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Abstract 
Heart failure (HF) is a significant cause of morbidity and mortality worldwide, with a hefty burden in low-

resource settings where diagnostic assays remain costly and limited in availability. This study examined 

whether routine haematology, coagulation, and biochemistry parameters can predict B-type Natriuretic 

Peptide, High-sensitivity Troponin and C-reactive Protein in HF patients using machine learning (ML). 

Methods: 

We prospectively enrolled 579 adults with HF at Alex Ekwueme Federal University Teaching Hospital, 

Abakaliki. We collected 10 mL of venous blood for laboratory investigations and obtained demographic 

and clinical data from their medical records. We processed the data in Python 3.12 and applied feature 

selection techniques including correlation thresholds, recursive feature elimination, its standard libraries. 

We trained and evaluated nine models, choosed the best model for each biomarker, and conducted sex-

stratified analyses to compare performance between male and female participants. 

Results: 

Important predictors included Urea, creatinine, eGFR, D-dimer, fibrinogen, and neutrophil-to-lymphocyte 

ratio (NLR). Models that combined all the parameters outperformed single-domain models. CatBoost 

produced the best results for BNP (R² 0.30–0.33), ElasticNetCV for hs-Troponin (R² 0.09–0.12), and 

Ridge/ElasticNetCV for CRP (R² 0.53–0.54). SHAP analysis indicated that Urea and D-dimer strongly 

influenced BNP, while NLR, eGFR, and fibrinogen contributed most to the predictions of hs-Troponin and 

CRP. Sex-stratified models showed consistent behaviour across algorithms, with only minor differences in 

predictive strength. 

Conclusion: 

Routine laboratory data can estimate BNP, hs-Troponin, and CRP using ML in patients with HF from low-

resource settings.  

 

Keywords: Heart failure, Machine learning, BNP, High-sensitivity troponin, C-reactive protein, Routine 

laboratory tests, Cardiac biomarker prediction, Low-resource settings 

 

Introduction 
Machine Learning Prediction of B-type Natriuretic Peptide (BNP), High-sensitivity Troponin (TnT), and C-

reactive Protein (CRP) from Routine Blood Tests in Heart Failure Patients: Evidence from Abakaliki, 
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Ebonyi State, Nigeria examines a critical challenge in cardiovascular diagnostics within low-resource 

environments. Machine learning (ML), a branch of artificial intelligence, enables algorithms to identify 

complex data patterns and generate predictions without requiring task-specific programming. In 

cardiovascular medicine, ML has shown potential as a practical alternative to direct biomarker assays, such 

as BNP, high-sensitivity troponin, and CRP (1,2). These routinely available tests hold particular value in 

sub-Saharan Africa, where standardised biomarker assays remain inaccessible or unaffordable. 

 

Coagulation indices, inflammatory markers, and renal function measures show strong associations with 

BNP, troponin, and CRP, reflecting myocardial stress, systemic inflammation, and impaired clearance (3,4). 

However, most existing ML models have been developed in high-income countries, with minimal 

application in African populations, where HF typically presents earlier, progresses more severely, and occurs 

under significant diagnostic and socioeconomic limitations (5,6). 

 

This study aimed to evaluate whether routine haematological, coagulation, and biochemical parameters can 

predict BNP, hs-Troponin, and CRP in Nigerian HF patients using ML. Our objective was to develop and 

validate prediction models tailored to this population and to determine whether surrogate biomarker 

estimation can be applied in clinical care under resource-constrained conditions. 

 

2.0 Methods 

2.1 Study Design and Setting 
 

We conducted a prospective, single-centre observational study at Alex Ekwueme Federal University 

Teaching Hospital, Abakaliki (AEFUTHA), a tertiary referral hospital in southeastern Nigeria. The facility 

provides care to a predominantly low-resource population and offers essential diagnostic laboratory services. 

The Research Ethics Committee approved the protocol (Reference Number: AEFUTHA/REC/VOL 

3/2020/119). We obtained written informed consent from all participants. 

 
 

2.2 Study Population 
 

We enrolled 579 adult patients (≥18 years) with a clinical diagnosis of HF who visited the cardiology unit at 

AEFUTHA between January 2021 and October 2024. We recruited participants consecutively during clinic 

visits to limit selection bias. We excluded patients with active infections, hematologic malignancies, a 

history of blood transfusion within the previous 14 days, or an inability to provide informed consent. 

 
 

2.3 Sample Size Estimation 
 

We determined the sample size based on both statistical power and the requirements of the ML model. 

Detecting a modest correlation (r = 0.20) between routine laboratory parameters and BNP, hs-Troponin, and 

CRP at 80% power and a 5% significance level required at least 200 participants. For ML training, we 

applied the rule of at least 10 observations per predictor variable, which indicated a larger cohort. Allowing 

for 20% attrition or incomplete data, we targeted recruitment at 579 participants. 
 

 
 
 
 

2.4 Data Collection 
 

We collected 10 mL of venous blood from each participant into appropriate anticoagulated tubes. Laboratory 

investigations—including complete blood count, coagulation profile, renal and liver function tests, lipid 

profile, and cardiac biomarkers (BNP, hs-Troponin, and CRP)—were performed using validated automated 

analysers under strict internal and external quality control protocols. We extracted demographic data, 

comorbidities, vital signs, and body mass index (BMI) from patient records and entered all data into a 

password-protected Excel file. 

 
 

2.5 Laboratory Analysis 
 

We performed laboratory tests in the Clinical Chemistry, Haematology, and Coagulation laboratories of 

AEFUTHA. We measured haematological parameters on the Sysmex XN-500 automated analyser, 

conducted coagulation assays on the Sysmex CA-1500 system, and analysed renal, hepatic, electrolyte, and 

lipid parameters on the Selectra Pro S chemistry analyser. We strictly followed the manufacturer's 

instructions and applied internal quality control measures to ensure accuracy. 
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2.6 Data Analysis 
 

We conducted all data analyses in Python (version 3.12) using core libraries, including scikit-learn, pandas, 

NumPy, XGBoost, LightGBM, CatBoost, SHAP, and StatsModels. We preprocessed the data by examining 

continuous predictors for distributional properties with the Shapiro test, log-transforming skewed variables 

to reduce skewness, and standardising them with the RobustScaler. We removed missing values from both 

predictors and covariates before analysis. We defined BNP, hs-troponin, and CRP as the primary study 

outcomes, while routine haematological, coagulation, and biochemical parameters—excluding the outcome 

biomarkers—served as predictor variables with vital covariates.  

 

2.7 Exploratory Analysis and Features Selection 
 

We began our exploratory analysis by applying descriptive statistics and generating visualisations such as 

Spearman correlation heatmaps to explore pairwise relationships among predictors. To manage 

multicollinearity and reduce dimensionality without losing interpretability, we implemented a multi-step 

feature selection strategy. This strategy combined correlation-based screening, recursive feature elimination 

with cross-validation, tree-based variable importance ranking, L1-regularised regression, and model-

agnostic methods such as Shapley Additive exPlanations (SHAP). We prioritised features consistently 

identified as important across at least five methods and retained the top ten predictors for each biomarker 

model. This approach balanced predictive accuracy with clinical interpretability and minimised the risk of 

overfitting in subsequent machine learning models. 
 

 

2.8 Machine Learning Model Development 
 

We built separate regression models for each biomarker—BNP, hs-troponin, and CRP—using three predictor 

sets: haematology alone, biochemistry alone, and a combined dataset. To capture both simple and complex 

relationships, we trained a diverse set of machine learning algorithms, ranging from linear models to non-

linear methods such as ensemble trees, regularised regression, and kernel-based approaches. Model training 

followed a nested 5 × 5 cross-validation framework, with inner loops dedicated to hyperparameter tuning 

and outer loops used for unbiased performance evaluation. To enhance generalisability and minimise 

spurious associations, we adjusted all models for prespecified clinical confounders. 
 

 

2.9 Model Evaluation 
 

We assessed model performance using a set of complementary metrics, including explained variance, R² 

(with adjusted R²), RMSE, MAE, and median absolute error. To examine calibration, we estimated slopes 

and intercepts to test how well predicted values matched observed outcomes. We also analysed residuals to 

check assumptions of homoscedasticity and normality and to identify any systematic biases. By combining 

these approaches, we ensured that the models were not only accurate but also reliable and well-calibrated for 

clinical use. 

 
 

2.10 Model Interpretability  
We used SHAP values to assess the contribution of each predictor to the prediction of each biomarker. By 

comparing results across different algorithms, we identified which models performed best for each 

biomarker and predictor combination. Predictors that consistently appeared as important were noted as 

potential surrogate or supplementary biomarkers, especially in settings where direct measurement of BNP, 

hs-troponin, or CRP may not be readily available. By integrating interpretability with predictive modelling, 

we maximised translational value and strengthened the link between methodological rigour and clinical 

applicability. 
 

 

3.0 Results 
 

Table 1. Baseline Continuous Variables 
 

Category Variable Median [IQR]  

Clinical & Demographic Age (years) 66.00  [20.00]  
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Category Variable Median [IQR]  

 Body temperature (°C) 36.30  [0.30]  

 Pulse (beats/min) 85.00  [26.00] 

 Respiration (breaths/min) 19.00  [2.00]  

 Systolic blood pressure (mmHg) 130.00  [34.00]  

 Diastolic blood pressure (mmHg) 75.00  [21.00]  

 Mean arterial pressure (mmHg) 93.33  [22.00]  

 Weight (kg) 50.00 [15.00]  

 Height (m) 1.57 [0.14]  

 BMI (kg/m²) 20.54 [5.07] 

 Charlson Comorbidity Index (score) 2.00 [2.00]  

Hematology & Coagulation White blood cell count (×10³/µL) 6.69 [4.16]  

 Neutrophil count (×10³/µL) 4.97 [3.69]  

 Lymphocyte count (×10³/µL) 0.90 [0.67]  

 Monocyte count (×10³/µL) 0.45 [0.30]  

 Basophil count (×10³/µL) 0.03 [0.02]  

 Eosinophil count (×10³/µL) 0.05 [0.11]  

 RBC (×10⁶/µL) 3.90 [0.91]  

 Hemoglobin (g/L) 118.00 [28.00]  

 Hematocrit (%) 36.00 [8.00]  

 RDW-CV (%) 14.40 [1.90]  

 RDW-SD (fL) 48.10 [6.25]  

 MCV (fL) 93.40 [7.45]  

 MCH (pg) 30.50 [2.95]  

 MCHC (g/L) 326.00 [16.00] 

 MPV (fL) 12.00 [2.20]  

 Platelet count (×10³/µL) 142.00 [79.00] 

 PDW (%) 16.30 [0.70]  

 NLR 5.53 [5.96]  

 PLR 159.00 [131.71]  

 MLR 0.50 [0.48]  

 LMR 2.00 [1.70]  

 PCT (%) 0.17 [0.08]  

 D-dimer (mg/L) 1.31 [1.71]  

 INR 1.22 [0.22]  

 APTT (s) 34.20 [6.85] 

 Thrombin time (s) 17.20 [1.50]  

 Prothrombin activity (%) 67.37 [19.93] 

 Prothrombin time ratio 1.22 [0.22]  

 Fibrinogen (g/L) 3.01 [1.25]  

Biochemistry Creatinine (µmol/L) 85.90 [52.10]  

 Urea (mmol/L) 7.71 [5.26]  

 Uric acid (µmol/L) 440.00 [203.50]  

 eGFR (mL/min/1.73 m²) 66.72 [45.62]  

 Cystatin C (mg/L) 1.59 [0.98]  
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Category Variable Median [IQR]  

 Calcium (mmol/L) 2.28 [0.21]  

 Potassium (mmol/L) 3.84 [0.75]  

 Chloride (mmol/L) 102.60 [7.70] 

 Sodium (mmol/L) 139.00 [5.75] 

 Albumin (g/L) 36.60 [5.95]  

 Globulin (g/L) 28.20 [6.60]  

 Indirect bilirubin (µmol/L) 11.60 [9.50]  

 Direct bilirubin (µmol/L) 6.60 [6.20]  

 Total bilirubin (µmol/L) 18.20 [15.45]  

 Alkaline phosphatase (U/L) 80.00 [38.00]  

 Total protein (g/L) 64.60 [9.80]  

 Total cholesterol (mmol/L) 3.62 [1.34]  

 LDL-C (mmol/L) 1.74 [0.98]  

 Triglyceride (mmol/L) 0.94 [0.56]  

 HDL-C (mmol/L) 1.08 [0.47]  

 Total cholesterol/HDL-C ratio 3.26 [1.57]  

Cardiac Biomarkers High-sensitivity troponin (ng/mL) 0.06 [0.09]  

 Brain natriuretic peptide (pg/mL) 770.76 [1596.92] 

 CRP (mg/L) 9.40 [23.25]  

 

Values are expressed as median [interquartile range]. Abbreviations: BMI, body mass index; RBC, red blood 

cell; Hb, hemoglobin; RDW-CV, red cell distribution width–coefficient of variation; RDW-SD, red cell 

distribution width–standard deviation; MCV, mean corpuscular volume; MCH, mean corpuscular 

hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MPV, mean platelet volume; PDW, 

platelet distribution width; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; MLR, 

monocyte-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; PCT, plateletcrit; INR, international 

normalized ratio; APTT, activated partial thromboplastin time; eGFR, estimated glomerular filtration rate; 

LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CRP, C-reactive 

protein. 

 

Table 1 summarises the baseline characteristics of the study population. We reported the continuous 

variables as median values with corresponding interquartile ratios (IQR). The cohort had a median age of 74 

± 20 years and a BMI of 20.5 ± 5.1 kg/m². Vital signs included a resting pulse of 85 ± 26 beats/min, a 

respiration rate of 19 ± 2 breaths/min, and blood pressures of 130 ± 34 mmHg (systolic) and 75 ± 21 mmHg 

(diastolic), yielding a mean arterial pressure of 93 ± 22 mmHg. Median body weight was 50 ± 15 kg and 

height 1.57 ± 0.14 m. 
 

Renal indices showed creatinine 85.9 ± 52.1 µmol/L, eGFR 66.7 ± 45.6 mL/min/1.73 m², and cystatin C 

1.59 ± 0.98 mg/L. Hematologic markers included RDW-CV 14.4 ± 1.9 %, NLR 5.53 ± 5.96, and MPV 12.0 

± 2.2 fL. Coagulation parameters were D-dimer 1.31 ± 1.71 mg/L, INR 1.22 ± 0.22, and fibrinogen 3.01 ± 

1.25 g/L. Median hs-Troponin was 0.06 ± 0.09 ng/mL and BNP 770.8 ± 1596.9 pg/mL. 
 

Electrolytes and proteins included sodium 139 ± 5.8 mmol/L, albumin 36.6 ± 6.0 g/L, and globulin 28.2 ± 

6.6 g/L. Lipid parameters were as follows: cholesterol, 3.62 ± 1.34 mmol/L; LDL-C, 1.74 ± 0.98 mmol/L; 

and HDL-C, 1.08 ± 0.47 mmol/L. 
 

 

Figure 1: Distribution of Gender, NYHA Cardiac Function Classification, and Killip Grade 
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Percentages represent the distribution of study participants by gender, New York Heart Association (NYHA) 

functional class, and Killip grade. NYHA classification: II = mild limitation, III = marked limitation, IV = 

symptoms at rest. Killip grading: I = no signs of heart failure, II = S3 gallop or mild pulmonary congestion, 

III = acute pulmonary oedema, IV = cardiogenic shock. 

 

Figure 1 displays the percentage distribution of participants by gender, NYHA functional class, and Killip 

grade. Females comprised 57.17% of the cohort, and males 42.83%. The majority were in NYHA Class III 

(50.43%), followed by Class IV (34.37%) and Class II (15.20%). The Killip grade was predominantly Grade 

II (54.75%), with fewer cases in Grades III (22.45%), I (20.21%), and IV (2.59%). 
 

 

Figure 2:  Correlation Heatmap of Cardiac Biomarkers and Significant Laboratory Parameters 
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Values represent Spearman rank correlation coefficients (r). Only parameters with |r| > 0.2 and p < 0.05 are 

reported. BNP, B-type natriuretic peptide; CRP, C-reactive protein; RDW-SD, red cell distribution width–

standard deviation; MLR, monocyte-lymphocyte ratio; NLR, neutrophil-lymphocyte ratio; eGFR, estimated 

glomerular filtration rate. We showed only statistically significant correlations (p < 0.05) with a correlation 

coefficient greater than 0.2 or less than -0.2. 

 

Figure 2 summarises the significant Spearman correlations (p < 0.05, |r| > 0.2) between three cardiac 

biomarkers—High-Sensitivity Troponin, Brain Natriuretic Peptide (BNP), and C-Reactive Protein (CRP)—

and various clinical and laboratory parameters. 
 

High-sensitivity troponin strongly correlates with BNP (r = 0.60) and exhibits positive associations with 

renal markers (serum Urea), inflammation (WBC, ALT), and negative correlations with glomerular filtration 

rate and prothrombin activity. BNP correlates positively with respiratory rate, potassium, serum Urea, WBC, 

and ALT, and negatively with glomerular filtration rate. CRP is positively associated with body temperature, 

sodium, haemoglobin, globulin, and serum Urea, while negatively correlating with heart rate, albumin, 

diastolic blood pressure, D-dimer, and random Glucose. These findings highlight the interconnected roles of 

cardiac injury, renal function, and inflammation in the clinical profile. 
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Figure 3: Model Performance Metrics for Prediction of Cardiac Biomarkers with Haematological and 

Coagulation Parameters 

 

RMSE = root mean squared error; MAE = mean absolute error; Median AE = median absolute error; 

MAPE = mean absolute percentage error; SVR = support vector regression; RBF = radial basis function; 

ElasticNetCV = elastic net regression with cross-validation. 
 

 

Figure 4: Model Performance Metrics for Prediction of Cardiac Biomarkers with Biochemistry 

Parameters 
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RMSE = root mean squared error; MAE = mean absolute error; AE = absolute error; MAPE = mean 

absolute percentage error; Calib. = calibration. Models trained on routine biochemistry parameters to 

predict BNP, hs-troponin, and CRP in heart failure patients. 

 

Figure 5. Model Performance Metrics for Prediction of Cardiac Biomarkers using Haematology, 

Coagulation, and Biochemistry Parameters 

              

Explained variance, R², and adjusted R² reflect model fit. RMSE = root mean squared error, MAE = mean 

absolute error, Median AE = median absolute error, MAPE = mean absolute percentage error. Calibration 

slope and intercept indicate model calibration. Unfavourable explained variance indicates poor model 

generalisation. 
 
 
 

 
 

Across the various modelling strategies, we observed notable variations in the predictive performance of the 

three cardiac biomarkers (Figure 3). For hs-troponin, models leveraging combined feature sets achieved 

their best results with XGBoost and ElasticNetCV, while Random Forest and LightGBM optimised BNP 

prediction. CRP, in contrast, was better captured by non-linear approaches, with SVR, CatBoost, and 

Random Forest consistently surpassing linear models. When restricted to biochemistry parameters (Figure 

4), Gradient Boosting and XGBoost provided the most accurate estimates for hs-troponin, CatBoost 

emerged as the strongest model for BNP, and Ridge, together with ElasticNetCV, produced stable outputs for 

CRP. Expanding to a multimodal framework that incorporated haematology, coagulation, and biochemistry 

features (Figure 5) further enhanced accuracy across all biomarkers. Specifically, ElasticNetCV was most 

effective for hs-troponin, CatBoost remained strongest for BNP, and Ridge, alongside ElasticNetCV, yielded 

the most reliable CRP predictions.  

 

Table 3: Best-Performing Models for cardiac Biomarker using both haematology, Coagulation and 

biochemistry parameters based on  Gender 
 

Cardiac 

biomarkers  
Gender Best Model R² EVS RMSE MAE 

hs-Troponin Male ElasticNetCV 0.0897 0.0901 0.8481 0.4116 
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Cardiac 

biomarkers  
Gender Best Model R² EVS RMSE MAE 

hs-Troponin Female ElasticNetCV 0.1242 0.1244 1.0056 0.4812 

BNP Male CatBoost 0.3290 0.3295 0.8479 0.6809 

BNP Female CatBoost 0.2700 0.2705 0.8280 0.6596 

CRP Male ElasticNetCV 0.5363 0.5374 0.6825 0.5467 

CRP Female LinearRegression 0.5391 0.5397 0.6778 0.5346 

Abbreviations: BNP = brain natriuretic peptide; CRP = C-reactive protein; EVS = explained variance 

score; MAE = mean absolute error; RMSE = root mean squared error; R² = coefficient of determination. 
 

Sex-stratified analyses (Table 3) confirmed that ElasticNetCV is consistently superior for hs-troponin 

prediction in both males and females, CatBoost maintaining its dominance for BNP, and CRP prediction 

optimised by ElasticNetCV in males and Linear Regression in females.  

 

 Figure 6A. SHAP Feature Importance Ranking for Brain Natriuretic Peptide (BNP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6A. SHAP feature importance ranking for brain natriuretic peptide (BNP). The bar chart displays the 

relative contribution of individual predictors, with higher SHAP values indicating stronger influence on BNP 

prediction. Urea and D-dimer were the most influential variables, followed by RDW-SD, uric acid, and INR. 
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 Figure 6B: Sharp Feature importance Ranking for CRP. 
            

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6B. SHAP feature importance ranking for C-reactive protein (CRP). The bar chart illustrates the 

relative contribution of predictors, with higher SHAP values denoting a more substantial influence on CRP 

prediction. Fibrinogen was the most influential feature, followed by D-dimer, chloride, and neutrophil-to-

lymphocyte ratio (NLR). 

 

 Figure 6C:  Sharp Feature Importance Ranking for Highly sensitive troponin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6C. SHAP feature importance ranking for high-sensitivity troponin (hs-Troponin). The bar chart 

shows the relative contribution of predictors, where higher SHAP values indicate a more substantial 

influence on hs-Troponin prediction. Neutrophil-to-lymphocyte ratio (NLR) was the most influential feature, 

followed by albumin, uric acid, estimated glomerular filtration rate (eGFR), and creatinine. 

 
 

3. Discussion 
 

Our study demonstrates that the demographic and clinical characteristics of heart failure (HF) patients in 

Abakaliki are mainly consistent with those reported in prior studies. The median age of 66 years and the 

distribution of vital signs, including pulse, respiratory rate, and blood pressure, align with typical HF cohorts 
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(7–11). Similarly, comorbidity profiles, as reflected by a median Charlson comorbidity index of 2 and a high 

prevalence of hypertension, diabetes, and coronary artery disease, mirror literature reports from diverse 

populations (12–15). Functional classifications using the NYHA and Killip scales also showed predominant 

class II–III and II–III distributions, consistent with prior studies of acute and chronic HF (8, 16, 17). 

Laboratory findings in our cohort corroborate established HF pathophysiology. Renal function markers 

reflect moderate renal involvement, consistent with their prognostic importance in HF (18,19). Inflammatory 

and hematologic indices, including NLR, RDW-CV, and MPV, demonstrate relationships with disease 

severity in line with prior observations (20,21). Cardiac biomarkers, such as BNP and hs-Troponin, 

correlated with renal function and inflammatory markers, confirming the interplay between hemodynamic 

stress, myocardial injury, and systemic inflammation (22–24). Moreover, the positive associations between 

BNP, troponin, and functional severity (NYHA/Killip classes) are in agreement with prior literature 

highlighting natriuretic peptides as reliable indicators of HF progression (24,25). 
[[[[ 
Machine learning (ML) analyses in our study further support the predictive potential of routine laboratory 

data. Models integrating haematology, biochemistry, and coagulation markers effectively predicted BNP, hs-

Troponin, and CRP, demonstrating that multimodal laboratory integration enhances biomarker prediction 

compared to single-domain approaches(26–29). SHAP-based interpretability identified NLR, fibrinogen, 

renal indices, D-dimer, and INR as key contributors, consistent with the literature, which emphasises the 

value of renal, inflammatory, and hematologic parameters in cardiovascular risk modelling (30–32). Routine 

laboratory parameters offer a cost-effective and scalable approach, supporting early risk stratification, 

particularly in resource-limited settings, and align with prior studies demonstrating comparable predictive 

accuracy to specialised biomarkers such as NT-proBNP (2,33–35). 
 

Despite general concordance, some findings diverge from previously reported HF cohorts. Our patients 

exhibited lower median BMI and lower absolute weight (50 kg), contrasting with the literature indicating 

overweight or obese HF populations (7,11). The median age of 66 years is slightly younger than the cohorts 

reporting means up to 74–82 years (14,36). The gender distribution in our study showed a female 

predominance, differing from most studies that have shown male predominance or near-equal distribution 

(7,37). 

Biomarker concentrations also exhibited some deviation. BNP levels and hs-Troponin were lower than the 

thresholds commonly associated with adverse outcomes in hospitalised HF patients (38,39). Similarly, CRP 

levels were lower than those reported in studies of acute HF with pronounced systemic inflammation 

(40,41). Lipid profiles were also lower than those of typical HF cohorts, reflecting potential population-

specific differences in metabolic status (21). Furthermore, we did not specifically analyse HFpEF 

prevalence, which prevented a direct comparison to studies reporting a 60–69% predominance of HFpEF 

(42,43). The low proportion of Killip IV patients may reflect differences in hospital admission criteria 

relative to prior cohorts reporting (17,31). 
 

The machine learning performance in our study, while demonstrating the benefit of multimodal integration, 

achieved moderate predictive power, which is lower than some reports in larger or more homogeneous 

datasets (30, 33, 44). Key predictors in our study—NLR, fibrinogen, renal indices, and D-dimer—differ 

somewhat from prior SHAP analyses, which emphasise proBNP, troponin, CK-MB, albumin, and 

electrolytes as dominant features (8, 32, 45). Additionally, our sex-stratified modelling revealed modest 

differences in predictive accuracy between males and females, whereas other studies report more 

pronounced sex-specific performance disparities (44,46). 
 

Finally, unlike most previous studies that primarily predict HF outcomes, our work focuses on the direct 

prediction of cardiac biomarkers from routine laboratory data. This approach, although less commonly 

reported, extends the application of ML in HF and demonstrates the potential for routine laboratorys to serve 

as surrogates for expensive biomarker assays (30, 47, 48). 

 
 

Conclusion 
This study highlights the feasibility of leveraging routine laboratory data and machine learning to 

complement conventional biomarker assessment, providing a scalable, cost-effective strategy for HF 

management while extending the application of predictive modeling beyond traditional outcome prediction. 
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