
International Journal of Scientific Research and Management (IJSRM)

||Volume||5||Issue||06||Pages||5588-5590||2017||

Website: www.ijsrm.in ISSN (e): 2321-3418

Index Copernicus value (2015): 57.47 DOI: 10.18535/ijsrm/v5i6.34

Nafisur Rahman, IJSRM Volume 5 Issue 06 June 2017 [www.ijsrm.in] Page 5588

Parallel State of the Art Algorithms for Frequent Itemset Mining – A

Concise Descriptive Summary of Scalable Approaches

Nafisur Rahman
1
, Samar Wazir

2

1
Department of Computer Science and Engineering,

 Faculty of Engineering Sciences and Technology,

Jamia Hamdard, New Delhi

nafiis@gmail.com

2
Department of Computer Science and Engineering,

 Faculty of Engineering Sciences and Technology,

Jamia Hamdard, New Delhi

samar.wazir786@gmail.com

Abstract: Frequent Item set Mining is a Data Mining task that has attracted the researchers’ interests in a way that very few

other tasks have done. This concept is generally used in Decision Support problems. Many serial and parallel algorithms

have been developed for Frequent Item set Mining. In this paper, we have focused on the developments of parallel

algorithms in this area so far. We start with an Apriori-based parallel algorithm that focuses on minimizing the

communication overhead even if, in parallel, it requires redundant duplicate computations. Then we discuss an algorithm

that utilizes the system memory in amore effective manner. Then we give an account of the algorithm that reduces the

synchronization between the processors, segments the database, and integrates load balancing. Then we describe an

algorithm that partitions the Candidate Item sets intelligently. Finally, we give an account of an algorithm that combines

two famous algorithms to leverage their cumulative advantage. While keeping the original ideas intact, we have avoided the

cumbersome notations to keep it easily intelligible.

Keywords: Data Mining, Frequent Itemsets, Market Basket Analysis, Serial Algorithms, Parallel Algorithms.

1. Introduction

Data Mining [10], [12] is aimed at discovering valuable

information, which is otherwise non-obvious, from an

enormously large collection of data. According to the

terminologies used in the field of Data Mining, Frequent

Itemsets [1] refer to interesting patterns discovered from

databases. An Itemset is a collection of one or more items.

An Itemset with a support equal to or more than a minimum

support threshold, it is called a Frequent Itemset. Frequent

Itemset Mining has been very useful in Market Basket

Analysis. It is extensively applied in various decision

support problems intended to help different types of

businesses. Several approaches have been employed, over

the years, for Frequent Itemset Mining [11]. Some of the

algorithms follow serial approach while others follow

parallel approach [2], [8]. Many Apriori-based [3] parallel

algorithms have been proposed. The Count Distribution

Algorithm [4] allows redundant computations in parallel and

idle processors to cut down the communication

requirements. The Data Distribution Algorithm [4] exploits

the aggregate system memory in a better way and ensures

that the processors count mutually exclusive candidates

thereby increasing the number of candidates counted with

the increase in the number of processors. The Candidate

Distribution Algorithm [4] partitions both the datasets and

the Candidate Itemsets in such a way that ensures

processors’ independence. The Intelligent Data Distribution

Algorithm [5], [6], [7] partitions the Candidate Itemsets

intelligently so that hash tree can be efficiently built in a

parallel fashion. The Hybrid Distribution Algorithm [5], [6],

[7] combines the goodness of both Count Distribution

Algorithm and the Data Distribution Algorithm.

2. Count Distribution

This algorithm aims to avoid communication by following

the principle of redundant parallel computations. The

algorithm makes a number of passes to find all the Frequent

Itemsets. In the first pass, local Candidate Itemsets are

generated by all the processors dynamically depending on

the items present in the local datasets. In all subsequent

passes, the processors generate the complete candidate

Itemset based on the complete frequent Itemset discovered

mailto:samar.wazir786@gmail.com

DOI: 10.18535/ijsrm/v5i6.34

Nafisur Rahman, IJSRM Volume 5 Issue 06 June 2017 [www.ijsrm.in] Page 5589

in the previous pass. Then the processors make a pass over

their local partitioned data sets to develop the local support

counts for the candidates in their respective Candidate

Itemsets. The processors then exchange local Candidate

Itemsets’ counts with each other to develop global

Candidate Itemsets’ counts. The processors are then

synchronized before they find the Frequent Itemsets from

the Candidate Itemsets. The processors independently

decide whether to terminate or to move on to the next pass.

3. Data Distribution

While the independent and asynchronous operation of the

processors is ensured by the Count Distribution Algorithm,

it does not fare very well on memory utilization front. The

Data Distribution Algorithm is aimed at better memory

utilization of the total system memory with the increase in

the number of processors. This algorithm relies on each

processor counting mutually exclusive candidates.

 Like Count Distribution, Data Distribution Algorithm too

makes a number of passes. The process of local candidate

Itemset generation in the first pass is same as that in the

Count Distribution Algorithm. In all subsequent passes, the

processors generate the complete candidate Itemset based on

the complete frequent Itemset discovered in the previous

pass and retain only one nth of the Candidate Itemsets

creating a subset, that will be counted, of the Candidate

Itemsets. The Itemsets to be retained is determined by the

processor id and it does not require communicating with

other processors. Then the processors develop the local

support counts for the candidates in their respective

Candidate Itemsets using both the local datasets and the

datasets received from other processors. The processors then

compute the Frequent Itemsets using the local subsets of the

Frequent Itemsets. The processors then exchange these local

Frequent Itemsets to find the complete global frequent

Itemset.

4. Candidate Distribution

Both the algorithms discussed above require consulting all

the processors and gathering all the information before

proceeding to the next pass. The Candidate Distribution

Algorithm aims to overcome these dependencies. This is

achieved by both the datasets and the Candidate Itemsets in

a way that ensures independent functioning of all the

processors. This algorithm divides the Frequent Itemsets, in

some heuristically determined pass, between the processors

in such a way that each processor can generate a unique

candidate Itemset that does not depend on other processors.

Repartitioning of data ensures that the processors can

independently count the candidates in the Candidate

Itemsets. Based on the quality of partitioning, part of the

database may require replication on several processors. The

processors proceed independently after candidate

distribution. Counts or tuples don’t need to be

communicated. However, the processors do depend on each

other for local candidate Itemset pruning. But this is done

asynchronously where the processors are not required to

wait for the complete pruning information to arrive from all

other processors. Pruning is performed using the available

information that has arrived. The pruning information that

arrives late can be used in the subsequent passes.

5. Intelligent Data Distribution

The previous algorithms suffered from some serious

problems like speed issues on realistic parallel computers

connected with a sparse network, causing processors to stay

idle on architectures without support for asynchronous

communication, and no decrease in communication required

with a decrease in computation. The Intelligent Data

Distribution Algorithm addresses these issues by making the

processors send locally stored portions of the database to all

other processors by a ring based all to all broadcast [9]. It

overcomes the contention problem of the Data Distribution

and other algorithms. In this algorithm, a logical ring is

formed by the processors who determine the neighbors on

their left and right. Each processor has a send buffer and a

receive buffer. In the beginning, send buffer is filled with a

block of local data. Asynchronous send operation is initiated

by the processors to the neighbors on their right with send

buffer and asynchronous receive operation to the neighbors

on left with receive buffer. The transactions in the send

buffer are processed by the processors and the assigned

count of the candidates is collected while the asynchronous

operations are taking place. After this, the processors wait

for the asynchronous operations to complete. Then the send

buffer and the receive buffer switch their roles and the

operation continues. In contrast to the Data Distribution and

other algorithms, where all processors communicate with

each other to send and receive data, this algorithm is

confined to only point-to-point communication between the

neighbors. This gets rid of the communication contention.

The redundant work problem of the previous algorithms is

solved by intelligent partitioning of the Candidate Itemsets.

6. Hybrid Distribution

The Intelligent Data Distribution Algorithm utilizes the

memory by partitioning the Candidate Itemsets among all

the processors. With the increase in the number of

processors, the number of candidates assigned to them

decreases. Therefore, with fewer candidates per processor,

balancing the work gets difficult. Also, the hash tree gets

smaller due to fewer candidates resulting in the amount of

computation being less than the communication involved.

This reduces the efficiency and poses serious problems for

the systems which cannot perform asynchronous

communication. The Hybrid Distribution Algorithm

combines the Count Distribution Algorithm and the Data

Distribution Algorithm to overcome these problems. This

DOI: 10.18535/ijsrm/v5i6.34

Nafisur Rahman, IJSRM Volume 5 Issue 06 June 2017 [www.ijsrm.in] Page 5590

algorithm partitions the transactions and the Candidate

Itemsets among the processors of equal size groups. Within

these groups, the Intelligent Data Distribution Algorithm is

used to compute the counts. The Hybrid Distribution

Algorithm, while retaining the goodness of the Intelligent

Data Distribution Algorithm, provides good load balance

and cuts down data movement.

7. Conclusions

In this paper, we have covered the essence of the popular

parallel algorithms developed so far in the area of Frequent

Itemset Mining. Developing parallel algorithms has proved

to be a very challenging yet exciting task. Going by the

interests shown by the researchers, advancements in the

field over time, and ever increasing demands of speed and

resource utilization, the future of the research in this area

promises exciting results.

References

[1] V. Kumar and M. Joshi, “Tutorial on High Performance

Data Mining”, International Conference on High

Performance Computing (HiPC-98), Dec. 1998.

[2] M. Chen, J. Han and P. S. Yu, "Data Mining: An

overview from a Database Perspective", IEEE

Transactions on Knowledge and Data Engineering, vol.

8, no. 6. Dec. 1996, pp. 866-883.

[3] R. Agrawal and R. Srikant, "Fast Algorithms for

Mining Association Rules", Proc. of the 20
th

 VLDB

Conference, Santiago, Chile, 1994, pp. 487-499.

[4] R. Agrawal and J. C. Shafer, "Parallel Mining of

Association Rules", IEEE Transactions on Knowledge

and Data Engineering, vol. 8, no. 6. Dec. 1996, pp. 962-

969.

[5] E. Han, G. Karypis and V. Kumar, "Scalable Parallel

Data Mining for Association Rules", Proc. 1997 ACM-

SIGMOD Int. Conf. on Management of Data, Tucson,

Arizona, 1997.

[6] E. Han, G. Karypis and V. Kumar, "Scalable Parallel

Data Mining for Association Rules", IEEE Transactions

on Knowledge and Data Engineering, vol. 12, no. 3,

May/June 2000, pp. 337-352.

[7] M. V. Joshi, E. Han, G. Karypis and V. Kumar,

"Efficient Parallel Algorithms for Mining

Associations", URL: http://www.cs.umn.edu/~kumar.

[8] M. J. Zaki, "Parallel and Distributed Association

Mining: A Survey", IEEE Concurrency, Oct. - Dec.

1999, pp. 14-25.

[9] Vipin Kumar, Ananth Grama, Anshul Gupta, and

George Karypis, “Introduction to parallel computing:

Algorithm Design and Analysis”, Benjamin

Cummings/Addison Wesley, Redwood City, 1994.

[10] Han J. and Kamber M. (2006) “Data Mining Concepts

and Techniques”, Second edition, Morgan Kaufmann

Publishers.

[11] Agarwal C. C. and Han J. (2014) “Frequent Pattern

Mining”, Springer, 2014.

[12] Alex Berson and Stephen J. Smith, “Data Warehousing,

Data Mining, & OLAP”, TMH Edition-2004.

Author Profile

Nafisur Rahman received the B.Tech and M.Tech degrees in

Computer Science and Engineering in 2012 and 2014, respectively.

Since 2015, he has been teaching various courses, as an Assistant

Professor, in the Department of Computer Science and Engineering

(School of Engineering Sciences and Technology), Jamia

Hamdard, New Delhi

Samar Wazir received the B.Tech in Information

Technology and M.Tech in Computer Science in 2008 and 2012,

respectively. Since 2014, he has been teaching various courses, as

an Assistant Professor, in the Department of Computer Science and

Engineering (School of Engineering Sciences and Technology),

Jamia Hamdard, New Delhi

