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Abstract: The estimation of precise hydrodynamic forces on dam faces due to earthquakes is an important aspect of the analysis and design 

of dams. A key issue in the earthquake analysis of this kind of coupled systems is the accurate and inexpensive dynamic modeling of the 

unbounded reservoir. A suitable boundary condition should be applied along the truncation surface. Sommerfeld boundary condition is the 

most common traditionally used approach with enough large distance from the dam to obtain accurate results. Other approach to such 

modeling uses a bounded domain surrounded by an absorbing boundary or layer that absorbs waves propagating outwards from the bounded 

domain. A perfectly matched layer (PML) is an absorbing layer model for linear wave equations that absorbs, almost perfectly, propagating 

wave of all non-tangential angels of incidence and of all non-zero frequencies. In this research a finite element program is developed in order 

to do the seismic analysis of dam-reservoir systems, and the PML boundary condition is adopted as a truncation boundary condition for time-

harmonic dam-reservoir interaction. The results obtained from this analysis are compared with the results of the same system but with Hyper 

elements as exact solution in accuracy. Parametric analysis of the coupled system with different parameters of the PML is done and some 

useful rules are obtained in order to introduce PML decay function. Results from this problem demonstrate the high accuracy achievable by 

PML models using small bounded domains and at low computational costs. 

Keywords: Perfectly matched layer, absorbing boundary, decay function, Radiation Boundary, Dam – Reservoir interaction. 

1. Introduction 

A large variety of structures subjected to predominantly fluid 

loading need to be analyzed precisely for external exciting 

forces. The estimation of precise hydrodynamic forces on dam 

faces due to earthquakes is an important aspect of the analysis 

and design of dams. The hydrodynamic pressure on vertical 

rigid structure subjected to ground motion was first solved 

analytically by Westergard (1933). In most of the practical 

problems, it is difficult to obtain closed form analytical 

solutions due to complex geometries of the dam–reservoir 

systems. The finite element method (FEM) is recognized as a 

powerful numerical tool for solving such practical problems. In 

the finite element analysis of such problems, difficulties arise 

mainly because of the large extent of the fluid domain, where 

the fluid is unbounded. There are a variety of far-boundary 

conditions reported in the literature. These may be broadly 

classified as (i) imposition of a boundary condition on the 

truncation surface (Sommerfeld, 1949; Sharan, 1985; Gogoi, 

2010), and (ii) coupling the finite element discretization with 

other type of discretization such as infinite elements (Saini et 

al., 1978), or boundary element types (Seghir et al., 2009; 

Wang et al., 2011). The distance between the structure and 

truncation surface is not considerably less while adopting the 

infinite elements (Küçükarslan et al, 2005). On the other hand, 

the finite element approach has the distinct advantage of being 

straightforward in implementation. In the finite element 

analysis of dam–reservoir interaction problems difficulties arise 

due to unbounded reservoir domain. This difficulty is handled 

by truncating the unbounded fluid domain at a certain distance 

away from the dam-reservoir interface. However, for an 

accurate analysis, the behavior of reservoir fluid at the 

truncation surface must be truly represented. Therefore, a 

suitable boundary condition is required along the truncation 

boundary. The most commonly used truncating boundary 

condition is the Sommerfeld radiation condition (1949). This 

boundary condition becomes a rigid stationary boundary for 

incompressible fluid domains. Another boundary condition is 

proposed by Sharan (1985). The Sharan boundary condition is 

obtained by using the exact solution of the reservoir fluid 

responses for a vertical faced rigid dam to represent the fluid 

behavior at a sufficiently large distance away from the dam–

reservoir interface. Lately Samii and Lotfi (2012) have used H-

W boundary condition for dam–reservoir systems.  

A newly discovered perfectly matched layer (PML) is an 

absorbing layer model for linear wave equations that absorbs, 

almost perfectly, propagating waves of all non-tangential 

angles-of-incidence and of all non-zero frequencies. This 

method is growing rapidly and has been used in many fields, 

ranging from eddy-current problems to wave propagation in 

elastic media. The concept of a PML was first introduced by 

Berenger (1994) in the context of electromagnetic waves. More 

significantly, Chew and Weedon (1994) showed almost 

immediately that the Berenger PML equations arise from a 

complex-valued coordinate stretching in the electromagnetic 

wave equations. Since the introduction of these seminal ideas, 

extensive research has been conducted on various aspects of 

PMLs for electromagnetic waves. PMLs have been formulated 

for other linear wave equations too: the scalar wave equation or 

the Helmholtz equation (Turkel and Yefet, 1998; Harari et al., 

2000), the linearized Euler equations (Hu, 1996), the wave 

equation for poroelastic media (Zeng et al., 2001), and to the 

time-harmonic elastodynamic wave equation (Basu and 

Chopra, 2003). The idea that PMLs could be formulated for the 

elastodynamic wave equation was first introduced by Chew and 

Liu (1996): they used complex-valued coordinate stretching to 
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obtain the equations governing the PML and presented a proof 

of the absorptive property of the PML. Furthermore, they 

presented a finite difference time domain (FDTD) formulation 

obtained through field splitting or an unphysical additive 

decomposition of the velocity and stress fields. 

Contemporaneously, Hastings et al. (1996) applied Beranger’s 

original split-field formulation of the electromagnetics PML 

directly to the P and S wave potentials and obtained a two-

dimensional FDTD scheme for implementing the resultant 

formulation. Liu (1999) later applied the coordinate stretching 

idea to the velocity–stress formulation of the elastodynamic 

equation to obtain split-field PMLs for time-dependent elastic 

waves in cylindrical and spherical coordinates. Zhang and 

Ballmann (1997) and Collino and Tsogka (2001) have also 

obtained split-field, time-domain PMLs for the velocity–stress 

formulation and presented FDTD implementations. 

Mehdizadeh and Paraschivoiu (2003) investigated a two-

dimensional statistical Helmholtz’s equation by SEM and PML 

as absorbing boundary. Harari and Albocher (2006) have 

Studied of FE/PML for exterior problems of time-harmonic 

elastic waves. Kucukcoban and Kallivokas (2011) studied 

mixed perfectly-matched-layers for direct transient analysis in 

2D elastic heterogeneous media. They report on numerical 

simulations demonstrating the stability and efficacy of the 

approach. 

The focus of the present study is on the application of PML for 

most practical case; time-harmonic dam-reservoir interaction, 

as an efficient truncation boundary condition to model the 

infinite reservoir. It includes the radiation effects properly and 

can be adopted in the finite element formulation in a simple 

form. Parametric analysis is done to introduce PML decay 

function. The dam-foundation interaction is not investigated in 

this paper and the foundation soil is assumed as rigid. 

2. Materials and methods 

2.1 The coupled dam-reservoir problem 

The dam-reservoir system can be classified as a coupled field 

problem in which two physical domains of fluid and structure 

interact at the interface plane. Displacement was chosen as 

response variable for the structure while pressure may be 

chosen as a response variable for the fluid (Lagrangian- 

Eulearian approach). In this case, the equation of motion of the 

coupled dam-reservoir system is unsymmetrical. Let us now 

consider harmonic ground excitations with frequency ω i.e. 

Ug(t)=ug(ω)e
iωt

. In this case, displacements and pressures will 

all be have harmonic (U(t)=u(ω)e
iωt

 or  P(t)=p(ω)e
iωt

 ). 

2.2 FE formulation of the concrete gravity dam 

This problem can be totally discretized by finite elements. 

Employing the weighted residual method, one obtains the 

following finite element equations of motion of the dam 

structure subjected to external excitations in the frequency 

domain (Bathe, 1996): 

2[ (1 2 ) ] ( ) ( )gM i K u Mu       
 

(1) 

Where M and K are the mass and stiffness matrices of the dam 

structure. u(ω) and  ug(ω) are the amplitude of displacements 

and ground excitation respectively. It should be mentioned that 

hysteretic damping matrix is utilized in the above relation. This 

means:  

2
C K






 
(2) 

Where β is the constant hysteretic factor of the dam body. 

Relation (1) is the equation of a dam in frequency domain. 

2.3 Governing equations for reservoir and boundary 

conditions 

Neglecting the internal viscosity, and assuming the water to be 

linearly compressible with a small amplitude irrotational two-

dimensional movement, the hydrodynamic pressure distribution 

in the reservoir system is governed by the wave equation 

(Bathe, 1996): 

2

2

1
( , , ) ( , , ) ( , , )P x y t P x y t F x y t

c
 

 
(3) 

Where P(x,y,t) is the hydrodynamic pressure distribution in 

excess of the hydrostatic pressure, c is the acoustic wave 

velocity in water, t is the time variable. By assuming a time-

harmonic solution for the hydrodynamic pressure, 

P(t)=p(ω)e
iωt

 and a time-harmonic source function F,  

F(t)=f(ω)e
iωt

 , the wave Eq. (3) reduces to Helmholtz’s 

equation 

2 2( , , ) ( , , ) ( , , )p x y k p x y f x y     
 

(4) 

Where k is the wave number defined as k=ω/c. The 

varioational formulation of this problem with homogeneous 

boundary conditions and weight function w is: 

2( . )p w k pw dxdy fwdxdy
 

    
 

(5) 

Using the finite element discretization of the fluid domain and 

the Galerkin formulation of Eq. (5), the wave equation can be 

written in the following matrix form: 

2[ ]E H R F   
 

(6) 

Where E and H are the pseudo mass and stiffness matrices of 

the reservoir and are determined uses the following 

expressions: 

2

1 T

A

E N NdA
c

 
 

(7) 

( )x y

A

H N N dA  
 

(8) 

4

1
b b

T T

bs s

p p
R N ds N ds

n n

 
 

 
 

 

(9) 

Where N is the element shape function, A is the reservoir area 

and sb is the prescribed length along the side of boundary 

elements as shown in Figure 1.  

 
Figure 1. Dam-reservoir interaction system with reservoir 

domain boundaries 
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The hydrodynamic pressure distributions within the domain 

may be obtained by solving equation (1) with the following 

boundary conditions: 

(1) At the free surface: 

Neglecting the free surface wave, the only modification at the 

free surface is p=0 that applied with penalty method. 

(2) At the dam -reservoir interface: 

2 ( )g

p
a

n
  


 

  
(10) 

2 2

4 4

1
[ ]{ } [ ]{ }T

i i j tot tot

s s

p
N ds N nN ds u Q u

n c
  


   

 

 

(11) 

Where ρ is the density of water and  ag(ω)  is the component of 

acceleration amplitude on the boundary along the direction of 

the inward normal n. utot is the total acceleration of dam grids 

and Q is the coupling matrix between dam and reservoir. 

(3) At the reservoir bottom: 

For simplification of the analytical procedures, the bottom of 

the reservoir is generally considered to be rigid. So boundary 

condition used in the current work is as the following 

expression while reservoir-foundation interaction is neglected: 

0
p

n




  
(12) 

(4) Truncation boundary condition: 

In the finite element modeling of the reservoir a suitable 

boundary condition should be applied along the truncation 

surface. Sommerfeld boundary condition is the most common 

traditionally used approach which is based on the assumption 

that at a far distance from the dam face, the outgoing waves can 

be considered as plane waves to represent the fluid behavior at 

a sufficiently large distance away from the dam–reservoir 

interface. Consequently in the present analysis, the Sommerfeld 

radiation boundary condition is used as the following formulas 

(Sommerfeld, 1949): 

p i
p

n c


 

  
(13) 

4 4

1
[ ]{ } [ ]{ }i i j

s s

p
N ds i N N ds p i A p

n c
 


   

 

 

(14) 

Where A is the radiation damping matrix. The physical 

meaning of the boundary condition is equivalent to adding 

dampers and springs to absorb the outgoing waves in the 

truncation boundary. 

2.4 Coupling of dam and reservoir equations 

Finally the dam-reservoir interaction is a classic coupled 

problem, which contains two harmonic differential equations in 

the frequency domain. The coupled equations of the dam 

structure and the reservoir can be written in the following form: 

(15) 

2

2 2

(1 2 ) T
g

T

g

MuuM i K Q

Q upQ E i A H

 

   

      
               

 

Where [M] and [K] are the mass and stiffness matrices of the 

dam structure and [E], [A] and [H] are matrices representing 

the mass, damping and stiffness of the reservoir, respectively. 

[Q] is the coupling matrix, [p] and [u] are the vectors of 

hydrodynamic pressures and displacements amplitude. ug is the 

ground acceleration amplitude and utot=u+ug. ρ is the density 

of the fluid. 

2.5 PML methodology 

Two boundary conditions are common in acoustics. Dirichlet 

boundary conditions are associated with known pressure 

amplitude on a boundary, which occurs on vibrating 

boundaries. Homogeneous Neumann boundary conditions are 

associated with zero velocity on a boundary, which occurs on 

rigid walls. These two boundary conditions are straightforward 

to implement, and do not need additional explanations. 

Problems on unbounded domains, appearing in many 

applications, require special boundary conditions. For domain-

based numerical methods, such as finite element methods, it is 

obviously impractical to solve the problem on the unbounded 

domain. An artificial boundary is usually introduced by 

truncating the unbounded domain. This artificial boundary must 

be designed in such a way that it does not introduce reflecting 

waves, which do not exist in the original unbounded problem. 

The appropriate radiation condition, Sommerfeld radiation 

condition, must be satisfied (r is the radial direction): 

1/2lim ( ) 0
r

r ik
r







 


 

(16) 

The method, however, chosen here to create a non-reflecting 

boundary condition on the artificial boundary is called PML. 

This method has gained popularity recently, because it is easy 

to implement. The concept is designed to introducing an 

absorbing layer that absorbs thoroughly any incident wave 

without reflection, for any incident angle and at any frequency 

before discretization. The PML technique can be viewed as a 

complex change of variable in the frequency domain.  

2.6 PML formulation 

The main concept is to surround the computation domain R at 

the infinite media boundary with a highly absorbing boundary 

layer, as shown in Fig. 2. Generally, the boundary layer is made 

of the same elements as the computational domain. The 

formulations of the matrices are the same method for both the 

computational domain and the boundary layer; however, the 

boundary layer as slightly different properties.  

 

 
Figure 2. PML model 

The PML was first developed for the two-dimensional time 

dependent Maxwell equations by employing auxiliary fields 

[12]. It was later shown that the layer can be obtained by 

performing a complex coordinate stretch [13]. Using this 

method, the stretched coordinates inside the PML are defined 

as: 
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(17)  
0

jx

j jx d   
 

The integrand is a complex-valued stretch function of the form: 

(18) 
1j jis  

 
 

Here 1i    is the imaginary unit and sj is a user specified, 

non-dimensional, positive attenuation function responsible for 

wave attenuation inside the layer. The perfectly matched layer 

surrounds a rectangular computational domain (in Cartesian 

coordinates) and attenuation is provided through the complex-

valued function sj. For reflection-free transmission this function 

must depend only on the coordinate axis xj (Chew and Weedon, 

1994). This provides highest attenuation for waves traveling 

along this axis, and no attenuation for those traveling 

perpendicular to it. 

2.7 Finite element implementation 

In this section, a two dimensional finite element formulation is 

proposed for the PML. The PML method is based on 

introducing an absorbing layer, after the truncated boundary, to 

absorb outgoing waves and prevent reflection from the artificial 

boundary. Based on this method the variational form of Eq. (4) 

is changed to 

( . . )x yp D w pK K w dxdy fwdxdy
 
    

   

0

0

x

x

y

Ky

K
D

K

K

 
 
 
 
 
   

(19) 

 

Where, D is the material property matrix. The mass matrix 

inside the PML is obtained by multiplying the integrand of the 

mass matrix of the elastic medium by the stretch functions. 

These yields: 

T

x y

A

E N K K NdA 
 

(20) 

Here N is a shape function and N
T
 is shape function transpose. 

The stiffness nodal matrix in a conventional elastic medium 

takes the form: 

( . . . . )
T T

y x

x yA

K KN N N N
H dA

K x x K y y

   
 

   
 

(21) 

( ) & ( )x x y yK k i x K k i y    
 

(22) 

Eq. (19) reduces to the original Eq. (5) when the coefficients 

σx(x) and σy(y) are zero, which is true in the physical domain. 

The coefficients are defined to vary from zero at the interface 

(for the ‘‘perfect match’’) to a maximum value at the truncation 

of the layer. In layers on the right and left of the main domain 

σy(y) is zero (region 2) and similarly, for top and bottom layers, 

σx(x) is zero (region 1). In corner absorbing layer regions, both 

σx(x) and σy(y) have non-zero values (region 3). 

2.8 PML coefficients 

The absorbing properties of the PML are determined by a 

number of parameters. When using the PML as an absorbing 

layer, an understanding of these parameters is essential for 

optimizing its performance. Consider a wave propagating in the 

direction θ with respect to the x axis having a wave number k 

(Fig. 2). The layer width is L and it is terminated by 

homogenous Dirichlet boundary conditions. The ratio between 

the magnitudes of the incident wave and the wave reflected 

back from the layer was obtained and is referred to as the 

reflection coefficient (Harari and Albocher, 2006): 

0
exp( 2 cos( )) ( ) )

L

R k x dx   
 

(23) 
 

Reducing this value as much as possible seems attractive since 

it would suggest no pollution of the computational region from 

the reflected wave. It turns out however, that the perfect 

matching property of the PML, which ensures no reflection of 

wave s as they pass through the layer, only holds for a 

continuous layer, and after discretization it ceases to exist 

(Singer and Turkel, 2004). One of the parameters that affect the 

quality of the performance of the PML is the decay function 

σ(x). Although there are no restrictions on its selection (besides 

being positive and real which are necessary for attenuation), it 

is common practice to select it in the form of a polynomial. 

Assuming a profile of the form  

*( ) ( )nx
x

L
 

 

(24) 

 

Where σ, σ
*
 and Lp are attenuation function, positive constant 

attenuation coefficient (referred to as the attenuation coefficient 

yet to be specified) and the length of PML layer respectively 

and x is measured from the interface. In the above relation, n is 

an unknown parameters that should be defined. 

3. Results and discussion 

3.1 Basic parameters 

The introduced absorbing boundary is employed to analyze a 

typical dam–reservoir system. Since the exact solution of our 

problem has been calculated in the frequency domain, the 

analysis results will be presented in the frequency domain, as 

well; however, the whole analysis procedure may be carried out 

in the time domain. The mentioned exact solution, proposed by 

Hall and Chopra (1982), is based on the hyper-element method. 

This method treats the infinite dimension of the reservoir 

analytically and uses the finite element discretization for the 

cross section of the reservoir. 

The general setup of the considered dam–reservoir system is 

illustrated in Fig. 2. The height of the dam and reservoir is 

taken as 200 m in all of the analysis cases and the effect of 

reservoir’s length is studied on the behavior of the analysis 

method. Dam and reservoir are assumed to be placed on a rigid 

foundation, and the system is excited with horizontal ground 

motion of frequency ω. The concrete is assumed to be 

homogeneous and isotropic, while water is considered as a 

compressible and inviscid fluid. In dam structure, Hysteric 

damping method is used and its relevant coefficient is 5%. The 

modulus of elasticity, unit weight and Poisson’s ratio of 

concrete were taken as 27.5 GPa, 24 KN/m
3
 and 0.2, 

respectively. The dam is assumed to be in the case of plain 

stress. The velocity of pressure waves in water was taken as 

1440 m/s.  

One of the important aspects of the analysis procedure is its 

reliability in the frequency range, which is applied to the real 

structure. The nature of the dynamic loading applied to our 

problem is seismic base excitation; the dominant frequencies of 

the common earthquake strong motions are located between 1 
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and 10 Hz. In this study, the response of the system will be 

calculated for excitation frequencies below 12 Hz. 

The employed finite element mesh for dam and reservoir 

consists of 2D quadratic isoparametric elements. The size of 

the elements should be able to simulate the shape of waves, 

which are propagating inside dam and reservoir. In this study, 

the accuracy of higher order NRBCs is going to be compared 

with the semi-analytical exact solutions, with the same mesh 

and material properties. Therefore, satisfying the minimums for 

the mesh size should make this study perfectly reliable. As a 

result, the size of the fluid and solid elements is taken smaller 

than 40 m. This will result in a mesh with five layers of 

elements along the height of the dam; the number of elements 

in x-direction is variable with the length of the reservoir. 

Nevertheless, In order to evaluate the sensitivity of the 

response to the mesh size, one of the experiments has been 

carried out for a model with 20 m mesh size. As will be shown 

in this example, the 40 m mesh size is totally satisfactory, 

especially for our comparison purposes. 

 

Figure 3. The finite element model of Dam-reservoir 
 

3.2 Results verification 

A special program was developed for dynamic analysis of the 

system by using two-dimensional elements in MATLAB. In 

order to verify the results obtained from the developed code, 

the results are compared with Sommerfeld boundary condition. 

In order to examine this and find an accurate length of the 

reservoir, different lengths can be tried. Sommerfeld boundary 

condition is known to converge to the exact solution of the 

problem, when the truncation boundary is located at an 

infinitely large distance from the wave source (L/H≥2). Fig. 4 

shows the horizontal acceleration at dam crest with various 

length of the reservoir when Sommerfeld boundary condition is 

used. As shown in Fig. 4, the results are converging to the exact 

solution; however, even for L/H=3, Sommerfeld BC exhibits 

some major instabilities, in our desired frequency range.  

 

Figure 4. Comparison of horizontal acceleration at dam crest 

from the present study and Hall and Chopra (1982) 

3.3 Dam-reservoir analysis by using PML at far end of 

reservoir 

The geometry of the finite element model of the dam-reservoir 

system with PML is shown in Fig. 5. 

 

Figure 5. The model of Dam-reservoir-PML 

Because of compatibility, the same vertical discretization 

should be used for the PML region. Obviously if one use 

smaller mesh rather than the mesh shown in figure 5, PML has 

better performance because PML is developed for continuous 

formulation essentially. However using other meshes for dam-

reservoir interaction problem in comparison to the proposed 

mesh is not favor generally and not studied in the present study. 

In order to proper optimizing PML, the history of dam crest 

displacement amplitude is compared with exact solution. So an 

error is defined as below: 

2( )Error
Exact PML

  
 

(25) 

 

PML, while it has revolutionized absorbing boundaries for 

wave equations, especially (but not limited to) 

electromagnetism, is not a panacea. Some of the limitations and 

failure cases of PML are discussed in this section, along with 

workarounds. 

3.4 PML decay function 

There are some parameters in the decay function relation that 

good performance of PML is very sensitive to proper selection 

of these parameters. So effects of these parameters are analyzed 

in this research. Lp is the PML length’s that should be chosen 

large enough properly.  As noticed, a polynomial profile is 

assumed to the PML attenuation function. So experience shows 

that a simple quadratic or cubic turn-on of the PML absorption 

usually produces negligible reflections for a PML layer of only 

half a wavelength or thinner. (Increasing the resolution also 

increases the effectiveness of the PML, because it approaches 

the exact wave equation.) Guidelines for the selection of the 

polynomial were established by Singer and Turkel [27], which 

in general suggest it to be of second order at least in the 

discrete case (in contrast to the continuous formulation in 

which a low order profile is recommended). If a lower order 

polynomial is used, PML absorption rate changes more 

gradually and it can adopt own to the system easily. So Assume 

a profile of second order (n=2). In this profile σ
*
 as the 

attenuation coefficient should be specified. Good performance 

of the PML depends on proper selection of this value. Taking it 

too small would result in pollution of the computational domain 

due to insufficient attenuation. Taking it too large causes 

spurious reflection from the interface due to inadequate 
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representation of the PML by the discretized layer. Proper 

selection of σ
*
 rests on defining a reasonable reflection 

coefficient which should be derived from the accuracy of the 

discretization and reservoir and PML region lengths.  

3.5 Discretization and numerical reflections 

First, and most famously, PML is only reflectionless while 

solving the exact wave equations. As soon as discretizing the 

problem (whether for finite difference or finite elements), it is 

only solving an approximate wave equation, and the analytical 

perfection of PML is no longer valid. PML is still an absorbing 

material: waves that propagate within it are still attenuated, 

even discrete waves. The boundary between the PML and the 

regular medium is no longer reflectionless, but the reflections 

are small because the discretization is (presumably) a good 

approximation for the exact wave equation. The key fact is that, 

even without a PML, reflections can be made arbitrarily small 

as long as the medium is slowly varying. That is, in the limit as 

“turning on” the absorption more and more slowly, reflections 

go to zero due to an adiabatic theorem. With a non-PML 

absorber, there is a need to go slowly (i.e. a very thick 

absorbing layer) to get acceptable reflections (Oskooi et al., 

2008). However, with PML the constant factor is very good to 

start with, so a constant magnitude is tried for this coefficient. 

In Fig. 6 and 7, comparison between reservoir lengths, L2 error 

of horizontal dam crest displacement amplitude, PML layer 

thickness and constant damping ratio of PML are shown. 

 

Figure 6. Comparison between layer thickness and constant 

damping ratio of PML (LR=40m) 

 

 

Figure 7. Comparison of reservoir length and PML constant 

damping ratio (Lp=40m) 

The large amount of error is because of some shift or delay in 

the results or differences in first mode magnitude. From the 

Figs. 6 and 7, it is obvious that the range of selection for 

damping ratio of PML decay function σ
* 

is restricted. One 

should care for choose. If one chooses a large or small σ
*
, there 

is some oscillations in the results. This is because of different 

wave numbers in the system and actually problem is not held 

for one wave number or statistical. By considering increasing 

PML domain length with constant reservoir length (LR=40m) in 

Fig. 6 or vice versa in Fig. 7, large amount of reservoir length 

has better results than large amount of PML length. Also it is 

obvious that for every matter only one value converges to the 

exact solution. Results indicate that a minimum length of the 

reservoir or PML region is needed to have acceptable error 

near to the exact solution. So reservoir length must be more 

than 160m. If a minimum PML region like Lp=40m is selected, 

it has acceptable results. From the figure 6, taking σ
*
 any larger 

would not improve the results, and in the case of a coarse mesh 

is likely to impair them. As noticed, for most matters at the 

beginning there is same error magnitude. In Fig. 8 comparisons 

of exact solution and PML with σ
*
=0.1, LP=160m, LR=40m and 

in Fig. 9 PML with σ
*
=0.5, LP=40m, LR=160m are shown. The 

PML is truncated with homogenous Dirichlet boundary 

conditions. Fig 10 shows the real part of hydrodynamic 

pressure at middle of PML domain end for σ
*
=0.5, LP=40m, 

LR=160m.  

 
Figure 8. Comparison of exact solution and PML with σ

*
=0.1, 

Lp=160m, LR=40m 

 
Figure 9. Comparison of exact solution and PML with σ

*
=0.5, 

LP=40m, LR=160m 
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Figure 10. Real part of hydrodynamic pressure at middle of 

PML domain end for σ
*
=0.5, LP=40m, LR=160m 

The results obtained with the PML in Fig. 9 show good 

agreement with the exact solution, validating our formulation 

and verifying our implementation. As noticed in Fig. 10, waves 

damping truly because it is around zero. This can be advantage 

of the PML that it is necessary only to model half of the infinite 

reservoir in comparison to traditionally Sommerfeld boundary 

condition. Results from this problem demonstrate the high 

accuracy achievable by PML models using lower bounded 

domains and at low computational costs. 

4. CONCLUSION 

The dam–reservoir-PML interaction problem was studied by 

using the finite element method. A finite element program is 

developed in order to do the seismic analysis of system with the 

PML boundary condition is adopted as a truncation boundary 

for time-harmonic dam-reservoir interaction. The program 

results verified with the exact solution of the same system, but 

with applied large length Sommerfeld boundary condition in 

accuracy. Polynomial profile of second order has been assumed 

to the PML decay function and tried a constant magnitude for 

damping ratio of the function. The range of selection for 

damping ratio of PML decay function σ
* 
is restricted. Taking σ

*
 

any larger or smaller would not improve the result, and in the 

case of a coarse mesh is likely to impair them. On the other 

hand, some instability can be seen in the results because the 

system is frequency dependent. Constant values for σ
*
 may be 

use sufficiently when there is a one wave number in the 

problem or in fact there is no dispersion and problem is 

statistical. Results indicate that a minimum length of the 

reservoir or PML region is needed to have acceptable error 

near to the exact solution. According to this study, if one 

choose a dam-reservoir-PML system with σ
*
=0.5, LP=40m, 

LR=160m, the obtained results show good agreement with the 

exact solution, validating our formulation and verifying our 

implementation. This can be advantage of the PML that it is 

necessary only to model half of the infinite reservoir in 

comparison to traditionally Sommerfeld boundary condition. 

The proposed truncation boundary condition may be located 

even at a relatively small distance away from the structure, 

resulting in great computational advantages.  
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