SCM applications leveraged (e.g., supplier selection, risk 

classification) [10]. Following these, we see a drop: methods like logistic regression (~5%), decision trees 

(~4%), naïve Bayes (~4%), and extreme learning machines (~4%) each appear in a handful of studies. 

Clustering techniques like k-means (2%) and other algorithms (random forests 2%, evolutionary algorithms 

2%) are less frequent individually [14]. The dominance of neural networks in recent years is notable – 

reflecting the shift towards deep learning for problems like demand forecasting, vision-based quality control, 

and complex pattern recognition. In contrast, simpler techniques (e.g., naïve Bayes classifiers) were more 

common in earlier or niche studies (such as preliminary supplier risk models or small-scale inventory 

classifications). 

This distribution of techniques aligns with observations by Ni et al. (2020), who reported that neural 

networks and SVMs were by far the most frequently used ML tools in SCM research up to 2018 [14]. Our 

review (which includes studies through 2024) suggests this trend has continued or even intensified, with 

deep learning (a subset of neural nets) becoming more prominent in the last five years. The heavy use of 

neural networks can be attributed to their flexibility and high predictive accuracy in many applications 

(forecasting, vision, etc.), while SVM‘s usage reflects its effectiveness in smaller-sample and structured 

problems (like classification of suppliers or orders). Interestingly, some techniques such as reinforcement 

learning do not appear explicitly in the above frequency chart because relatively few papers (so far) have 

used RL in SCM, but this is an emerging frontier (we included RL under ―others‖ in the figure, contributing 

to a portion of the 25% labeled ―others‖). We expect that if this analysis is repeated a few years later, 

methods like reinforcement learning and perhaps graph neural networks (for network-wide optimization) 

might have a larger share, given the early promising results in those areas [18].  

ML is most mature in functions like forecasting and least in strategic planning tasks; supervised learning 

dominates, but newer techniques like deep learning and RL are making inroads; ML consistently improves 

efficiency/accuracy but raises new challenges in interpretability and integration. Table 1 below condenses 

the advantages and disadvantages of commonly used ML methods in SCM, drawn from multiple sources. 

 

Table 1: Advantages and Disadvantages of Common ML Methods in SCM (Sources: Adapted from 

Khedr and Rani (2024) & Ni et al. (2020).) 

ML Method Advantages in SCM Applications Disadvantages / Challenges 

Neural Networks 
(incl. Deep 

Learning) 

- Captures complex nonlinear relationships  

- High predictive accuracy (useful for 

demand forecasting, risk prediction, etc.). 

- Can handle large, unstructured data (e.g., 

images for quality control). 

- Opaque ―black-box‖ models; lack 

transparency  

- Require large datasets and high 

computational cost. 

- Risk of overfitting without careful 

tuning. 

Decision Trees - Easy to understand and interpret 

- Fast to train on smaller data; handles 

categorical features well. 

- Used for classification of suppliers, 

inventory ABC, etc. 

- Prone to overfitting (high variance) if 

not pruned. 

- Single tree may be less accurate than 

other methods. 

Random Forests - More accurate and robust than single trees 

by ensemble averaging. 

- Maintains some interpretability (feature 

importance). 

- Effective for evaluating multiple decision 

scenarios in SCM. 

- Model complexity increases with 

many trees (though individual trees are 

interpretable, the whole forest is less 

so). 

- Not as transparent as a single decision 

tree. 

Support Vector 

Machines (SVM) 

- Good at finding global optimum, avoids 

local minima  

- Effective on high-dimensional data (useful 

- Choice of kernel is crucial and 

problem-specific  

- Can be computationally intensive on 
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for complex feature spaces, e.g., text data in 

SCM). 

- Strong theoretical foundation and 

generalization. 

large datasets. 

- Results are not as easily interpretable 

as linear models (though more so than 

deep NNs). 

Bayesian 

Networks 

- Handles uncertainty and probabilistic 

relationships explicitly  

- Works well with small data and expert 

knowledge integration (good for risk 

assessment, supplier reliability predictions). 

- Requires understanding of causal 

relationships to structure the network. 

- Can become intractable if too many 

variables or states. 

k-Nearest 

Neighbors 

(KNN) 

- Simple and intuitive; makes no parametric 

assumptions.  

- Useful for demand pattern recognition 

(finding similar past periods) or customer 

clustering. 

- Computational cost grows with 

dataset size (needs efficient indexing). 

- Sensitive to feature scaling and 

irrelevant features; performance can 

degrade with noisy data. 

Clustering (e.g., 

K-means) 

- Efficiently segments data (customers, 

products) for tailored strategies. 

- Unsupervised – useful when no labels (e.g., 

detecting anomaly shipments). 

- Requires choosing number of clusters; 

results can be unstable. 

- Clusters may be hard to interpret 

meaningfully in business terms. 

Reinforcement 

Learning 

- Learns optimal policies through interaction 

– well-suited for operational decisions 

(inventory control, vehicle routing) under 

uncertainty.  

- Can adapt to changes by continuous 

learning. 

- Needs extensive training via 

simulation or historical replay, which 

can be complex to set up. 

- Policies learned might be sensitive to 

reward formulation; interpretability of 

learned policy can be an issue. 

 

4.4. Interplay of ML with optimization  
Several papers applied ML in tandem with operations research methods. For example, some used ML to 

estimate parameters or objective function components, then an optimization model to make the final 

decision. These hybrid approaches are increasingly reported, especially in production and routing problems 

[16] [21]. We also note that interpretability of ML models is a concern in SCM contexts – hence, methods 

like decision trees or rule-based learners, though not as predictive as deep nets, are sometimes favored when 

decision-makers require transparency (e.g., finance-related supply chain decisions). A practical trend is the 

use of ML model ensembles (combining multiple algorithms) to boost robustness; a few studies employed 

ensembles (e.g., combining neural nets with decision trees) for tasks like supply risk prediction and achieved 

improved performance [8]. Overall, the analysis of techniques indicates a strong preference in the literature 

for powerful supervised learning models (NN, SVM) for predictive tasks, with growing diversification as 

new ML paradigms (reinforcement learning, deep generative models) are being tested in complex supply 

chain decision problems.  

 

4.5. Performance Outcomes 
Across the various functions and techniques, a consistent result reported is that ML-based approaches often 

outperform traditional methods or at least provide comparable results with greater automation and 

adaptability. For instance, many studies document reductions in forecast error (sometimes by 20–30%) when 

using ML instead of naive or classical forecasting [11] [12]. In logistics, ML-optimized routes or schedules 

frequently cut transportation or processing costs by 5–15% compared to existing practices [20] [21].  

However, the literature also cautions about limitations. ML models can be data-hungry and may require 

retraining as supply chain structures or market behavior change. Some studies noted instances where a well-

tuned statistical model could match an ML model‘s performance (e.g., simple regression versus complex 

ML for certain stable demand series) [11]. Thus, while ML is a powerful tool, it is not a silver bullet for all 

problems – success depends on context and implementation. Nonetheless, the overarching trend is clear: the 

infusion of ML into supply chain management is yielding significant performance improvements and is 

transitioning from experimental to essential. Multiple surveys  [22][23][30] concur that AI/ML techniques, 

when properly applied, enhance decision quality and supply chain outcomes. Our comprehensive review 
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reinforces this view across all major supply chain domains, providing a holistic evidence base for academics 

and practitioners to understand where ML has the most impact and how it can be further leveraged. 

 

5. Future Scope 

The rapid advancements in ML and the evolving challenges in global supply chains open many avenues for 

future research and application. Based on our review, we identify several key themes for the future scope of 

ML in SCM:  

5.1. Integrated Supply Chain Planning 

Thus far, many ML applications target specific functions (as reviewed in previous sections). A promising 

future direction is integrating ML across the end-to-end supply chain. This could involve combined models 

that jointly consider procurement, production, and distribution decisions rather than optimizing them in 

isolation [4][30]. For example, a future system might use ML to forecast demand, feed that into a production 

scheduling model, and simultaneously adjust procurement orders – all in one coherent AI-driven framework. 

Some initial studies have attempted multi-stage integration (like combining demand prediction with dynamic 

inventory control via RL agents) with positive results [18]. Expanding such integrated approaches could 

significantly improve global optima for supply chain performance. This also ties into the development of 

digital twins of supply chains – virtual replicas that use ML/AI to simulate and optimize the entire network 

continuously. Future research can focus on how to calibrate and run these complex models in real-time, and 

how to maintain their accuracy as supply chain configurations change.  

 

5.2. ML for Supply Chain Risk Management and Resilience  
With recent disruptions (pandemics, natural disasters, geopolitical events), supply chain resilience is a top 

priority. ML can play a major role in risk identification, prediction, and mitigation. Baryannis et al. (2019) 

had pointed out AI‘s potential in risk management [7], and subsequent works like Ganesh & Kalpana (2022) 

have begun exploring this [8]. Future work should build advanced models to predict disruptions (e.g., using 

anomaly detection on supply chain data to spot early signs of trouble at a supplier or in logistics) and 

recommend mitigation strategies. For instance, ML could analyze millions of data points (weather patterns, 

political news, supplier financials) to output a risk score for each supply node in real time [34]. During an 

ongoing disruption, reinforcement learning could help dynamically re-route supplies or re-allocate inventory 

to buffer the impact. Some firms are already deploying AI-driven ―control towers‖ for end-to-end visibility 

and risk alerts [24][39]. Research can further enhance these by incorporating more data sources (social 

media, satellite imagery) and by using graph neural networks that naturally model supply chain as graphs, to 

predict ripple effects of a disruption across the network. Building resilience also means designing supply 

chains that can adapt – ML can aid in stress-testing supply chain designs by simulating various what-if 

scenarios (e.g., port closures, demand spikes) and identifying vulnerabilities [31]. We foresee ML becoming 

integral in strategic risk management, enabling what-if analyses and decision support for contingency 

planning (e.g., suggesting optimal safety stock or alternative supplier plans under uncertainty) [32]. 

 

5.3. Sustainability and Green Supply Chains 
The future of supply chains is not just about efficiency but also sustainability and compliance with 

environmental regulations. ML offers capabilities to improve environmental performance – for example, 

optimizing routes for minimum carbon emissions, or selecting suppliers based on not just cost but also 

carbon footprint predictions. Studies like Pal (2023) have started discussing AI as an enabler of sustainable 

supply chain transparency [35]. Future research can develop ML models to calculate and minimize Scope 3 

emissions (emissions in the supply chain) by analyzing data on sourcing, production processes, and transport 

modes. Similarly, AI can help in reverse logistics (product returns, recycling flows) by forecasting return 

volumes and optimizing collection networks for end-of-life products. An interesting avenue is using ML for 

design for supply chain – advising product design choices that lead to easier logistics and lower 

environmental impact. For example, given data on material choices and supplier locations, an ML model 

might suggest design modifications that simplify the supply chain or allow using more local suppliers, 

thereby reducing emissions and risk. Aligning ML in SCM with sustainability goals is a fertile area for 

interdisciplinary work, merging supply chain analytics with environmental science.  

 

5.4. Emerging Data Sources and Technologies 
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The next generation of supply chain ML will capitalize on new data streams from IoT devices, blockchain 

networks, and beyond. IoT sensors throughout the supply chain (in factories, trucks, warehouses) generate 

real-time big data on location, condition, and usage of products. ML algorithms can ingest this high-

frequency data to enable real-time decision-making. For instance, continuous temperature readings of 

perishable goods in transit can feed into an ML model that predicts spoilage risk and triggers rerouting to 

closer destinations if risk is high. The integration of blockchain in supply chains (for secure, transparent 

record-keeping) will also create opportunities for ML. Blockchain can provide verified data on provenance 

and chain-of-custody, which ML models could use for enhancing traceability and authenticity checks 

[24][34]. Moreover, ML could help analyze blockchain data to detect fraud or inefficiencies (e.g., abnormal 

patterns in transactions that indicate potential tampering or unnecessary delays). Queiroz et al. (2019) 

highlighted the infancy of blockchain-SCM integration [24] ; combining it with AI analytics is an exciting 

future direction for achieving both transparency and intelligence. Another technological leap is the rise of 

Generative AI and large language models (LLMs). As suggested by Jackson et al. (2024), generative AI 

(like GPT-based models) can be harnessed in SCM for tasks such as generating demand scenarios, 

translating unstructured contract text into structured data, or automating customer-service interactions in 

supply chain contexts [27] [36]. We anticipate research into how LLMs can process textual supply chain 

data (contracts, news, supplier reports) and feed relevant info to decision models. For instance, an LLM 

could summarize a supplier‘s financial report and an ML model could then adjust the supplier risk score 

accordingly. The combination of LLMs with traditional numerical ML models may lead to holistic AI 

systems that understand both qualitative and quantitative aspects of supply chains, providing richer decision 

support. Early work in 2023 shows AI chatbots potentially serving as supply chain assistants, answering 

planners‘ questions by analyzing data and even performing some decisions autonomously [36]. Ensuring the 

reliability and factual accuracy of such systems will be a key research concern.  

 

5.5. Addressing Data and Implementation Challenges 
Despite the promise, several challenges must be addressed, which define future research needs. One issue is 

data quality and sharing. Many ML models require large datasets, but companies often face siloed or sparse 

data, especially in multi-tier supply chains. Privacy and competitive concerns can hinder data sharing 

between partners. Techniques like federated learning (where ML models are trained across decentralized 

data sources without sharing raw data) could be explored to build better collaborative forecasting or 

inventory models without violating privacy. Another challenge is model interpretability and trust. Supply 

chain managers may be wary of ―black-box‖ models for critical decisions. Thus, research into explainable 

AI (XAI) for supply chains is crucial – developing ML models that can provide understandable explanations 

for their recommendations (e.g., why an algorithm is suggesting a certain supplier or stock level) [26][28]. 

This will improve user trust and adoption. Adoption barriers and change management issues in 

implementing AI in supply chain organizations are also a rich area for future exploration [29][26]. Hangl et 

al. (2022) identified barriers such as lack of AI expertise, organizational resistance, and unclear ROI as 

factors slowing AI adoption in SCM [29]. Future research might focus on frameworks to assess the 

readiness of a supply chain for AI integration (similar to Industry 4.0 readiness indices [36]) and strategies 

to overcome these barriers – for example, demonstrating quick-win pilot projects, developing user-friendly 

ML tools for supply chain staff, and ensuring top-management support through clear ROI cases. Finally, as 

more decisions become automated by ML, the human-AI collaboration aspect deserves attention. Rather 

than fully autonomous supply chains, the near future will likely feature human planners augmented by AI 

suggestions. How to design decision dashboards that effectively incorporate ML outputs, and how humans 

can override or refine AI decisions when necessary, are important questions. There is a need for research on 

user interface and experience for AI in SCM, and on training supply chain professionals to work alongside 

AI systems. In summary, the future scope of ML in SCM is extensive. We expect to see deeper integration 

of AI across the supply chain, more advanced methods tackling risk and sustainability issues, utilization of 

emerging tech like IoT/blockchain, and a focus on overcoming practical adoption challenges. As supply 

chains continue to digitalize, the distinction between traditional SCM and AI-driven SCM will blur – 

making it imperative for ongoing research to guide this transformation responsibly and effectively. 

 

6. Conclusion 
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Machine learning has become a transformative force in supply chain management, driving improvements 

across key functions such as procurement, forecasting, production, inventory, warehousing, and 

transportation. By leveraging advanced algorithms and big data, ML enables more accurate predictions, 

optimized operations, and enhanced decision-making agility. While significant progress has been made, 

challenges related to data integration, model interpretability, and adaptation to unforeseen disruptions 

remain. The future of ML in supply chains lies in creating integrated, resilient, and adaptive systems that can 

continuously evolve in response to changing environments. As organizations increasingly adopt digital 

technologies, the integration of ML into SCM will be crucial for enhancing efficiency, agility, and overall 

competitiveness. 
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