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Abstract: Frequent Item set Mining is a Data Mining task that has attracted the researchers’ interests in a way that very few 

other tasks have done. This concept is generally used in Decision Support problems. Many serial and parallel algorithms 

have been developed for Frequent Item set Mining. In this paper, we have focused on the developments of parallel 

algorithms in this area so far. We start with an Apriori-based parallel algorithm that focuses on minimizing the 

communication overhead even if, in parallel, it requires redundant duplicate computations. Then we discuss an algorithm 

that utilizes the system memory in amore effective manner. Then we give an account of the algorithm that reduces the 

synchronization between the processors, segments the database, and integrates load balancing. Then we describe an 

algorithm that partitions the Candidate Item sets intelligently. Finally, we give an account of an algorithm that combines 

two famous algorithms to leverage their cumulative advantage. While keeping the original ideas intact, we have avoided the 

cumbersome notations to keep it easily intelligible. 
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1. Introduction 

Data Mining [10], [12] is aimed at discovering valuable 

information, which is otherwise non-obvious, from an 

enormously large collection of data. According to the 

terminologies used in the field of Data Mining, Frequent 

Itemsets [1] refer to interesting patterns discovered from 

databases. An Itemset is a collection of one or more items. 

An Itemset with a support equal to or more than a minimum 

support threshold, it is called a Frequent Itemset. Frequent 

Itemset Mining has been very useful in Market Basket 

Analysis. It is extensively applied in various decision 

support problems intended to help different types of 

businesses. Several approaches have been employed, over 

the years, for Frequent Itemset Mining [11]. Some of the 

algorithms follow serial approach while others follow 

parallel approach [2], [8]. Many Apriori-based [3] parallel 

algorithms have been proposed. The Count Distribution 

Algorithm [4] allows redundant computations in parallel and 

idle processors to cut down the communication 

requirements. The Data Distribution Algorithm [4] exploits 

the aggregate system memory in a better way and ensures 

that the processors count mutually exclusive candidates 

thereby increasing the number of candidates counted with 

the increase in the number of processors. The Candidate 

Distribution Algorithm [4] partitions both the datasets and 

the Candidate Itemsets in such a way that ensures 

processors’ independence. The Intelligent Data Distribution 

Algorithm [5], [6], [7] partitions the Candidate Itemsets 

intelligently so that hash tree can be efficiently built in a 

parallel fashion. The Hybrid Distribution Algorithm [5], [6], 

[7] combines the goodness of both Count Distribution 

Algorithm and the Data Distribution Algorithm. 

2. Count Distribution 

This algorithm aims to avoid communication by following 

the principle of redundant parallel computations. The 

algorithm makes a number of passes to find all the Frequent 

Itemsets. In the first pass, local Candidate Itemsets are 

generated by all the processors dynamically depending on 

the items present in the local datasets. In all subsequent 

passes, the processors generate the complete candidate 

Itemset based on the complete frequent Itemset discovered 
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in the previous pass. Then the processors make a pass over 

their local partitioned data sets to develop the local support 

counts for the candidates in their respective Candidate 

Itemsets. The processors then exchange local Candidate 

Itemsets’ counts with each other to develop global 

Candidate Itemsets’ counts. The processors are then 

synchronized before they find the Frequent Itemsets from 

the Candidate Itemsets. The processors independently 

decide whether to terminate or to move on to the next pass. 

3. Data Distribution 

While the independent and asynchronous operation of the 

processors is ensured by the Count Distribution Algorithm, 

it does not fare very well on memory utilization front. The 

Data Distribution Algorithm is aimed at better memory 

utilization of the total system memory with the increase in 

the number of processors. This algorithm relies on each 

processor counting mutually exclusive candidates.       

     Like Count Distribution, Data Distribution Algorithm too 

makes a number of passes. The process of local candidate 

Itemset generation in the first pass is same as that in the 

Count Distribution Algorithm. In all subsequent passes, the 

processors generate the complete candidate Itemset based on 

the complete frequent Itemset discovered in the previous 

pass and retain only one nth of the Candidate Itemsets 

creating a subset, that will be counted, of the Candidate 

Itemsets. The Itemsets to be retained is determined by the 

processor id and it does not require communicating with 

other processors. Then the processors develop the local 

support counts for the candidates in their respective 

Candidate Itemsets using both the local datasets and the 

datasets received from other processors. The processors then 

compute the Frequent Itemsets using the local subsets of the 

Frequent Itemsets. The processors then exchange these local 

Frequent Itemsets to find the complete global frequent 

Itemset. 

 

4. Candidate Distribution 

Both the algorithms discussed above require consulting all 

the processors and gathering all the information before 

proceeding to the next pass. The Candidate Distribution 

Algorithm aims to overcome these dependencies. This is 

achieved by both the datasets and the Candidate Itemsets in 

a way that ensures independent functioning of all the 

processors. This algorithm divides the Frequent Itemsets, in 

some heuristically determined pass, between the processors 

in such a way that each processor can generate a unique 

candidate Itemset that does not depend on other processors. 

Repartitioning of data ensures that the processors can 

independently count the candidates in the Candidate 

Itemsets. Based on the quality of partitioning, part of the 

database may require replication on several processors. The 

processors proceed independently after candidate 

distribution. Counts or tuples don’t need to be 

communicated. However, the processors do depend on each 

other for local candidate Itemset pruning. But this is done 

asynchronously where the processors are not required to 

wait for the complete pruning information to arrive from all 

other processors. Pruning is performed using the available 

information that has arrived. The pruning information that 

arrives late can be used in the subsequent passes.  

5. Intelligent Data Distribution 

The previous algorithms suffered from some serious 

problems like speed issues on realistic parallel computers 

connected with a sparse network, causing processors to stay 

idle on architectures without support for asynchronous 

communication, and no decrease in communication required 

with a decrease in computation. The Intelligent Data 

Distribution Algorithm addresses these issues by making the 

processors send locally stored portions of the database to all 

other processors by a ring based all to all broadcast [9]. It 

overcomes the contention problem of the Data Distribution 

and other algorithms. In this algorithm, a logical ring is 

formed by the processors who determine the neighbors on 

their left and right.  Each processor has a send buffer and a 

receive buffer. In the beginning, send buffer is filled with a 

block of local data. Asynchronous send operation is initiated 

by the processors to the neighbors on their right with send 

buffer and asynchronous receive operation to the neighbors 

on left with receive buffer. The transactions in the send 

buffer are processed by the processors and the assigned 

count of the candidates is collected while the asynchronous 

operations are taking place. After this, the processors wait 

for the asynchronous operations to complete. Then the send 

buffer and the receive buffer switch their roles and the 

operation continues. In contrast to the Data Distribution and 

other algorithms, where all processors communicate with 

each other to send and receive data, this algorithm is 

confined to only point-to-point communication between the 

neighbors. This gets rid of the communication contention. 

The redundant work problem of the previous algorithms is 

solved by intelligent partitioning of the Candidate Itemsets. 

6. Hybrid Distribution 

The Intelligent Data Distribution Algorithm utilizes the 

memory by partitioning the Candidate Itemsets among all 

the processors. With the increase in the number of 

processors, the number of candidates assigned to them 

decreases. Therefore, with fewer candidates per processor, 

balancing the work gets difficult. Also, the hash tree gets 

smaller due to fewer candidates resulting in the amount of 

computation being less than the communication involved. 

This reduces the efficiency and poses serious problems for 

the systems which cannot perform asynchronous 

communication. The Hybrid Distribution Algorithm 

combines the Count Distribution Algorithm and the Data 

Distribution Algorithm to overcome these problems. This 
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algorithm partitions the transactions and the Candidate 

Itemsets among the processors of equal size groups. Within 

these groups, the Intelligent Data Distribution Algorithm is 

used to compute the counts. The Hybrid Distribution 

Algorithm, while retaining the goodness of the Intelligent 

Data Distribution Algorithm, provides good load balance 

and cuts down data movement. 

 

7. Conclusions 
 

In this paper, we have covered the essence of the popular 

parallel algorithms developed so far in the area of Frequent 

Itemset Mining. Developing parallel algorithms has proved 

to be a very challenging yet exciting task. Going by the 

interests shown by the researchers, advancements in the 

field over time, and ever increasing demands of speed and 

resource utilization, the future of the research in this area 

promises exciting results. 
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