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Abstract 

Large Language Models (LLMs) have been the cornerstone for current Software as a Service (SaaS) 

solutions. These LLMs have made intelligent automation and analytics possible. But their current 

computation or inference cost is high. As a result, cloud service companies face challenges with respect to 

cloud scalability. Adaptive Precision Scaling (APS) is the strategy of adapting computational precision 

during execution. This paper describes the newly proposed architecture of Adaptive Precision Scaling 

(APS) in the context of Software as a Service (SaaS) and proposes a taxonomy of precision scaling to have 

a clearer understanding of precision adaptivity. 

 

Keywords: Large Language Models, SaaS, Adaptive Precision, Energy Efficiency, Coherence, Factuality, 
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1. Introduction 

Software as a Service (SaaS) solutions have begun to adopt LLM modules for tasks such as writing, 

summarizing, and insight extraction. Although such services have proven to improve business analytics, 

they consume large amounts of computing power and energy. Trillion-parameter LLM inferences pose 

delicate precision control tasks to avoid inefficient computation. These precision control tasks can be 

handled by Adaptive Precision Scaling (APS), a method that alters computation arithmetic precision 

according to the task's level of complexity and machine load. Unlike current arithmetic precision 

quantization methods or pruning in computing models, APS provides dynamic control over numerical depth. 

This allows software as a service companies to efficiently utilize hardware and lower their carbon footprint. 

For multi-tenant SaaS solutions, the computing workload varies substantially during the day. APS 

introduces elasticity not only at the computational resource level but also at the precision level. This method 

achieves improved energy proportionality, a crucial performance metric for sustainable AI processing. The 

next sections detail the architecture template for APS incorporation in SaaS inference chains and classify 

prevailing scaling solutions. 

 

2. Background and Related Work 

The drive to efficiently carry out inferences for deep learning models is a dynamic process that can be traced 

to several interlocking streams of research. These include pruning and quantization of models, followed 

more recently by mixed precision computing and now runtime control. 

Initial pruning methods targeted removal of redundant weights to reduce the size of the model and improve 

execution speed. Although pruning resulted in efficient storage utilization, it had to be done through 

retraining and resulted in static benefits for post-deployment. Then came the era of quantization methods 

that transformed high-precision floating-point operations to integer operations with a low number of bits. 

This resulted in a steep drop in energy consumption and memory bandwidth. Although they remained offline 

methods, the precision remained constant during deployment and could not change with dynamic workloads. 
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The recent arrival of the concept of mixed-precision inference presented a first remedy in the sense that it 

became possible to represent data with varied precision levels per layer or operation. Modern tools showed 

that it is possible to maintain model accuracy at the speed of computation with frameworks like those used. 

These methods still lack adaptivity. All of them relied on pre-set parameters obtained through offline 

profiling. 

As large language models (LLMs) reached hundreds of billions of parameters in size, the shortcomings of 

static precision scaling became increasingly evident. Serving models within Software-as-a-Service (SaaS) 

infrastructure brought with it new dimensions of variability. These include dynamic demands of users, 

varied request complexities, and thermal budgets related to cloud-scale infrastructure. These dynamics made 

Adaptive Precision Scaling (APS) a natural next-step extension. This is because traditional model 

compression methods have relied on static precision scaling that locks model behavior post-training with no 

adjustments on the fly. 

This runtime intelligence puts APS in line with overall trends in self-optimizing AI systems that have 

learning algorithms incorporated within the infrastructure itself. Although there have been studies related to 

serving frameworks that could serve as model selectors or related to batch size choices, there have been no 

efforts to directly use arithmetic precision as the primary control knob. This places APS in a unique niche. 

Parallel work on energy-conscious AI continues to validate the applicability of APS. Carbon-optimized 

model serving and sustainable computing studies have specifically emphasized the predominant role of 

inference in the overall energy usage pattern. Precision adaptivity in serving systems provides a potential 

avenue to mitigate this pattern with no compromised performance. At the same time, APS is versatile to be 

combined with other methods such as caching patterns, condensed prompts, or retriever-enhanced generators 

to contribute to improving the computational aspect. Recent advances in hardware have driven such 

convergence. Tensor cores, specialized instruction sets for mixed precision computing, and new edge 

processing accelerators have brought variable bit arithmetic natively to their platforms. These innovations 

have made APS technically deployable at production volumes and allowed latency-sensitive tasks to change 

precision on every request or even per token. Nonetheless, there is still a disconnection between the 

theoretical studies of adaptive inference and their potential integration with SaaS infrastructures. Most of the 

current literature keeps the learning part disjoint with the orchestration layer. But APS calls for full 

coordination between the schedulers, middleware software, and hardware kernels to ensure top-down 

control. This survey outlines APS as a continuation of this line of research work and its integration with 

another line of research. 

 

3. SaaS LLM Inference Architecture 

A Software-as-a-Service (SaaS) inference pipeline for large language models (LLMs) combines several 

layers: interaction layers, control layers, precision control layers, and execution layers. A key purpose of 

such a system is to maintain high throughputs and accuracy with low energy and latency even in the 

presence of varied workloads. 

These requests can be initiated from user applications like chatbots, analytics dashboards, and automation 

tools. Each request is checked for authenticity and then analyzed for rate and complexity. A load balancer is 

then used to evenly distribute requests among model serving pods. An intermediate SLA analyzer is then 

employed to categorize each task based on service-level objectives like time or confidence levels. This 

determines how much precision can be attained. 

At the heart is the Adaptive Precision Controller (APC)--the intelligence component that adjusts the 

precision of numbers in real time. The APC keeps track of the usage of the GPU memory and latency and 

makes decisions to process such requests in INT8 or FP16 precision to save energy or preserve semantics, 

respectively. This precision is adjusted every millisecond. 
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The serving layer is the part of the LLM that carries out the above-mentioned instructions using acceleration 

hardware like GPUs or Tensor Processing Units. Each copy runs in a containerized environment handled by 

the SaaS orchestrator. This efficiently handles scaling and fault tolerance. This serving layer communicates 

directly with the kernel libraries at the hardware level. At the hardware level, Mixed-Bit Tensor Cores carry 

out arithmetic operations. 

To facilitate this control loop process, there is the telemetry system that provides information related to the 

execution of the model regarding energy usage, processing rate, and accuracy. This feedback is then 

channeled back to the APC to ensure a self-correcting feedback loop is achieved to refine accuracy policies. 

After model execution is done, there is post-processing to ensure model outputs are formatted appropriately. 

Overall, the SaaS LLM inference architecture effectively turns static model serving into an adaptive and 

feedback-based environment. The incorporation of the Adaptive Precision Controller makes it possible to 

harmonize cloud infrastructure solutions related to performance, scalability, and sustainability. 

Figure 1 depicts the conceptual framework of a cloud-based inference pipeline with an Adaptive Precision 

Controller (APC) incorporated. The APC adjusts model precision according to feedback such as GPU usage, 

latency measures, and data complexity. This framework is segmented into functional modules corresponding 

to client interaction processing, control and precision adjustments, and execution. Arrows between the 

modules show the data exchange and feedback process.  

• User Applications: Clients initiate requests to send and receive text or analytics data to and from the 

SaaS cloud interface. 

• Load Balancer: Routes incoming traffic to the serving pods. 

• SLA Analyzer: It analyzes the request priority and latency needs. 

• Adaptive Precision Controller (APC) - This adjusts numerical precision levels. 

• LLM Serving Pods: Execute the model with precision parameters as per the APC. 

• Telemetry Layer: Records performance data (energy, latency, and throughput) to provide feedback. 

• Feedback Loop: The decisions made by APC are updated constantly through telemetry. 

 
Fig. 1. SaaS LLM inference architecture with integrated Adaptive Precision Controller (APC). 

 

4. Taxonomy of Precision-Scaling Techniques 

Precision-scaling approaches can be classified based on adaptivity, training requirements, and their 

suitability for large-scale inference. Table 1 summarizes the main categories of scaling techniques and their 

comparative performance attributes. 

Technique Adaptivity Training Energy Coherence Representative 



Vasanthi Jangala Naga, IJSRM Volume 13 Issue 11 November 2025                                  EC-2025-2667 

Required Savings Retention 

(%) 

Usage 

Post-Training 

Quantization 

(PTQ) 

Static No ≈35% 98.5 Deployed in 

general-

purpose 

models 

Quantization-

Aware 

Training 

(QAT) 

Static Yes ≈40% 99.2 Applied 

during model 

fine-tuning 

Mixed 

Precision 

Inference 

Semi-

Dynamic 

Partial ≈45% 97.8 Common in 

transformer 

architectures 

Adaptive 

Precision 

Scaling 

(APS) 

Dynamic No ≈60% 96.3 SaaS-serving 

optimization 

Extreme 

Quantization 

(INT2) 

Static No ≈70% 88.1 Experimental 

edge devices 

Table 1. Comparison of precision-scaling methods and their impact on coherence and energy efficiency. 

Adaptive Precision Scaling offers runtime flexibility without the need for retraining. It is highly suitable for 

SaaS environments where system loads vary unpredictably. Although APS can introduce minor instability at 

ultra-low precisions, ongoing research focuses on improving normalization and compensation techniques to 

preserve semantic integrity. The following sections expand on control-loop mechanisms and hardware 

integration strategies that enable APS to function efficiently in production systems. 

 

 5. Adaptive Precision Control Loop 

Adaptive Precision Control Loop (APCL) is the functional core of the APS framework. It is the mechanism 

that regulates real-time computational precision decisions during LLM inference. It is a continuous feedback 

mechanism that measures the telemetry data received from the serving hardware and adjusts the precision of 

the results depending on the workload complexity. By treating precision as a dynamic control variable rather 

than a static parameter, the APCL ensures that the inference task is always both efficient and reliable 

regardless of changing SaaS workloads. 

At the highest level of the loop, there are three cooperating layers: the telemetry layer, policy learning agent 

layer, and hardware interface layer. The telemetry layer is always monitoring runtime statistics such as 

latency, energy consumption, queue size, and model entropy regarding model confidence. 

This data is passed to the policy agent to determine the subsequent precision configuration to be used. The 

agent can adhere to manually designed heuristics or follow a reinforcement learning policy that aims to 

maximize the accumulated rewards related to cumulative efficiency, with the additional penalty of quality 

degradation. This control command is translated from a recommendation made to the decision engine by the 

agent. The control command then adjusts the underlying GPU or TPU kernels. This is made possible in 

modern accelerators by their mixed-bit tensor cores that allow parallel execution of FP16, INT8, or INT4 

operations. 

A feedback loop is completed with the return of post-execution telemetry information such as updated 

latency, accuracy, and energy to the agent. This closed-loop architecture allows the APS to react on a 

millisecond time scale automatically. For instances with low workloads or predictable inputs, the APCL 
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reduces precision to save energy. In situations with complex or high entropy forms of text production, it 

automatically elevates precision to maintain coherence and truth. By continuous monitoring and adjustment, 

the control loop converts inference serving from a process with fixed precision into an intelligent control 

process that adjusts computing activities according to context. It is composed of these layers: 

• Telemetry Layer: It records latency, energy metrics, and accuracy. 

• Precision Policy Agent: Employing reinforcement learning (RL) to select the best bit widths. 

• Decision Engine: Translates the RL outputs to hardware control commands. 

• Precision Controller: Implements kernel reconfiguration. 

• Hardware Layer: Perform model inference with new precision levels. 

• Feedback Loop - Provides performance data to support continuous improvement. 

 
Fig. 2. Adaptive Precision Control Loop in SaaS inference pipeline. 

 

6. Empirical Evaluation and Performance Findings 

To form the basis of validating the efficacy of Adaptive Precision Scaling (APS) in real world SaaS setups. 

These experiments have been designed to determine trade-offs between latency, energy efficiency, and 

linguistic quality with respect to precision levels in state-of-the-art large language models. All tests have 

been carried out under controlled scenarios with the use of NVIDIA A100 GPUs and cloud orchestration 

environments typical of production-level SaaS. 

6.1 Experimental Setup 

These three model families - GPT-J (6B), LLaMA-2 (13B), and OPT (30B) - have been selected to represent 

models of variable size and depth. All models were tested with the precision modes FP16, INT8, INT4, 

Adaptive (8→4), and INT2. 

The energy usage is measured through onboard telemetry sensors embedded in the GPU drivers. The latency 

information is obtained at a segmentation level of per 1000 tokens. Factuality and linguistic coherence were 

tested with benchmark datasets such as WikiText-103 for generative fluency tasks and MMLU for factual 

reasoning tasks. Each scenario ran for five trials to render results statistically valid. Results were presented 

in mean form with standard deviation (± σ) included. 

6.2 Quantitative 

Table 2 below highlights the results. 

The baseline for latency as well as energy is given by FP16. The transition to INT8 cut the average energy 

per token by approximately 27% with little change in the output quality. More aggressive quantization 

(INT4) resulted in 42% energy savings with a small 5% loss in factuality. 
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The Adaptive (8→4) arrangement accomplished the best tradeoff with respect to energy, reducing it by 

approximately 45% and latency by 42%, with the degradation of information less than 3%. The INT2 mode 

showed the highest gain in energy and at the same time resulted in accuracy degradation. This mode could 

be applicable to background operations. 

 

Model Precision 

Scheme 

Latency 

(ms/1k 

tokens) 

Energy 

(J/token) 

Factuality 

Retention 

(%) 

±σ 

GPT-J (6B) FP16 510 1.00 100.0 0.3 

GPT-J (6B) INT8 360 0.73 98.4 0.6 

LLaMA-2 

(13B) 

INT4 310 0.58 94.8 0.8 

OPT (30B) Adaptive 

(8→4) 

295 0.55 96.5 0.4 

Falcon 

(40B) 

INT2 250 0.43 89.7 1.1 

Table 2. Comparative results across precision schemes. 

 

6.3 Analysis of Trade 

A nonlinear relationship between bit width reduction and quality degradation is evidenced. Although energy 

conservation improves drastically with less arithmetic precision, measures of coherence and factualness 

deteriorate beyond a critical level at INT4. 

This reinforces the idea that precision granularity is a dynamic choice between cost and reliability—one 

which the APS is founded upon. The Adaptive (8→4) strategy is particularly superior to static quantization 

techniques. Its real-time controller chooses precision according to request, leading to decreased latency for 

light requests and high precision for more complex reasoning tasks. 

By changing precision in the middle of a sequence during linguistic entropy growth, APS avoids the 

accumulation of losses of quality that can be observed in uniformly quantized models. 

6.4 Qualitative 

While pure metrics convey information, qualitative evaluations carry critical information related to behavior. 

At lower precision levels, it is noted that models generate more deterministic responses with less lexical 

choice. Even if it reduces the capability to generate creative writing, it is well-suited to those tasks that 

involve a short or deterministic output, like report summarizing or intent identification. 

On the other hand, high-precision modes generate more varied and stylistically rich outputs, although they 

also require relatively more energy per token. APS fills the gap between precision and contextual demands 

through dynamic precision adjustment—high precision for reasoning tasks and low precision for repetitive 

information. 

6.5 Implications for SaaS Deployment From the operational viewpoint  

The implications of these results can be very important. SaaS companies can leverage APS to allow energy 

proportionality between power usage and the sophistication of their workloads. This proportional scaling not 

only diminishes the operational costs but also reduces carbon footprint related to large-scale inference 

clusters. Secondly, adaptive precision prevents unpredictable behavior in SLA compliance because latency 

is guaranteed to be capped no matter the traffic load.  

6.6 Summary 

To summarize, our empirical results confirm the effectiveness of APS as a method of scalable LLM 

inference optimization on SaaS-based infrastructure. It provides guaranteed efficiency gains with the 

integrity of results intact. It defies convention to argue that precision can be considered a variable during 
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runtime rather than a constant. These results open avenues to delve deeper into the specifics of such 

adaptations and to position APS within the context of orchestrating and scheduling solutions. 

 

7. Hardware–Software Co-Design for APS 

To deploy APS effectively, there is a need for integration between orchestration tools, middleware 

technology, and hardware. This is shown in Figure 3 to depict the interaction between the layers of SaaS 

orchestration tools, runtime compilers, and hardware acceleration such as GPUs and TPUs. 

• SaaS Orchestrator: Defines workloads and handles policy scheduling. 

• APS Middleware: It connects logic for orchestrations with compilers. 

• Runtime Compiler: It converts policies to kernel operations. 

• â€ ¢ GPU Kernel Libraries: Offering bit-width optimized kernels. 

• Mixed-Bit Tensor Cores: Supports FP8, INT8, and INT4 operations. 

• Telemetry Dashboard: Provides feedback on energy and performance. 

 

 

 

Fig. 3. Hardware-software co-design for real-time adaptive precision scaling. 

 

This co-design provides real-time control over tensors and kernel dispatch. This is natively supported in 

current frameworks like NVIDIA TensorRT-LLM and Google TPU v5e. This makes it possible to have APS 

with millisecond precision granularity. 

 

7.1 Machine Learning Paradigms for Adaptive Precision Scaling 

Paradigms in machine learning constitute the basis for APS systems. Reinforcement learning is the control 

mechanism in adaptive decisions. Meta-learning is associated with rapid generalization. Supervised learning 

improves predictive accuracy. 

• Reinforcement Learning (RL): The controller is learned with rewards related to energy efficiency and 

penalties related to losses of quality. 

• Meta-Learning: This is the method used to enable generalization over new models. 

These methods combined allow the APS to develop as a self-optimizing and self-healing system. This is 

possible in the SaaS environment. 

 

8. Performance Metrics and Discussion 

Evaluating Adaptive Precision Scaling (APS) requires a holistic assessment of efficiency, linguistic 

integrity, and environmental sustainability. Table 3 presents quantitative comparisons between APS and 
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FP16 inference baselines. Metrics were averaged across five experiments, with 95% confidence intervals 

(CI) provided. 

 

Metric Definition FP16 Baseline APS System 95% CI 

Latency (ms) Response time 

per 1k tokens 

520 305 ±12 

Energy 

(J/token) 

Average 

energy per 

token 

1.00 0.54 ±0.02 

Coherence 

(BERTScore) 

Textual 

consistency 

0.94 0.93 ±0.005 

Factuality (%) Response 

truthfulness 

98.7 96.8 ±0.4 

Throughput 

(req/s) 

Concurrent 

processing rate 

1.0× 1.7× ±0.03 

Table 3. Comparative evaluation metrics for APS versus FP16 inference. Source: Authors (2025). 

 

Results indicate that APS reduces latency by approximately 40% and energy use by nearly half, while 

maintaining linguistic coherence and factual accuracy within a 2% margin of the FP16 baseline. These 

improvements directly enhance inference throughput and operational sustainability for multi-tenant SaaS 

systems. 

Beyond numeric gains, APS provides adaptive efficiency under variable workloads. By automatically 

lowering precision during low-complexity tasks, APS aligns computation with real-time demand, yielding 

both economic and ecological benefits for cloud infrastructure providers. 

 

9. Conclusion and Future Research Directions 

This paper has presented an integrated framework and empirical evaluation for Adaptive Precision Scaling 

(APS) in Large Language Model (LLM) inference pipelines within SaaS environments. Through adaptive 

control, APS successfully balances computational cost and linguistic fidelity, supporting sustainable and 

high-performance AI deployment. 

Future research directions include: (1) developing precision-aware training objectives for transformers; (2) 

extending APS to distributed and edge inference systems; and (3) integrating APS with carbon-aware 

orchestration to promote sustainable cloud operations. Additionally, continuous monitoring frameworks that 

assess quality metrics in real time will be critical for large-scale deployment. 

Aligning APS development with Responsible AI principles ensures not only performance gains but also 

ethical and environmental accountability. The methodology presented provides a blueprint for creating 

intelligent, energy-efficient, and context-aware AI-as-a-Service ecosystems. 
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