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Abstract 
This study develops and compares three time series models, ARIMA, ARIMAX, and VAR(p) for short-

term inflation forecasting in Sierra Leone to aid evidence-based monetary policy formulation. Using 

monthly data from January 2018 to June 2023 on the Consumer Price Index (CPI), exchange rate (EXR), 

and money supply (M2), the study first confirmed that all series are integrated of order one (I(1)) using 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests. The ARIMA and ARIMAX models were 

estimated using Box-Jenkins methodology, with the ARIMAX model incorporating the exchange rate as 

an exogenous variable. A VAR(p) model was also specified using differenced series after cointegration 

tests showed no long-run relationship. Model performance was evaluated over a 12-month out-of-sample 

period (July 2023–June 2024) using Mean Absolute Percentage Error (MAPE) and Root Mean Squared 

Error (RMSE). Results show that the ARIMAX model significantly outperformed ARIMA and VAR(p), 

achieving the lowest forecast errors (MAPE = 2.03%, RMSE = 4.76), reflecting a 71.8% and 83.3% 

improvement in MAPE over ARIMA and VAR(p), respectively. These findings confirm the exchange rate 

as a critical driver of short-term inflation in Sierra Leone. The superior performance of the ARIMAX 

model underscores the importance of including exogenous (exchange rate) information in inflation 

forecasting frameworks. Policymakers are advised to closely monitor exchange rate movements as a 

leading indicator of inflation, highlighting the centrality of exchange rate pass-through effects in inflation 

dynamics and to consider exogenous-variable-enriched models like ARIMAX for effective short-term 

inflation targeting. 
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Introduction 
1.1.0 Background 
Monetary policy refers to the set of laws and actions adopted by central banks to achieve statutory goals, 

with the maintenance of low and stable inflation being a primary objective in both developing and advanced 

economies. In this context, central banks including the Bank of Sierra Leone require credible and data-

driven forecasting models to guide policy decisions that promote price stability and support economic 

growth. 

This study is motivated by the practical and theoretical need to identify forecasting models suited to 

economies with limited data availability and heightened sensitivity to external shocks. Single-equation 

models, such as the Autoregressive Integrated Moving Average (ARIMA) and its variant with exogenous 

variables (ARIMAX), are attractive for their simplicity and data efficiency. Conversely, Vector 

Autoregressive (VAR) models capture interrelationships among multiple macroeconomic indicators, offering 

a more system-wide view of inflation dynamics. 

The inclusion of both model types enables a comparative analysis of forecasting performance, particularly in 

Sierra Leone’s economic environment, where external variables, most notably the exchange rate have played 

a critical role in shaping inflation trends. This consideration is especially relevant as the Bank of Sierra 
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Leone prepares to transition from a monetary targeting regime to an inflation targeting (IT) framework, 

which demands more accurate and forward-looking inflation forecasts for effective policy formulation. 

The objective of this study is to develop short-term inflation forecasting models for Sierra Leone using the 

ARIMA, ARIMAX, and VAR(P) approaches, and to evaluate their predictive performance using standard 

forecast accuracy tests such as MAPE and RMSE. 

1.1.1 Overview of Inflation Dynamics in Sierra Leone 
Inflation in Sierra Leone has historically been driven by a combination of external shocks and domestic 

macroeconomic imbalances. During the 1980s and early 1990s, inflation surged in response to excessive 

monetary expansion, persistent exchange rate depreciation, and adverse external conditions. The 1985 

devaluation of the Leone led to an inflation rate of 78.1% and a money supply growth of 66.5%. These 

pressures were further compounded by chronic foreign exchange shortages and widening fiscal deficits, 

often financed through the banking system. By 1987, inflation had peaked at 178.7%, alongside a money 

supply growth of 162.9% (Bank of Sierra Leone Annual Reports, 1980–2017). 

As a small, open economy, Sierra Leone has also been highly susceptible to imported inflation, particularly 

from global oil price shocks dating back to the 1970s. Dependence on imports and administrative price 

controls have amplified the transmission of these external price movements (Bank of Sierra Leone Annual 

Reports, 1980–2017). 

The civil conflict in the 1990s significantly worsened inflationary pressures. The January 6, 1999, rebel 

invasion of Freetown severely disrupted economic activity and supply chains, leading to acute shortages. 

Inflation spiked again between 2006 and 2009 due to rising global and domestic food and fuel prices. 

Following the return to democratic governance in 1996, macroeconomic management gradually improved. 

By 2000, GDP growth had reached 3.8%, and inflation fell to -2.75% in December 2000, down from 36.74% 

the year before. Between 2007 and April 2014, inflation steadily declined, largely attributed to improve 

domestic food production particularly rice and other staples. 

More recently, Sierra Leone’s inflation trajectory has been shaped by major global disruptions. The Ebola 

outbreak, COVID-19 pandemic, and the Russia-Ukraine war all disrupted supply chains and triggered sharp 

increases in food and fuel prices. These shocks, combined with significant Leone depreciation, pushed 

inflation from 10.45% in December 2020 to 17.94% in December 2021, and further to 37.09% by December 

2022. Inflation peaked at 52.16% in December 2023, driven by rising costs in both food and non-food 

components (Bank of Sierra Leone Annual Reports 2018–2024 and Statistics Sierra Leone Monthly 

Publications). 

In response, the Bank of Sierra Leone adopted prudent monetary policy measures, including the tightening 

of the Monetary Policy Rate (MPR), which helped stabilize the exchange rate throughout 2024. As a result, 

inflationary pressures began to ease, with headline inflation declining from 47.42% in January to 31.93% by 

June 2024 (Bank of Sierra Leone Annual Reports 2018–2024 and Statistics Sierra Leone Monthly 

Publications). 

 

1.1.2 Specific Objective 
The objective of this paper is to develop short-term forecasting models for Sierra Leone’s inflation rate using 

the Box-Jenkins ARIMA approach, the ARIMAX method, and the VAR(P) model. Forecast accuracy tests, 

such as MAPE and RMSE, have been applied to select the model with the highest predictive power. 
 

1.1.3 Specific Contribution to Monetary Policy at the Bank of Sierra Leone 
This paper contributes to monetary policy at the Bank of Sierra Leone (BSL) by developing an enhanced 

inflation forecasting framework, demonstrating that the ARIMAX model incorporating exchange rate 

dynamics outperforms traditional ARIMA and VAR models in predicting inflation. Given Sierra Leone’s 

high exchange rate pass-through, where the Leone’s depreciation has coincided with rising inflation (from 

13.09% in 2019 to 54.20% in 2023), the study provides BSL with a data-driven tool to anticipate 

inflationary pressures more accurately. The findings underscore the critical role of exchange rate stability in 

inflation control, recommending that BSL integrate exchange rate trends into its forecasting models and 

adopt policies to mitigate exchange rate volatility. By improving short-term inflation projections, this 

research supports more proactive and effective monetary policy decisions, ultimately strengthening BSL’s 

ability to achieve price stability 
This paper is organized under the following headings: Introduction (provides an overview of inflation 
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dynamics in Sierra Leone & review of the relevant literature), Materials and Methods (describes the 

methodology and data), Results (presentation of data analysis), Discussions (interpretation of results), and 

Conclusion (summary & policy implication). 

 

1.2 Literature Review 
1.2.0 Theoretical Literature 
Inflation dynamics in Sierra Leone are shaped by a mix of domestic and external factors. The country is 

highly dependent on imports particularly food and fuel which makes it vulnerable to global price shocks and 

exchange rate volatility. Domestically, inflation is driven by supply-side constraints such as low agricultural 

productivity and inadequate infrastructure. In response, the Bank of Sierra Leone has adopted tight monetary 

policy measures in recent years, including raising the Monetary Policy Rate (MPR) to help contain inflation. 

However, fiscal pressures and recurrent government borrowing continue to fuel inflationary pressures, 

underscoring the importance of improved coordination between fiscal and monetary policies. 

To understand inflation more broadly, it is helpful to explore key economic theories. Two dominant schools 

of thought, the monetarist and Keynesian views have long debated the causes of inflation. Monetarists, led 

by Milton Friedman (Nobel Laureate, 1976), advocate the quantity theory of money, asserting that "inflation 

is always and everywhere a monetary phenomenon." According to this view, inflation occurs when the 

money supply grows faster than output. 

Classical economists, notably Irving Fisher, also supported the quantity theory. Fisher's equation of 

exchange (MV = PT) posits that the money supply (M) times its velocity (V) equals the price level (P) times 

the volume of transactions (T). Assuming V and T are stable, increases in M result in proportional increases 

in P, that is, inflation. Thus, classical and monetarist economists concluded that controlling the money 

supply is key to controlling inflation. 

In contrast, Keynesian economists attribute inflation to three main sources: demand-pull inflation, cost-push 

inflation, and profit-driven price increases. Keynes (1936) emphasized that output and employment are 

demand-driven, and inflation arises when aggregate demand exceeds aggregate supply. This excess demand 

pushes prices upward a phenomenon known as demand-pull inflation. 

Keynesians also highlight cost-push inflation, where rising production costs often driven by strong labour 

unions, monopolistic pricing, or increased import prices force firms to raise prices. For example, global 

increases in the cost of imported raw materials can lead to domestic inflation, especially in countries reliant 

on imports like Sierra Leone. 

The Phillips Curve adds another dimension to Keynesian theory by illustrating an inverse relationship 

between unemployment and inflation. Based on UK data from 1861 to 1957, A.W. Phillips suggested that 

reducing unemployment could result in higher inflation. However, the simultaneous rise in both inflation 

and unemployment during the 1970s (stagflation) challenged this view. 

Monetarist Milton Friedman explained stagflation through the expectations-augmented Phillips Curve. He 

argued that inflation expectations influence wage and price setting. When people anticipate rising inflation, 

workers demand higher wages, and firms raise prices, shifting the Phillips Curve to the right. This 

mechanism explains how inflation and unemployment can increase simultaneously. 

Ultimately, the key distinction between Keynesians and monetarists lies in their view of central banks. 

Keynesians see them as inflation fighters, using tools like interest rate changes to manage demand and 

maintain stability. Monetarists, however, caution that central banks, by mismanaging money supply growth, 

are often the source of inflation. They argue that inflation control hinges on aligning money supply growth 

with the real demand for money. 

 

1.2.1 Empirical Literature 
Alnaa and Ahiakpor (2011) conducted a study on short-term inflation forecasting in Ghana using the Box-

Jenkins ARIMA framework. After applying unit root tests and evaluating model performance with Root 

Mean Squared Error (RMSE), they concluded that the ARIMA (6,1,6) model was most appropriate for 

forecasting inflation in Ghana. 

Similarly, Doguwa and Alade (2013) developed short-term inflation forecasting models for Nigeria. Their 

study compared four models using SARIMA and SARIMAX procedures. The results showed that the 

SARIMAX model outperformed others for headline inflation forecasting using all-items CPI, while the 

SARIMA model consistently outperformed for core inflation forecasting. 
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Iqbal and Naveed (2016) compared the forecasting performance of various ARIMA models for Pakistan’s 

inflation. Using quarterly CPI data and the Box-Jenkins methodology, they found that the ARIMA (2,1,1) 

model was most suitable for short-term inflation forecasting. 

Ekpenyong and Udoudo (2016) used seasonal ARIMA models to develop short-term inflation forecasts for 

Nigeria. Based on monthly inflation data from 2000 to 2015, they identified SARIMA (0,1,0)(0,1,1)[12] as 

the best-performing model. 

Similarly, Okafor and Shaibu (2013) applied a univariate ARIMA model to Nigerian inflation data from 

1981 to 2010 and found ARIMA (2,2,3) to be optimal, based on model identification, parameter estimation, 

diagnostic checks, and forecasting accuracy. 

Olajide et al. (2012) applied the Box-Jenkins ARIMA approach to forecast Nigeria's inflation using annual 

CPI data from 1961 to 2010. Their analysis revealed that the CPI series was integrated of order one, and 

ARIMA (1,1,1) was selected as the appropriate model. 

Faisal (2012) employed several ARIMA models to forecast Bangladesh's inflation using monthly CPI data. 

The study emphasized the importance of reliable inflation forecasts in achieving macroeconomic targets, 

such as economic growth, exchange rate stability, and inflation control. The selected ARIMA model 

outperformed other univariate models in forecasting accuracy. 

Empirical work on short-term inflation forecasting is not confined to ARIMA models. Adjepong and Oduro 

(2013) compared the forecasting performance of the Holt-Winters exponential smoothing method with a 

Seasonal ARIMA model for Ghana. Based on accuracy metrics (MAE, RMSE, MAPE, and MASE), the 

Seasonal ARIMA model outperformed the Holt-Winters method. 

Jere and Siyanga (2016) forecasted Zambia’s inflation using monthly CPI data from 2010 to 2014. They 

estimated both Holt’s exponential smoothing and ARIMA models. Although both models performed well, 

Holt’s method was preferred for its simplicity and ease of implementation compared to the ARIMA model, 

which requires more sophisticated tools. 

Salam et al. (2007) modelled Pakistan’s inflation using monthly CPI data and ARIMA models. Their study 

highlighted the value of reliable inflation forecasts for policymaking and business decision-making. Their 

selected ARIMA model demonstrated strong predictive capabilities in both in-sample and out-of-sample 

tests. 

Meyler, Kenny, and Quinn (1998) applied ARIMA models to forecast inflation in Ireland using the 

Harmonized Index of Consumer Prices (HICP). Their study found that ARIMA models outperformed 

alternative approaches in forecasting accuracy. 

In the case of Sierra Leone, empirical studies are limited. Pearce, Alpha, and Pingfeng (2015) examined 

inflation determinants and found that in the short run, money supply and GDP had a significant positive 

influence on inflation. However, they reported no significant relationship between inflation and either the 

exchange rate or imports. 

In contrast, Gottschalk, Kalonji, and Miyajima (2008) found that inflation in Sierra Leone is largely driven 

by nominal exchange rate depreciation, higher oil prices, and money supply growth. Using a VAR model, 

they suggested that this approach is suitable for inflation forecasting in data-constrained environments like 

Sierra Leone. 

Kallon (1994), in his study "An Econometric Analysis of Inflation in Sierra Leone," adopted a reduced-form 

inflation equation derived from an IS-LM framework. His results rejected the monetarist proposition that 

changes in money supply led to proportional changes in inflation in the short run, though he found support 

for this view in the long run. 
Kabundi (2012) investigated inflation dynamics in Uganda using a single-equation Error Correction Model 

(ECM) grounded in the quantity theory of money. The study identified both domestic and external factors 

such as monetary aggregates, global food prices, and agricultural supply and demand as long-term 

determinants of inflation, though it did not produce inflation forecasts. 

Kelikume and Salami (2014) compared the forecasting performance of VAR and ARIMA models for 

Nigeria. Their findings indicated that the VAR model yielded more accurate forecasts by minimizing 

squared errors. 

Mokoti et al. (2009) evaluated the forecasting performance of the Bank of Botswana’s short-term inflation 

models, including the Near-Term Forecasting (NTF) model, ARIMA, and VAR models. Based on forecast 

evaluation metrics (MAE, RMSE, and Theil’s U statistic), the NTF model generally outperformed the 

others. 
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Pufnik and Kunovac (2006) compared structural and statistical models for forecasting Croatia’s inflation. 

They noted that while structural models offer deeper economic insights, statistical models like ARIMA 

provide simpler, behaviour-based forecasts. 

Valley (2002) from the Central Bank of Guatemala compared the performance of VAR and ARIMA models 

in forecasting CPI. The ARIMA model produced more accurate and stable forecasts, particularly during 

periods of structural change. 

Finally, Robinson (1998) from the Central Bank of Jamaica employed a VAR model to forecast inflation, 

incorporating macroeconomic variables such as CPI, exchange rate, and interest rates. His results showed 

that the VAR model provided superior predictive accuracy compared to univariate models. 

 

3.0 Materials and Methods 
3.1 Background to Modelling Time Series Data 
To investigate the most suitable short-term forecasting model for inflation in Sierra Leone, this study utilizes 

data on the national Consumer Price Index (CPI), money supply (M2), and nominal exchange rate (EXR). In 

time series analysis, the first critical step is to assess the stationarity of the data. This is essential because 

modelling non-stationary series can lead to spurious regression results, where standard diagnostic statistics 

such as the t-statistic, R², and Durbin-Watson statistic become unreliable and misleading. 

A visual inspection of time series plots typically serves as the initial diagnostic step. Such plots can help 

identify fundamental characteristics of the data, including trends (upward or downward shifts in the mean 

over time), seasonal patterns, outliers (extreme or anomalous values), and structural breaks or 

discontinuities. Recognizing these features is important because they affect the validity of statistical 

inference in time series models. 
To ensure robust and meaningful analysis, researchers must formally test for stationarity, most commonly 

using unit root tests such as the Augmented Dickey-Fuller (ADF) or Phillips-Perron (PP) test. If the time 

series is found to be non-stationary, it must be transformed typically through differencing before model 

estimation can proceed. This step helps to stabilize the mean and variance of the series, making it suitable 

for econometric modelling and reliable forecasting. 
 

3.2 Estimation Technique 
This study applies three existing models: 

(i) an Autoregressive Integrated Moving Average (ARIMA) model for the Consumer Price Index (CPI), 

(ii) an ARIMAX model incorporating EXR as an exogenous variable, and 

(iii) a Vector Autoregressive (VAR) model for CPI, EXR, and M2. 

The ARIMA and ARIMAX modelling techniques follow these basic steps: 

Model Identification, Model Estimation, Model Diagnostics and Forecasting or Predicting Future Values 

Two distinct methodologies are applied in this study. The first is based on the Box-Jenkins (1976) 

Autoregressive Integrated Moving Average (ARIMA) approach, which is an                       a-theoretical 

framework that relies solely on the statistical properties of the data without imposing theoretical economic 

relationships, used for both ARIMA and ARIMAX models. 

The second methodology involves estimating a Vector Autoregressive VAR(p) model for CPI, EXR, and M2 

which is a system-based approach where all variables enter the model as endogenous variables. Prior to 

estimating the VAR model, the study conducted cointegration tests using the Johansen procedure to 

determine the existence of any long-run equilibrium relationships among the variables. 
If the Trace test or Maximum Eigenvalue test indicates cointegration, a Vector Error Correction Model 

(VECM) is estimated. This allows for the modelling of both short-run adjustments and long-run equilibrium 

dynamics. 
If no cointegration is found, as is the case in this study, the variables are differenced, and a VAR(p) model is 

estimated using the first differences of the series. 
It is important to note that two non-stationary variables are said to be cointegrated if a linear combination of 

them is stationary. In this study, since the Johansen cointegration test indicated no cointegration, a VAR(p) 

model was estimated using the first-differenced data. 
 

3.3 Data Source and Description 
The dataset used in this study consists of three-monthly variables: the Consumer Price Index (CPI) series 
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compiled by Statistics Sierra Leone, the nominal exchange rate (EXR) and money supply (M2), both 

compiled by the Bank of Sierra Leone. The study period spans January 2018 to June 2023 for model 

estimation. Data from July 2023 to June 2024 is reserved for out-of-sample forecast accuracy evaluation. 

The choice of January 2018 as the starting point is based on several considerations: It aligns with the most 

recent rebasing of the CPI by Statistics Sierra Leone, ensuring methodological consistency, it reflects 

contemporary economic conditions, avoiding distortions from out-dated policy regimes and structural 

dynamics and it improves computational efficiency and forecasting relevance by focusing on recent and 

reliable data. By restricting the sample to this period, the study ensures robustness and avoids the risk of 

structural breaks that may compromise model accuracy. 
 

3.4 Model Specification And Estimation Technique of Arima And Arimax Models                                           
1. ARIMA Model 
The general equation of an ARIMA(p,d,q) model is given as follows: 

Yₜ = c + ϕ₁Yₜ₋₁ + … + ϕₚYₜ₋ₚ + θ₁εₜ₋₁ + … + θqεₜ₋q + εₜ  ------------------------------   (1) 

Where: 

 ϕ₁Yₜ₋₁ + … + ϕₚYₜ₋ₚ is the Autoregressive (AR) part, 

 θ₁εₜ₋₁ + … + θqεₜ₋q is the Moving Average (MA) part, 

 εₜ is the error term. 
As noted above, ARIMA models do not accommodate additional predictors within the model. In contrast, 

dynamic regression models allow the incorporation of other predictor variables (covariates), which can 

provide relevant information for the analysis. A general ARIMAX model could be specified as follows: 

2. ARIMAX Model - General Form 
A general ARIMAX model can be expressed as: 

ŷₜ = f(Yₜ₋₁, Yₜ₋₂, …, Xₜ₋₁, Xₜ₋₂, …)     --------------------------------------------------------(2) 

3. ARIMAX Model - Linear Form 
Yₜ = c + ϕ₁Yₜ₋₁ + … + ϕₚYₜ₋ₚ + θ₁εₜ₋₁ + … + θqεₜ₋q + εₜ + βXₜ     ------------------ (3) 

Here, β is the coefficient of the exogenous variable Xₜ. 

4. ARIMAX Model - Reparametrized 
Yₜ = βXₜ + ηₜ     --------------------------------------------------------------------------------- (4a) 

ηₜ = ϕ₁ηₜ₋₁ + ϕ₂ηₜ₋₂ + … + ϕₚηₜ₋ₚ - θ₁εₜ₋₁ - … - θqεₜ₋q + εₜ     ------------------------(4b) 

Where: 

 ηₜ represents the ARMA component of the residuals, 

βXₜ captures the effect of the exogenous variable, making β interpretable in its usual form. 
 

3.5 Model Specification And Estimation Technique of the VAR(p) 
This study employs three existing models, two of which have been thoroughly explained in the previous 

sections. The third model, the Vector Autoregressive VAR(p) model, is estimated to capture additional 

information that could help explain inflation dynamics, moving beyond just replying on the past values of 

the CPI series to predict current and future inflation. Specifically, a 3-variable VAR(p) model is estimated, 

incorporating the following variables: 

CPI (Consumer Price Index), representing inflation, EXR (Nominal Exchange Rate) and M2 (Money 

Supply) 

Equation (5): The equation of CPI is given by: 

------------ (5) 

Where is the constant term, , , are the coefficients for the lagged values of CPI, EXR, and M2 

respectively, and  is the residual. 
Equation (6): The equation for EXR (Nominal Exchange Rate) is given by: 

------------ (6) 

Where 2 is the constant term, , , are the coefficients for the lagged values of CPI, EXR, and M2 
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respectively, and  is the residual. 

Equation (7): The equation for M2 (Money Supply) is given by: 
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Where 3 is the constant term, , , are the coefficients for the lagged values of CPI, EXR, and M2 

respectively, and  is the residual. 
In these equations, each variable is a function of its own past values as well as the past values of the other 

variables in the system. The lag length, p=2, was selected based on Information Criteria, ensuring that the 

model adequately captures the dynamics between the variables without over fitting. The variables in the 

VAR model were re-estimated using the optimal lag-length of 2 (two). A key characteristics of a VAR(p) 

model is its stability. Stability ensures that the system generates stationary time series, with time-invariant 

means, variances and covariance structures, provided that the initial conditions are appropriate. Stability in 

the VAR model can be assessed by examining the moduli of the eigenvalues of the companion matrix. For 

stability to hold, the moduli of all eigenvalues must be less than one (i.e., the system must be stable). In this 

research work, the stability condition was satisfied, confirming that the VAR system is stable. 

Diagnostic Tests 
Serial correlation: The VAR model was tested for serial correlation in the residuals. This is important 

because, an absence of serial correlation in the residuals will suggest that the model adequately captures the 

relationships among the variables. 
Heteroskedasticity: The residuals were further examined for constant variance (homoscedasticity), thereby 

ensuring that the variances of the residuals do not change over time. 
Normality: The residuals of the model were tested for normality. This is crucial for the validity of the 

statistical inference. 
Forecasting: Lastly, the VAR(p) model was used to generate a 12-month ahead forecast of CPI, based on the 

estimated relationships among CPI, EXR, and M2. The forecast from the VAR(p) could provide value 

insights into the future inflation trends. 
 

4.0 Results 
4.1 Presentation and Discussion of Results 
This paper focuses on forecasting the Consumer Price Index (CPI) in its level form rather than the inflation 

rate to avoid potential distortions caused by data transformations. Using CPI in levels preserves crucial 

information about overall price trends and seasonality, which could be lost if transformed into inflation. This 

approach also ensures consistency across variables, as key factors like exchange rate (EXR) and money 

supply (M2) are typically modelled in levels. Additionally, ARIMA, ARIMAX, and VAR models are well-

suited to handle CPI in levels, provided stationarity is addressed. The use of CPI in levels enhances the 

interpretation of relationships within these models, offering more meaningful insights. The methodology 

aligns with prior studies, including Robinson (1998), Valley (2002), and others, who used CPI for 

forecasting rather than inflation. More importantly, at the Central Bank of Sierra Leone, CPI is forecast 

before its associated inflation is calculated. Therefore, I want my work to be in conformity with the Bank 

and hence the justification for using CPI rather than Inflation rate in this study. 

Table1 displays the descriptive statistics of the national CPI, M2 (money supply) and the EXR (nominal 

exchange rate) series in Sierra Leone. The maximum values of the series are 171.11, 22.70 and 23005.61 for 

CPI, Exchange Rate and Money Supply respectively. Also, the minimum values are 59.99, 7.54, and 

6515.769 for CPI, Exchange Rate and Money Supply respectively. The CPI, Exchange Rates and Money 

Supply series display upward trends. 

 

Table 1: summary statistics for CPI, EXR and M2 

STATISTIC CPI EXR M2 

Mean 93.089 11.215 11806.00 

Median 85.045 9.942 10802.03 

maximum 171.11 22.70 23005.61 
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minimum 59.988 7.54 6515.769 

Std.Dev 27.83 3.82 4703.244 

Sum 6143.877 740.175 779196.3 

Number of 

observations 

 

66 

 

66 

 

66 

Source: author’s computation 

 

4.2 Time plot of the CPI, EXR and M2 Series 
Clearly from figures 1, 2 & 3, plots of the national consumer price index, nominal exchange rate and money 

supply depict exponentially increasing trends with unstable means as they keep increasing and decreasing at 

certain points. 

 

Figures 1, 2, & 3 are time plots of the CPI, NER, & M2 Series 
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indicating non-stationarity. 



Mahmoud Coker, IJSRM Volume 13 Issue 05 May 2025                                                      EM-2025-9098 

4,000

8,000

12,000

16,000

20,000

24,000

I II III IV I II III IV I II III IV I II III IV I II III IV I II

2018 2019 2020 2021 2022 2023

GRAPH OF MONEY SUPPLY (M2) SERIES)

M
O

N
E

Y
 S

U
P

P
LY

 (
M

2
)

TIME (MONTHLY SERIES)  
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4.3 Time plot of the log-difference of CPI, EXR and, M2 series 
The plots of the log-differenced CPI, EXR and M2 series show evidence of mean-reversion. Indicating that, 

graphically, the differenced log-transformed series are stationary. These plots are displayed below. 

               
Figure.5 graph of the first differenced of the log-transformed series (CPI, EXR & M2) show mean reversion 

 

4.4 Unit Root Test 
In this study, the Augmented Dickey-fuller and Phillips-Perron unit root tests have been applied to check for 

the stationarity of the log-transformed series of CPI, EXR and M2 and their differenced series. 

 

Table.2a ADF Unit Root test for logCPI, logEXR, logM2 and first differences 

Test_at_Level t-statistic P_value 

Augmented Dickey-Fuller, [LCPI] 0.859056 0.9998 

Augmented Dickey-Fuller, [LEXR] -2.960826 0.1525 

Augmented Dickey-Fuller, [LM2] -1.564005 0.7964 
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Test_at_first_difference t-statistic P_value 

Augmented Dickey-Fuller, [DLCPI] -5.518721 0.0001 

Augmented Dickey-Fuller, [DLEXR] -3.622296 0.0367 

Augmented Dickey-Fuller, [DLM2] -7.603337 0.0000 

 

Table.2b PP Unit Root test results for logCPI, logEXR, logM2 and first differences 

 

Test   

 

t-statistics 

 

P-value 

 

PP.test (LCPI) 

 

2.129030 

 

1.0000 

 

PP.test (DLCPI)) 

 

-5.518721 

 

0.0001 

 

PP.test (LEXR) 

 

-0.113180 

 

0.9936 

 

PP.test (DLEXR) 

 

-3.071499 

 

0.0338 

 

PP.test (LM2)                                                                                                      

 

 -1.545377      

 

0.8034 

 

PP.test (DLM2) 

 

-7.603698 

 

0.0000 

 

4.4 Unit Root Test Results 
Tables 2a & 2b present the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test results 

for the CPI, EXR, and M2 series in both levels and first differences. Key findings are summarized below: 

Tests in Levels: For all three series (CPI, EXR, M2), both the ADF and PP unit root tests fail to reject the 

null hypothesis of a unit root (p > 0.05), indicating non-stationarity at levels. 

Tests in First Differences: After applying first-order differencing (denoted as ΔLCPI, ΔLEXR, ΔLM2), the 

results change decisively: Both ADF and PP unit root tests reject the null hypothesis (p < 0.05), confirming 

stationarity in the differenced series and the lag structure (selected via AIC/SIC) and bandwidth (for PP) 

support robust inference. 

 

4.5 Model Identification 
Initial Assessment (Levels): 

The ACF (autocorrelation function) and PACF (partial autocorrelation function) plots of the CPI series in 

levels (Figure 6) suggest non-stationarity, as evidenced by;  ACF plot has Large initial spikes that persist 

without rapid decay toward zero, and indicating a slow-moving or trending process, while the PACF plot has  

a statistically significant spike at lag 1, with subsequent lags diminishing abruptly. This pattern is 

characteristic of a unit root process. 

Transformation to Stationarity; 

After applying first-order non-seasonal differencing, the differenced CPI series (Figure 7) exhibits behaviour 

consistent with stationarity; The ACF and PACF plots now show rapid decay after a few lags, with no 

significant autocorrelations beyond the 95% confidence intervals. This confirms that the integrated (I) 

component of the ARIMA model should be set to d = 1. 
 

Fig. 6 ACF and PACF plots of CPI SERIES at levels exhibiting large spikes without decaying rapidly to 

zero 
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Fig. 6 ACF and PACF of the level series 

 

Fig. 7 ACF and PAC plots of the first difference of CPI series showing rapid decay after a few lags, with no 

significant autocorrelations beyond the 95% confidence intervals 

 
Fig.7 ACF and PACF of the First Difference Series 

 

4.6 Model Estimation 
Model selection was based on the BIC and AIC criteria. After multiple iterations, the following models were 

estimated using the differenced, log-transformed CPI series. 

 

Table 3: Model selection criteria for the ARIMA model 

Model  AIC Hann-Quinn BIC 

 

ARIMA(0,1,1) 

 

-5.847 

 

-5.947 

 

--5.908 
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ARIMA(1,1,0) 

         

             -6.104 
 

            -6.064 

 

 -6.064 

 

ARIMA(1,1,1) 

 

--56.018 

 

-5.966 

 

-5.885 

 

4.6 Model Selection 
The optimal ARIMA specification was determined through an iterative process comparing multiple 

candidate models using the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC). Three competitive models were evaluated in the final selection stage. As shown in Table [3], the 

ARIMA(1,1,0) specification demonstrated; the lowest AIC value (-6.104), indicating superior goodness-of-

fit while penalizing complexity and the minimal BIC value (-6.064), confirming parsimony and statistical 

efficiency. 

This model was therefore selected as the most appropriate for forecasting the national CPI series, as it 

optimally balances; Model fit (capturing key patterns in the data), Parsimony (avoiding over 

parameterization), and Theoretical consistency (aligning with the unit root and ACF/PACF diagnostics) 
 

4.7 Diagnostic Testing for ARIMA (1,1,0) Model 
Prior to implementation in the ARIMAX framework, the selected ARIMA(1,1,0) model underwent rigorous 

diagnostic evaluation to verify its statistical adequacy: 

 

4.8 Stability Test 
The stability of the ARIMA (1,1,0) specification was verified through rigorous examination of its 

characteristic roots: 

Root Location Analysis: All inverse roots of the AR polynomial fall strictly within the unit circle and the 

dominant root modulus of 0.353918 confirms exponential decay in impulse responses. 

Stationarity Verification: Absolute value of AR coefficient (φ₁ = 0.353918 satisfy |φ₁| < 1 condition and the 

Companion matrix eigenvalues lie within the complex unit circle 
Implications for the model 

The stability condition ensures; Finite variance and mean-reverting behaviour, Convergent forecast intervals, 

and non-explosive long-term projections 

These results mathematically validate the stationarity of the differenced series and the suitability of the 

ARIMA (1,1,0) specification for forecasting. The stable configuration suggests that shocks to the CPI series 

will dissipate over time at a rate determined by the AR(1) coefficient. 

 

Table4a. Stability test for the ARIMA(1,1,0) 

SAMPLE: 2018M01 – 2023M06 
INCLUDED OBSERVATIONS :65 

AR ROOTS MODULUS CYCLE 

0.353918 0.353918  

No root lies outside the unit circle 

ARMA model is stationary 

 

Table 4b. ACF Plot of ARIMA(1,1,0) 
The Ljung-Box Q-statistic p-values for residual autocorrelation are all statistically insignificant (p > 0.05), 

indicating no remaining serial correlation in the model residuals. This supports the adequacy of the 

ARIMA(1,1,0) specification. 
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The probability values of the Q-statistic are all greater than 0.05 (p>0.05). 

 

4.9 The exogenous variable in the ARIMAX model 
The ARIMAX framework extends our baseline ARIMA(1,1,0) specification by incorporating the nominal 

exchange rate (EXR) as an exogenous regressor, implemented through the following systematic approach: 

Dynamic specification: The ARIMAX model consists of an endogenous component: ARIMA(1,1,0) for CPI 

(as previously validated) and the exogenous component, EXR series modelled independently as 

ARIMA(1,1,4) before incorporating it into the ARIMAX model. 
Exchange Rate Modelling: The EXR series was differenced once (I=1) to achieve stationarity and optimal 

ARMA structure (p=1, q=4) determined through AIC/BIC comparison across candidate models. 

Forecast Integration of the EXR into the ARIMAX model:  EXR point forecasts (Jul 2023 - Jun 2024) 

generated from validated ARIMA(1,1,4) and the dynamic forecasts incorporated as exogenous inputs in 

ARIMAX framework with the Covariance structure accounted for in prediction intervals. 

4.10 Diagnostic test of the Exchange Rate model 
The ARIMA(1,1,4) specification for the exchange rate series was subjected to comprehensive diagnostic 

testing: Stability Valuation, all inverse roots of the AR polynomial lie within the unit circle (table 5a); MA 

polynomial, roots demonstrate invertibility (maximum modulus = 0.877503)  

Characteristic equation solutions 
AR root is 0.692398 (absolute value < 1) and MA roots is 0.000000 ± 0.877503i (modulus = 0.877503) 

 

Table5a. Stability test result of EXR 

AR Root(s) Modulus cycle 

0.692398 0.692398  

No root lies outside the unit circle 

ARMA model is invertible 

MA Root(s) Modulus Cycle 

0.000000 0.877503i 0.877503 4.000000 

      0.877503 0.877503  

     -0.877503                 0.877503  

 

No root lies outside the unit circle. 
ARMA model is invertible 
 

Table 5b presents visual inspection for residual autocorrelation in the ARIMA(1,1,4) exchange rate model 

prior to its inclusion in the ARIMAX framework. 
 

Visual Inspection of the ACF/PACF Plots from table 5b 
No spikes exceed the 95% confidence bounds at any lag and the residuals exhibit white noise properties. 
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This confirms that, the ARIMA(1,1,4) specification adequately captures the EXR series’ dynamics and also, 

Validates the model’s use as an exogenous input in the ARIMAX system 

Table 5b 

 
Table 5b’s residual ACF/PACF plots shows that, the Ljung-Box Q-stat results (all p > 0.05) confirm the 

residuals are serially uncorrelated, showing no spikes beyond the 95% confidence intervals. 

 

4.11 ARIMAX Model Estimation output 
The final ARIMAX specification combines the following:  

Endogenous Component: Differenced log CPI series [Δln(CPI)] from ARIMA(1,1,0); Exogenous 

Component: Differenced log exchange rate [Δln(EXR)]; Dynamic Structure: AR(1) term capturing 

persistence effects 

 

Model Equation: 

Δln(CPIₜ) = φ₁Δln(CPIₜ₋₁) + β₁Δln(EXRₜ-1) + εₜ 

where: 
φ₁ = [0.34865] (AR coefficient with p_value=0.0090 i.e. p<0.05) 

β₁ = [1.1085] (EXR impact coefficient with p_value=0.0000 i.e. p<0.05) 

εₜ ~ N(0, σ²) with σ = [0.010817] 

 

Table6. ESTIMATION OF THE ARIMAX MODEL 

Variable Coefficient Std.Error t-Statistic Prob. 

Dlog(exr_f) 1.108523 0.137839 8.04158 0.0000 

AR(1) 0.348649 0.129164 2.699263 0.0090 

SIGMASQ 0.000117 2.10E-05 5.589610 0.0000 

R-squared 0.342909    

 

Adjusted R-squared 

 

0.321006 

 

Mean dependent var 

 

0.016233 

 

 

S.E. of regression 

 

0.011094 

 

S.D. dependent var 

 

0.013463 

 

 

Sum squared resid 

 

0.007384 

 

Akaike info criterion 

 

-6.116388 

 

 

Log likelihood 

 

195.6662 

 

Schwarz criterion 

 

-6.014334 

 

 

Durbin-Watson stat 

 

2.032006 

 

Hannan-Quinn criter. 

 

-6.076250 
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Inverted AR Roots .35 

 

4.12 Analysis Of The Arimax Model Results 
ARIMAX(1,1,0) Model Results: Re-specification of the ARIMAX model after regression 

Δlog(CPIₜ) = 1.11 Δlog(EXR_Fₜ) + 0.35 Δlog(CPIₜ₋₁) + εₜ 

Summary of key Estimates from table 6 (ARIMAX regression results) 

Parameter Coefficient    t-stat    p-value    Interpretation 

Δlog(EXR_F)     1.11***     8.04    <0.001   1% EXR depreciation → 1.11% CPI inflation 

AR(1)     0.35**     2.70     0.009   35% monthly persistence 

σ²     0.0001***     5.59    <0.001   Minimal residual variance 

The Fit Statistics for the ARIMAX: 

R² = 0.34: EXR explains 34% of inflation variation 

DW = 2.03: No 1st-order autocorrelation 

AIC = -6.12: Superior fit to previous specification 

 

4.12 Diagnostic Test Of The Arimax Model Estimated 

Stability Test Of The Arimax Model Estimated 
In table 7a, The AR(1) coefficient of 0.35 corresponds to a characteristic equation root of z=2.86 (inverse 

root: 0.35), satisfying the stability condition ∣z−1∣<1. This ensures shock persistence decays at 35% per 

month. 
Let us consider the characteristic equation derived from the AR(1) term in the ARIMAX model: 

Δlog(CPIt)=0.35Δlog(CPIt−1) +⋯+ϵt           
Let us rewrite the AR(1) component as a polynomial: 

Then we have: 1−0.35L=0 (where L is the lag operator) 

Solving for the Root: 

1−0.35z=0 ⟹ z=1/0.35≈2.861 

The root z=2.86 is outside the unit circle (since ∣z∣>1). 
Inverse root: 1/z≈0.351 (lies inside the unit circle, confirming stability). 

 

Table7a. Stability test of the ARIMAX model 

AR ROOT(S) MODULUS CYCLE 

0.348649 0.348649  

No root lies outside the unit circle 

ARMA model is stationary 
 

Table 7b.’s residual ACF/PACF plots shows that, the Ljung-Box Q-stat results (all p > 0.05) confirm the 

residuals are serially uncorrelated, showing no spikes beyond the 95% confidence intervals 
Table 7b. ACF/PACF residual test of the ARIMAX model 
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4.13 The Vector Autoregressive Model (VAR(P)) model 
The third model estimated is the Vector Autoregressive (VAR(p)) model, which incorporates three 

endogenous variables; CPI (Consumer Price Index), EXR (Nominal Exchange Rate), and M2 (Money 

Supply). All series were confirmed to be integrated of order one I(1) through unit root testing (see section 

4.4), satisfying the pre-requisite for VAR modelling in first differences. 

 

4.13.1 Lag-length selection 
The optimal lag length for the VAR system comprising CPI, EXR, and M2 was determined through a 

comprehensive analysis of information criteria and statistical tests. At levels, the variables were tested for 

optimal lag length using several information criteria: the Schwarz Information Criterion (SIC), Akaike 

Information Criterion (AIC), Final Prediction Error (FPE), Sequential Modified Likelihood Ratio (LR), and 

Hannan-Quinn Criterion (HQ). 

The lag selection criteria in table 8 present conflicting indicators for the optimal lag length. The Schwarz 

information Criteria (SIC), which prioritizes parsimony, selected lag-1; the Akaike Information Criteria 

(AIC), Hannah-Quinn (HQ) and Final Prediction Error (FPE) unanimously favoured lag-2; while the 

Sequential Modified LR test suggested lag-6. However, given that the VAR model’s primary purpose in this 

research is for short-term forecasting, the AIC was prioritized due to, its demonstrated efficacy in 

minimizing forecast error variance (Lutkepohl, 2005), its balanced trade-off between model fit and 

complexity and its consistency with comparable monetary VAR studies (Bernanke et al, 2005). Therefore, 

lag-2 was chosen for estimating the VAR(p) model. The empirical output in table8 provides the details of the 

lag-selection criteria. 

 

Table 8 Lag-length selection criteria 

lag logL LR FPE AIC SC HQ 

0 157.3484 NA 1.17e
-06 -5.144947 -5.040230 -5.103986 

1 470.9743 585.4351 4.56e
-11 -15.29914 -14.88028

* -15.13530 

2 486.2143 26.92395 3.71e
-11* -15.50714

* -14.77412 -15.22042
* 

3 491.5291 8.857921 4.22e
-11

 -15.38430 -14.33713 -14.97470 

4 498.3290 10.65322 4.59e
-11

 -15.31097 -13.94964 -14.77848 

5 503.1378 7.052898 5.38e
-11 -15.17126 -13.49578 -14.51589 

6 519.3711 22.18550
* 4.35e

-11 -15.41237 -13.42274 -14.63412 

*indicates lag order selected by the criterion 
 LR: sequential modified Likelihood Ratio test statistic (each test at 5% level) 

FPE: Final Prediction Error 

AIC: Akaike Information Criteria 

SC Schwarz Information Criteria 

 

4.13.2 Cointegration Analysis 

Following the lag length selection, we tested for cointegration among CPI, EXR, and M2 at levels using the 

Johanson (1991) procedure. Two I(1) variables are cointegrated if a linear combination of them yields a 

stationary process (Engle & Granger, 1987). Results from table 9a indicates that, both the Trace statistic and 

Maximum Eigenvalue test failed to reject the null hypothesis of no cointegration at the 5% significance 

level. That is, the test statistics fell below their critical values across all ranks (r = 0,1,2), confirming the 

absence of long-run equilibrium relationships. Given these results, we estimated the VAR(p) model in first 

differences to avoid spurious regression. The lag length was re-estimated in first differences, with AIC again 

selecting lag2. The empirical output for the cointegration test is presented in Table.9a. The estimated VAR(p) 

model was subsequently tested for serial correlation, heteroskedasticity, and stability. 
 

Table 9a test for cointegration in VAR(p) model Unrestricted Cointegration Rank Test (Trace) 

Hypothesized 
No. of CE(s) 

 

Eigenvalue 
Trace 
Statistic 

0.05 
Critical Value 

Prob** 
Critical Value 
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None 0.256052 26.68595 29.79707 0.1095 

At most 1 0.096408 8.051555 15.49471 0.4599 

At Most 2 0.027156 1.734456 3.841465 0.1878 

Trace test indicates no cointegration at 0.05 level 

*denotes rejection of the hypothesis at 0.05 level 

**Mackinnon-Haung-Michelis (1999) p-values 

Unrestricted Cointegration Rank Test (Max-eigenvalue) 

Hypothesized 
No. of CE(s) 

 

Eigenvalue 
Trace 
Statistic 

0.05 
Critical Value 

Prob** 
Critical Value 

None 0.256052 18.63439      21.13162        0.1079 

At most 1 0.096408 6.317099      14.26460        0.5729 

At Most 2 0.027156 1.734456      3.841465        0.1878 

Max-eigenvalue test indicates no cointegration at 0.05 level 

*denotes rejection of the hypothesis at 0.05 level 

**Mackinnon-Haung-Michelis (1999) p-values 

From table 9b, the stability condition of the model is satisfied, as all inverse roots of the AR polynomial lie 

strictly within the unit circle. Additionally, the absolute values of the AR root moduli are less than one, 

confirming that the estimated model is stable and stationary. 

 

Table.9b stability test of the VAR(p) model estimated. 

Root Modulus 

                 0.514412-0.084384i 0.521287 

                0.514412+0.084384i                              0.521287 

                0.046269-0.463789i                              0.466091 

                0.000822-0.112171i                              0.112175 

                0.000822+0.112171i                              0.112175 

No root lies outside the unit circle. 

VAR satisfies the stability condition. 

From table11, The Breusch-Godfrey (BG) serial correlation LM (LRE and Rao F) for the VAR residuals at 

lags 1–2 with (p-value > 0.05), fail to reject the null hypothesis of no autocorrelation (Lag 1: LRE* p = 

0.208, Rao p = 0.208; Lag 2: LRE* p = 0.471, Rao p = 0.436). This suggests that the VAR(p) specification 

adequately captures the system’s dynamics, with residuals exhibiting no significant temporal dependence. 

 

Table 11 VAR Residual Serial Correlation LM Test Null hypothesis: No serial correlation at lag h 

lag LRE*stat df Prob. Rao F-stat df prob 

1 12.10067 9 0.2077 1.371613 (9,124.3) 0.2080 

2 8.646322 9 0.4705 0.966727 (9,124.3) 0.4361 

 

Null hypothesis: No serial correlation at lag 1 to h 

lag LRE*stat df Prob. Rao F-stat df prob 

1 12.10067 9 0.2077 1.371613 (9,124.3) 0.2080 

2 18.26856 18 0.4381 1.022000 (18,136.2) 0.4395 

 

*Edge worth expansion correlated likelihood ratio statistic. 

Heteroskedasticity test 
In table 12, the joint chi-square test (joint χ²(72) p = 0.2108; all individual p > 0.05), for heteroskedasticity 

fails to reject the null hypothesis of homoskedasticity indicating constant residual variance across the 

system. Individual component tests for ARCH effects (e.g., res1*res1: p = 0.8651) and cross-residual 

correlations (e.g., res3*res2: p = 0.1480) also show no significant evidence of volatility clustering or spill 

overs. Thus, the VAR model satisfies the homoskedasticity assumption, and standard inference procedures 

remain valid. 
Table 12 VAR(p) residual heteroscedasticity test 



Mahmoud Coker, IJSRM Volume 13 Issue 05 May 2025                                                      EM-2025-9107 

JOINT TEST 

Chi-square Df Prob.    

81.35937 72 0.2108    

Individual components: 

dependent R-squared F(12,50) Prob. Chi-sq.(12) Prob. 

res1*res1 0.109279 0.511191 0.8976 6.884563 0.8651 

res2*res2 0.224720 1.207737 0.3042 14.15737 0.2908 

res3*res3 0.283176 1.646008 0.1089 17.84007 0.1206 

res2*res1 0.237047 1.294571 0.2513 14.93397 0.2451 

res3*res1 0.240464 1.319138 0.2378 15.14922 0.2334 

res3*res2 0.270520 1.545166 0.1396 17.04277 0.1480 

 

The probability of the joint test is greater than 0.05 (Prob.>0.05) implying that the residuals have a constant 

variance that is; our model does not suffer from heteroscedasticity issues and the standard errors are reliable. 

 

5.0 Discussion and interpretation of forecast results 

5.1 Forecast performance measures applied in this research. 
The forecasting performance of the ARIMA, ARIMAX, and VAR(2) models was rigorously evaluated using 

a 12-month holdout sample (July 2023 – June 2024). Two complementary metrics; Mean Absolute 

Percentage Error (MAPE) and the Root Mean Squared Error (RMSE), were employed in the analysis. These 

metrics were calculated for out of-sample forecasts to ensure robust model comparison. 

The Mean Absolute Percentage Error (MAPE) measures relative forecast accuracy as a percentage. 

 
Where n = number of forecasted observations 

           yt  = the actual value at time t 
       Y-hat = the forecasts value at time t 

            = The two vertical bars stand for “absolute value operator” 
The MAPE formula above expresses the error as a percentage of the actual observations, thus making the 

MAPE a scale-independent that is, it enables cross-variable comparisons measure of forecast accuracy test 

that is easy to interpret. It’s ideal value is, when it is closer to zero. However, it is undefined when yt is equal 

to zero. 

Similarly, the Root Mean Squared Error (RMSE) quantifies absolute forecast error. 

 
Where n=number forecasted observations 

           yt  = actual value at time t 
       Y-hat= the forecast value at time t 

While the MAPE provides a percentage-based error metric, making it useful for comparing forecast 

accuracy across different models, the RMSE emphasizes larger errors, giving insight into the overall forecast 

performance in terms of absolute differences. Both metrics are widely used for comparing forecast accuracy 

across models like ARIMA, ARIMAX, and VAR(p). It’s ideal value is when it is closer to zero.  

Cpi Forecast Comparison For All Three Models Estimated   
 

Table 13: forecast comparison 

DATE CPI ACTUAL         ARIMAX      VAR(P)     ARIMA 
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FORECAST FORECAST FORECAST 

July-2023 176.00 182 171.62 161.30 

Aug-2023 185.34 185 173.04 166.12 

Sept.-2023 193.41 189.55 173.84 171.14 

Oct.2023 200.72 193.29 174.67 176.39 

Nov.2023 203.91 197.09 176.01 181.89 

Dec.2023 208.59 200.94 177.92 187.64 

Jan-2024 207.69 204.85 180.18 193.66 

Feb-2024 211.37 208.81 182.68 199.96 

Mar-2024 216.44 212.82 185.35 206.55 

Apr-2024 220.89 216.89 188.13 213.46 

May-2024 224.77 221.01 191.00 220.69 

Jun-2024 225.74 225.18 193.95 228.27 

 

Table 13 compares observed CPI values (July 2023–June 2024) with out-of-sample forecasts generated by 

ARIMAX, ARIMA, and VAR(p) specifications. 

 

5.2 Measures of Out-of Sample Forecast Accuracy  

After estimating the ARIMA, ARIMAX, and VAR(p) models, their forecasting performance was evaluated 

using a 12-month out-of-sample holdout period (July 2023–June 2024). Forecast accuracy was assessed us-

ing two widely accepted metrics: the Mean Absolute Percentage Error (MAPE) and the Root Mean 

Squared Error (RMSE), computed separately for each model. The models generated 12-month CPI fore-

casts, which were compared against the actual observed values (Table 13). Based on this comparison, 

MAPE and RMSE were calculated to determine each model’s predictive accuracy over the forecast horizon. 

Lower values of the two metrics indicate better performance. 

5.3 Summary of Forecast Performance of the Three Models Estimated 

The forecasting performance of the three estimated models, ARIMA, ARIMAX, and VAR(p) was evaluat-

ed using the Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), as de-

fined in Section 5.1. These metrics assess the accuracy of Consumer Price Index (CPI) forecasts over a 12-

month out-of-sample period (July 2023 to June 2024). 
The RMSE measures the square root of the average squared differences between actual and forecasted val-

ues, giving more weight to larger errors. Lower RMSE values indicate greater forecasting accuracy. In con-

trast, the MAPE expresses forecast error as a percentage of actual values, offering a scale-independent and 

intuitively interpretable measure of accuracy. For example, a MAPE of 2.03% suggests an average deviation 

of 2.03% from the observed CPI values. 
Table 14 presents the RMSE and MAPE values for all three models, facilitating a direct comparison of their 

predictive performance. The results highlight substantial differences in model accuracy, with the ARIMAX 

model demonstrating the most consistent and precise forecasts. 

 

Table14 Forecast Accuracy Metrics 

Accuracy measure ARIMA ARIMAX VAR(P) 

MAPE 7.19 2.03 12.15 

RMSE 16.09 4.76 26.97 

 

Interpretation of Metrics Evaluation-Key Findings 
The ARIMAX model outperformed all other models across standard forecast evaluation metrics over the 

evaluation period (July 2023–June 2024):  
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Absolute Performance: 

The ARIMAX model achieved the lowest Mean Absolute Percentage Error (MAPE) of 2.03% and Root 

Mean Squared Error (RMSE) of 4.76. A MAPE of 2.03% indicates that, on average, the model's forecasts 

deviated from actual CPI values by only 2.03%. The low RMSE suggests the model was also effective at 

minimizing larger forecast errors. 

Relative Improvement over ARIMA: 
Forecast accuracy improved by 71.8% relative to ARIMA: 

1−(2.03/7.19) × 100 = 71.8% 
Forecast errors (RMSE) reduced by 70.4%: 

1−(4.76/16.09) × 100 = 70.4% 

ARIMA’s forecasting errors were approximately 3.5 times larger (MAPE) and 3.4 times larger (RMSE). 
Relative Improvement Over VAR(p): 
Forecast accuracy improved by 83.3% relative to the VAR(p) model: 

1−(2.03/12.15) × 100 = 83.3% 
Forecast errors (RMSE) reduced by 82.4%: 

1−(4.76/26.97) × 100 = 82.4% 

VAR(p)’s forecasting errors were 6.0 times larger (MAPE) and 5.7 times larger (RMSE). 

Theoretical Interpretation 
The ARIMAX model's superior performance underscores the importance of incorporating relevant 

exogenous information in inflation forecasting. Specifically, the exchange rate appears to carry significant 

predictive power for inflation dynamics in Sierra Leone. In contrast: 

The ARIMA model, being purely univariate, fails to account for such external influences. 
The VAR(p) model likely suffers from: 

(1) Limited sample size (n = 65), which restricts parameter stability and increases estimation noise. 

(2) Omitted variable bias, particularly the exclusion of commodity price shocks or other relevant exter-

nal factors. 

(3) Suboptimal lag selection, which may have resulted in over fitting without meaningful improvements 

in predictive performance. 
 

Implications of this result 
For central banks and policy analysts, the findings suggest that ARIMAX offers the most reliable short-term 

inflation forecasts among the evaluated models. Exchange rate movements in particular, should be 

monitored as key leading indicators of inflationary pressure in Sierra Leone. VAR models, while 

theoretically appealing, require more extensive data and robust specification strategies to be practically 

useful in this context. 

 

Limitations and Directions for Future Research 
1. The model's performance assumes a stable exchange rate pass-through mechanism, which may not 

hold in periods of structural change. 
2. The evaluation period (12 months) is relatively short and may not capture all macroeconomic re-

gimes, including external shocks or regime shifts. 
3. Future research could explore: 

(i) The inclusion of additional exogenous variables (e.g., commodity prices, international interest 

rates). 
(ii) Time-varying parameter models to account for evolving economic relationships. 
(iii) Alternative multivariate frameworks such as Bayesian VARs, Structural VARs, or Dynamic 

Factor Models for richer dynamic insights. 

 

5.2 Conclusion 

5.2.1 Summary 

The primary objective of this study was to develop a suite of inflation forecasting models to support mone-

tary policy operations at the Bank of Sierra Leone. The analysis utilized monthly data on the national Con-

sumer Price Index (CPI), Nominal Exchange Rate (EXR), and Money Supply (M2). 
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Initial stationarity assessments using the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests in-

dicated that all variables were non-stationary at levels but became stationary after first differencing. Conse-

quently, all series were determined to be integrated of order one, I(1). 

To model the inflation process, the Box-Jenkins methodology was applied to the differenced CPI series, re-

sulting in the estimation of both ARIMA and ARIMAX models. In the ARIMAX specification, the nominal 

exchange rate (EXR) was incorporated as an exogenous regressor. The EXR itself was forecasted over a 

twelve-month horizon and included in the ARIMAX model for generating out-of-sample inflation forecasts. 
In parallel, a Vector Autoregressive (VAR) model was estimated using the differenced series of CPI, EXR, 

and M2. Lag selection criteria identified a lag length of two as optimal. Johansen’s cointegration tests both 

the Trace and Maximum Eigenvalue tests revealed no evidence of cointegration among the variables. As a 

result, the VAR model was specified in first differences. 
Among the models assessed, the ARIMAX model demonstrated superior forecast performance, outperform-

ing both the univariate ARIMA and the multivariate VAR(p) models. This result highlights the significance 

of the exchange rate as a leading indicator of inflation in Sierra Leone and reinforces its relevance in infla-

tion forecasting frameworks intended to inform monetary policy decisions. 
 

5.22 Policy Implication 

The study of inflation remains a central concern for monetary policy authorities, particularly in countries 

pursuing inflation-targeting regimes. Developing a reliable short-term inflation forecasting model for Sierra 

Leone provides the Bank’s decision-makers with timely insights into the inflation outlook. These forecasts 

serve as an essential input in the design and execution of effective monetary policies aimed at maintaining 

price stability. 

Given the inherent time lags in the transmission of monetary policy, regular and accurate updates on the in-

flation trajectory are crucial. Reliable forecasts help policymakers anticipate future inflation trends and act 

pre-emptively by adjusting policy instruments to mitigate emerging inflationary or deflationary pressures. 

This proactive approach enhances the effectiveness of monetary interventions and supports broader macroe-

conomic stability. 

The empirical findings from this study underscore the superiority of the ARIMAX model, which includes 

the exchange rate as an exogenous variable. It consistently outperformed both the ARIMA and VAR(p) 

models, highlighting the exchange rate's significant influence on inflation in Sierra Leone. Notably, the ex-

change rate has exhibited a steady upward trend over the past five years, during which the inflation rate 

surged from 13.09 per cent in        November 2019 to 54.20 per cent in November 2023. This co-movement 

signals a strong exchange rate pass-through effect into domestic prices. 
Accordingly, monetary authorities are advised to adopt measures that reduce exchange rate volatility and 

strengthen the transmission mechanism of monetary policy. Incorporating exchange rate dynamics into in-

flation forecasting models, as demonstrated by the ARIMAX framework, offers a robust approach to im-

proving inflation targeting in Sierra Leone. 
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