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Abstract 

Islanded DC microgrids are pivotal for ensuring autonomous, resilient, and efficient power systems in space 

habitats and unmanned aerial vehicles (UAVs). Recent research and development by NASA, Boeing, and the 

U.S. Air Force have focused on integrating solar photovoltaic (PV) systems with advanced energy storage 

solutions to support off-grid operations. This paper presents a comprehensive and uniquely conceptualized 

model that combines deep learning, artificial intelligence algorithms, and advanced optimization techniques 

for the control, stability, error detection, and power optimization of Islanded DC Microgrids used in space 

habitats and UAVs. 

 

1. Introduction 

The next-generation energy systems for extraterrestrial bases and long-endurance aerial vehicles demand 

autonomous operation, fault resilience, and adaptive intelligence. This proposed model introduces an Artificial 

Intelligence-Enabled Deep Learning Control Architecture (AI-DLCA) for Islanded DC Microgrids, 

specifically engineered for lunar/Martian habitats and UAV platforms operating in off-grid, communication-

limited environments. 

 

2. Framework Overview 

The proposed system consists of four integrated modules: 

• (Module 1.A) Deep Neural Control Module (DNCM) 

• (Module 1.B) Predictive Optimization Engine (POE) 

• (Module 1.C) Fault Diagnosis and Self-Healing Module (FD-SHM) 
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   Figure 1: . 

• (Module 1.D) Stability Learning and Voltage Forecasting Layer (SVFL) 

These modules interact through a unified AI controller hosted on an edge AI chip or FPGA-based deep learning 

platform. 

 

3. Deep Neural Control Module (DNCM) 

Objective 

To provide real-time autonomous control of converters, energy storage systems, and load distribution. 

Approach 

• Utilizes a multi-head attention-based transformer network to analyze timeseries data from sensors (voltage, 

current, load, SOC). 

• Replaces conventional PID/droop control logic with learned control mappings, continuously updated 

during operation. 

Benefits 

• Zero-dependency on fixed tuning parameters. • Adaptively scales control strategy based on real-time 

variations in solar input, load shifts, and battery SOC fluctuations. 

4. Implementation of DNCM (Python/Colab) 

Step 1: Sensor Data Simulation 

Simulated data includes: 

• Node voltages Vi(t), currents Ii(t), 

• Load demand Li(t), 

• Battery State-of-Charge SOC(t). 

Step 2: Data Normalization 

Each input feature x is scaled using MinMaxScaler: 

 
Step 3: Transformer Model 

We employ a multi-head attention transformer to map sequence input to control output. Attention scores are 

computed as: 
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where Q, K, V are query, key, and value matrices and dk is the feature dimension. 

Step 4: Loss Function 

The model is trained using Mean Squared Error (MSE) between predicted and actual control vectors: 

 
Step 5: Inference and Control Replacement 

During inference, the model receives: 

Xt−60:t = {xt−60,xt−59,...,xt} 

and outputs: 

uˆt = fTransformer(Xt−60:t) 

which directly controls the converter or load dispatch unit. 

Step 6: Online Learning 

The model adapts via periodic fine-tuning using new labeled data: 

θt+1 ← θt − η∇θLnewbatch 

where θ are model parameters and η is the learning rate. 

Step 7: Results 

Initial performance improvements include: 

• Reduction in voltage ripple ∆V , 

• Improved battery SOC balancing: 

 
• Smooth transition under dynamic loads. 

 

5. Outcome of Module 1.A 

We have implemented and tested an AI-Driven Deep Learning Control Framework for Islanded DC Microgrids, 

designed for off-grid space and aerial environments. The Transformer-based DNCM significantly improves 

control precision and system resilience. Future work includes FPGA-based real-time deployment and full 

integration with optimization and diagnostic modules. 

 

6. Module 1.B Predictive Optimization Engine (POE) 

Objective 

To maximize energy utilization and efficiency via continuous optimization of generation and storage schedules. 

Approach 

The Predictive Optimization Engine integrates: 

• Deep Q-Network (DQN)-based reinforcement learning for decisionmaking, 

• Long Short-Term Memory (LSTM) neural networks for forecasting solar irradiance and load demand. 
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Figure 2: . 

 

Key Optimization Targets 

• Optimal battery dispatch schedule Db(t), 

• Efficient converter operation C(t), 

• Priority-based load allocation Lp(t) across mission-critical systems: 

LifeSupport > ScienceModules > Mobility 
 

6.1. Implementation Steps 

1. Problem Context 

The POE manages energy from solar PV and batteries in a space mission, aiming to: 

• Maximize mission energy reliability, 

• Prolong battery health, 

• Respect real-time constraints. 

2. Data Preparation 

Datasets include: 

• Planetary solar irradiance profiles S(t), 

• Time-series load demand Li(t) by subsystem i, 

• Battery state-of-health Hb(t) and SOC profiles. 

3. Forecasting via LSTM 

We train an LSTM to forecast: S
ˆ
(t+1),S

ˆ
(t+2),...,S

ˆ
(t+k) = LSTMsolar(St−p:t) 

L
ˆ
i(t + 1),...,L

ˆ
i(t + k) = LSTMload(Li,t−p:t) where p is the input sequence length and k is the prediction horizon. 

4. RL Environment Simulation 

The environment models: 

• Solar generation G(t), 

• Battery charge/discharge dynamics: 
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• Converter efficiency ηconv, 

• Load prioritization constraints: 

Lserved(t) = Xwi · 1{Li(t) ≤ Eavailable(t)} 

i 

where wi is the mission weight for subsystem i. 

 

5. State and Action Space 

State Vector: 

st = hSOC(t),S
ˆ
(t),L

ˆ
(t),Hb(t),t

i
 

Action Vector: 

at = [δcharge,δdischarge,δconverter] 

where δ ∈ [0,1] for continuous actions or {0,1} for discrete. 

 

6. Reward Function 

We define a composite reward: 

Rt = α1Rutil + α2Rpriority − α3Rloss − α4Rbattery strain 

 Where: R  

 
 

7. Deep Q-Network (DQN) 

We approximate the action-value function: 

 
The network is trained using the Bellman update: 

 
where θ

− 
is the target network’s parameters and η is the learning rate. 

 

8. Training Procedure 

• Simulate multiple mission days with varied conditions. 

• Use ε-greedy policy for exploration. 

• Update experience replay buffer and periodically refresh target network. 

 

9. Optimization Parameters Tracked 

• Battery dispatch: Db(t), 

• Converter cycles: C(t), 

• Load satisfaction and mission compliance: 

 
 

10. Evaluation Metrics 

We analyze: 

• Forecast accuracy (RMSE of Sˆ(t),Lˆ(t)), 

• Mean cumulative reward: 
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• Battery degradation reduction rate, 

• Energy utilization: 

 
 

Outcome of Module 1.B 

The Predictive Optimization Engine (POE) blends deep reinforcement learning with time-series forecasting to 

create a self-improving, mission-aware control strategy. Its reward-driven optimization respects both 

operational efficiency and critical load priorities, making it suitable for energy-constrained and autonomous 

extraterrestrial systems. 

7 Module 1.C. Fault Diagnosis and Self-Healing Module (FDSHM) 

Objective: To detect, localize, and isolate electrical faults and component anomalies without external 

supervision. 

 
Figure 3: . 

Approach 

• Uses a Convolutional Neural Network (CNN) trained on synthetic fault signatures: 

– Short circuits, 

– Insulation breakdown, – Converter noise. 

• Upon fault detection: 

– Executes graph-based energy rerouting algorithms. 

– Uses a self-healing logic tree. 

– Isolates affected zones and activates backup pathways. 

Features: 

• Fault type classification (soft/hard). 

• Prognostics for failure forecasting (e.g., lithium degradation trends). 

• Alert system for mission control with diagnostic logging. 
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7.1. System Scope Definition 

The system supports autonomous detection and resolution of electrical faults in space missions, maintaining 

uninterrupted operations. 

7.2. Synthetic Fault Data Preparation 

Let  be the dataset where: 

• xi is a time-series or waveform signal, 

• yi ∈ {short,insulation,converternoise} is the fault label. 
Data is augmented with noise, scaling, and translation for robustness. 

 

7.3. CNN Model Design 

Let the CNN classifier be fθ(x): 

 yˆ = softmax(fθ(x)) (1) 

where ˆy is the probability vector over fault types. 

7.4. Training the CNN 

We minimize the categorical cross-entropy loss: 

 N C 

 L(θ) = −XXyi,c log ˆyi,c (2) 

i=1 c=1 

where yi,c is the one-hot encoded true label. 

 

7.5 Real-Time Fault Monitoring 

Signal streams S(t) from sensors are continuously passed to the trained model for: 

 diagnosis(t) = argmaxfθ(S(t)) (3) 

Anomalies trigger self-healing sequences. 

7.6 Fault Localization and Classification 

Let Li be the location tag associated with xi. Fault classification: 

• Soft fault: low confidence, intermittent pattern. 

• Hard fault: high confidence, persistent signal anomaly. 

 

7.7 Self-Healing Logic Tree 

Define the power network as a graph G = (V,E), where: 

• V : Nodes (buses, loads), 

• E: Edges (wires, converters). 

When a fault occurs at node vf: 

1. Isolate vf. 

2. Search G for alternative path Palt: 

Palt = arg min cost(P), P ∩ vf = ∅ P∈P 
3. Update switching logic to reroute power via Palt. 

7.8 Prognostic Failure Forecasting 

We fit a degradation model: 

(4) 
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H(t) = H0 − αt + β log(t + 1) 

where: 

• H(t) is health index at time t, 

• H0 is initial health, 

• α,β are degradation parameters. 

Forecast failure when H(t) < Hcrit. 

7.9 Alert and Logging System 

Define alert vector: 

(5) 

A(t) = [fault type,Li,yˆc,Palt] (6) 

which is transmitted to mission control with diagnostics and reroute details. 

7.10 Evaluation and Verification 

Model is evaluated via: 

• Classification accuracy: 

  (7) 

• False positive rate: 

  (8) 

• Rerouting success rate: 

  (9) 

Module 1.D Stability Learning and Voltage Forecasting Layer (SVFL) 

 

Objective 

To ensure long-term bus voltage regulation and harmonic stability using intelligent prediction and feedback 

systems. 

 

Approach 

• Utilize a Graph Neural Network (GNN) to model dynamic interconnections (PV, BESS, loads, converters). 

• Learn voltage ripple and temporal trends in microgrid behavior. 

• Predict instability and issue corrective signals to DNCM for pre-emptive control. 

Unique Features 

• Real-time voltage forecasting (30–60 min horizon). 

• Dynamic droop control adjustment using forecasted profiles. 

8 Microgrid Structure 

Components: 

• Photovoltaic (PV) arrays 

• Battery Energy Storage Systems (BESS) 

• DC Loads 

• Converters, Busbars 

Define nodes ni and edges eij to form graph G = (V,E). 
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Figure 4: , 

 

9. Graph Representation 

Each node vi represents a component. Each edge eij reflects electrical/path influence. 

 Aij = {1 ,ifnodei ↔ j0,otherwise (10) 

10 GNN Design 
 

Input features  per node: 

• Voltage magnitude Vi
t
 

• Harmonic components Hi
t
 

• Power flow Pi
t
 

Temporal message passing: 

  (11) 

 

11. Voltage Time-Series Dataset 

• Collect  for all nodes i and times t 

• Include instability events, ripple data 

• Feature vector: [  
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12. Model Training 

Minimize forecasting loss: 

 

  (12) 

Evaluate with metrics: 

• MAE, RMSE 

• Prediction latency 

• Ripple threshold accuracy 

13 Real-Time Forecasting 

Deploy trained GNN for: 

• Forecast  

• Trigger alerts if ripple > ϵ 

14 DNCM Integration 

• If instability ⇒ send correction signal 

• DNCM adjusts droop: Ri
new 

= f(V
ˆ
i) 

• Balance power and stabilize voltage 

15 Dynamic Droop Control 

  (13) 

Update Ri based on forecasted V
ˆ
i(t + τ). 

 

16. Monitoring and Alerts 

• Log forecast errors 

• Track action-response timeline 

• Trigger alarms if Confidence < δ 

17. Evaluation and Learning 

• Periodic retraining with new data 

• Long-term stability assessment 

• Ripple suppression and reliability tracking 

article amsmath, amssymb graphicx tikz 

AI-Integrated Microgrid Architecture Layers 

Layer Function AI Algorithm Used 

Primary Control Layer Local voltage stabilization Deep Transformer + Edge 

Lea 

Secondary Control 

Layer 

State-of-Charge balancing, converter 

switching 

LSTM + Adaptive RL 

Tertiary Control Layer Energy cost reduction, load prioritization DQN + Multi-objective 

Optimi 

Fault Monitoring 

Layer 

Detection, classification, and healing CNN + Fault Graph 

Isolation 

Forecasting & 

Planning 

Voltage prediction, solar load scheduling GNN + Temporal Ensemble 

Le 
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AI-Integrated Microgrid Architecture Layers 

Implementation of AI-Integrated Microgrid Architecture Layers 

1. Primary Control Layer – Local Voltage Stabilization 

AI Algorithm: Deep Transformer + Edge Learning 

1. Define voltage regulation for nodes (e.g., voltage bounds). 

2. Collect local voltage data from edge nodes (e.g., sensors). 

3. Implement a Deep Transformer model to learn spatial-temporal dependencies in voltage signals. 

4. Deploy lightweight models on edge nodes for fast inference. 

5. Predict voltage deviations and trigger reactive control. 

ut = Kp (Vsetpoint − Vt) 

6. Retrain models on edge devices using federated updates. 

 

2. Secondary Control Layer – SoC Balancing & Converter Switching 

AI Algorithm: LSTM + Adaptive Reinforcement Learning 

1. Monitor battery SoC, discharge/charge cycles, and converter states. 

2. Use LSTM to predict SoC trajectory. 

SoC
ˆ 

t+1 = LSTM(SoCt,Loadt) 

3. Design a reinforcement learning agent: 

• Reward balancing SoC across batteries. 

• Penalize over-cycling or inefficiency in switching. 

4. Train RL agent using real/simulated data. 

5. Apply real-time control to balance SoC. 

 

3. Tertiary Control Layer – Energy Cost Reduction & Load Prioritization 

AI Algorithm: Deep Q-Network (DQN) + Multi-objective Optimization 

1. Define high-level objectives: minimize costs, prioritize loads. 

2. Model system states (market prices, load demands). 

3. Implement DQN for optimal actions: 

Q(st,at) = Rt + γ maxQ(st+1,a) a 
4. Integrate multi-objective optimization: 

• Balance cost reduction, efficiency, load priority. 

• Use Pareto-based evaluation. 

5. Simulate and deploy optimized policy for operation. 

 

4. Fault Monitoring Layer – Detection, Classification & Healing 

AI Algorithm: CNN + Fault Graph Isolation Tree 

1. Generate fault signature datasets (short circuits, noise). 

2. Build CNN to classify fault types from signal images. 

3. Apply Fault Graph Isolation Tree: 

• Represent network as a fault graph. 

• Isolate affected zones. 

4. Execute rerouting to restore continuity. 

5. Log results and send alerts with fault data. 

 

5. Forecasting & Planning Layer – Voltage Prediction & Solar Load Scheduling 

AI Algorithm: Graph Neural Network (GNN) + Temporal Ensemble Learning 

1. Construct a graph of microgrid components (PVs, loads). 
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2. Collect temporal data (voltage, irradiance). 

3. Implement GNN to model spatial correlations. 

h  

4. Combine GNN with Temporal Ensemble Learning for forecasting. 

5. Use forecasts for operational planning (solar dispatch, charging schedules). article amsmath, amssymb 

graphicx tikz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI-Integrated Microgrid Architecture and Deployment Architecture AI-Integrated Microgrid Architecture 

Layers 

Implementation of AI-Integrated Microgrid Architecture Layers 

 

1. Primary Control Layer – Local Voltage Stabilization 

AI Algorithm: Deep Transformer + Edge Learning 

1. Define voltage regulation for nodes (e.g., voltage bounds). 

2. Collect local voltage data from edge nodes (e.g., sensors). 

3. Implement a Deep Transformer model to learn spatial-temporal dependencies in voltage signals. 

4. Deploy lightweight models on edge nodes for fast inference. 

5. Predict voltage deviations and trigger reactive control. 

ut = Kp (Vsetpoint − Vt) 

6. Retrain models on edge devices using federated updates. 

 

2. Secondary Control Layer – SoC Balancing & Converter Switching 

AI Algorithm: LSTM + Adaptive Reinforcement Learning 

1. Monitor battery SoC, discharge/charge cycles, and converter states. 

2. Use LSTM to predict SoC trajectory. 

SoC
ˆ 

t+1 = LSTM(SoCt,Loadt) 

3. Design a reinforcement learning agent: 

• Reward balancing SoC across batteries. 

• Penalize over-cycling or inefficiency in switching. 

4. Train RL agent using real/simulated data. 

5. Apply real-time control to balance SoC. 

Layer Function AI Algorithm Used 

Primary Control Layer Local voltage stabilization Deep Transformer + Edge 

Lea 

Secondary Control 

Layer 

State-of-Charge balancing, converter 

switching 

LSTM + Adaptive RL 

Tertiary Control Layer Energy cost reduction, load prioritization DQN + Multi-objective 

Optimi 

Fault Monitoring 

Layer 

Detection, classification, and healing CNN + Fault Graph 

Isolation 

Forecasting & 

Planning 

Voltage prediction, solar load scheduling GNN + Temporal Ensemble 

Le 
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3. Tertiary Control Layer – Energy Cost Reduction & Load Prioritization 

AI Algorithm: Deep Q-Network (DQN) + Multi-objective Optimization 

1. Define high-level objectives: minimize costs, prioritize loads. 

2. Model system states (market prices, load demands). 

3. Implement DQN for optimal actions: 

Q(st,at) = Rt + γ maxQ(st+1,a) a 
4. Integrate multi-objective optimization: 

• Balance cost reduction, efficiency, load priority. 

• Use Pareto-based evaluation. 

5. Simulate and deploy optimized policy for operation. 

 

4. Fault Monitoring Layer – Detection, Classification & Healing 

AI Algorithm: CNN + Fault Graph Isolation Tree 

1. Generate fault signature datasets (short circuits, noise). 

2. Build CNN to classify fault types from signal images. 

3. Apply Fault Graph Isolation Tree: 

• Represent network as a fault graph. 

• Isolate affected zones. 

4. Execute rerouting to restore continuity. 

5. Log results and send alerts with fault data. 

5. Forecasting & Planning Layer – Voltage Prediction & Solar Load Scheduling 

AI Algorithm: Graph Neural Network (GNN) + Temporal Ensemble Learning 

1. Construct a graph of microgrid components (PVs, loads). 

2. Collect temporal data (voltage, irradiance). 

3. Implement GNN to model spatial correlations. 

h  

4. Combine GNN with Temporal Ensemble Learning for forecasting. 

5. Use forecasts for operational planning (solar dispatch, charging schedules). 

Deployment Architecture – Step-by-Step Implementation Plan 

Objective 

To integrate the complete AI-Driven Load Control and Automation (AI-DLCA) system within a modular, 

resilient computational framework that ensures seamless interaction with distributed energy and control 

components in space and air-based environments. 

Steps for Implementation 

1. Design Modular Computing Unit: • Develop a radiation-hardened embedded computing system to 

execute multiple AI models (e.g., CNN, LSTM, GNN, DQN) simultaneously. 

• Ensure modular design for integration in both airborne (UAV) and planetary (habitat) platforms. 

2. Embed AI-DLCA Core System: 

• Deploy the AI-DLCA software stack within: 

– UAV control pods for aerial inspection, charging, and logistics. 

– Habitat power control units for core microgrid operations on lunar or Martian bases. 

3. Establish Agent Communication Framework: 

• Deploy distributed intelligent agents on physical subsystems: 

– Battery Energy Storage Systems (BESS) for SoC management and fault diagnostics. 
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– DC-DC converters for real-time voltage control. 

– Sensor arrays for monitoring environmental and system states. 

– UAV charging docks for power scheduling. 

4. Enable Inter-Agent Communication: 

• Implement low-latency communication using space-grade buses: 

– Controller Area Network (CAN) for short-distance, robust data exchange. 

– SpaceWire for high-speed networking in planetary applications. 

5. Define Data Routing and Synchronization: • Synchronize data flow between core AI-DLCA system and 

peripheral agents. 

• Optimize bandwidth by sending relevant high-priority updates or alerts. 

6. Ensure Real-Time Control Loop Integration: • Maintain feedback loops between AI model decisions 

and actuator commands. 

7. Deploy and Test in Simulation and Hardware-in-the-Loop (HIL): 

• Simulate all interactions using a digital twin or mission emulator. 

• Move toward Hardware-in-the-Loop setups for validation in extreme environments. 

article amsmath, amssymb graphicx 

AI-Driven Load Control and Automation (AI-DLCA): Innovation and Ap- 

plications 

Advantages and Novelty 

• Autonomous Operation: Minimal external commands needed. 

• Self-Learning: Adapts to aging components and mission changes. 

• Fault Resilience: Detects and heals failures without full shutdown. 

• Scalability: Modular design, extendable to advanced systems. 

Applications 

• Lunar Habitat Grids: Energy management in lunar bases. 

• Martian Modules: AI for energy in Martian habitats. 

• Stratospheric UAVs: Efficient energy for UAV missions. 

• Off-Grid Installations: Power for remote sites like military bases. 
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