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Absstract : The layout of irrigation water distribution networks is usually branched. In most of the previous 
studies pipe sizes of the network had been optimized assuming a predetermined layout of the distribution 
system. However, only few researches have focused on the simultaneous layout and pipe size optimization. 
In this study a hybrid approach is adapted for simultaneous layout and pipe size optimization of branched 
pipe networks as a cost minimization problem. This new approach is based on combination of a pipe size 
optimizer (LIDM) with a layout optimizer for joint layout and pipe size optimization. At each iteration, the 
layout optimizer algorithm acts as an outer loop and LIDM acts as an inner loop. Once all the solutions are 
developed (each solution is a specific layout), LIDM can be used to optimize pipe sizes of each developed 
branched layout (solution). Then solution costs can be calculated and according to them, layout optimizer 
rearranges the solutions and the process continues. Two different approaches are used for layout 
optimization. At the First approach by using the loop model each branched layout is encoded as a string of 
eliminating links and a Discrete Particle Swarm Optimization for combinatorial optimization, called JPSO 
is applied to select the best sting of eliminating links. Proposed methods are applied for simultaneous 
layout and pipe size optimization of a small benchmark example in the literature and the results are 
presented and compared to the existing results. The results showed that the developed methods have 
significant advantages compared to other methods used. 
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1- Introduction 
 
The pressurized systems which were developed 
during the previous decades had considerable 
advantages compared to open canals. In fact, they 
guarantee better services to the users and higher 
distribution efficiency. They overcome the 
topographical constraints and make it easier to 
measure the water volume delivered. Operation, 
maintenance and management activities are more 
technical and easier to control (Lamaddalena and 
Sagardoy, 2000). In order to reduce the costs of 

the network, the layout of pressurized irrigation 
water distribution networks are branched. One of 
the important problems which should be 
considered in designing such networks is the 
simultaneous optimization of both the layout and 
the pipe sizes. The optimization of branched 
irrigation networks has attracted the attention of 
some researchers. Some researchers such as 
Labye (1981) only considered pipe size 
optimization of branched networks with a 
predetermined layout. He proposed an approach 
called Labye's Iterative Discontinuous Method 
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(LIDM) for optimizing pipe sizes. Using LIDM 
enables the optimization process to allocate mixed 
pipe diameters. 
Some researchers, on the other hand, have 
addressed the layout optimization of the branched 
pipe networks, neglecting the influence of the pipe 
sizes. Cembrowicz (1992) encoded the problem of 
branched layout optimization with Loop Model 
and applied GA for solving it. Walters and Smith 
(1995) used evolutionary algorithm (EA) for the 
selection of a branched network from a non-
directed base graph. Geem et al. (2000) applied 
Harmony Search (HS) for the optimal design of 
branched networks. 
Afshar (2006 and 2007) tackled the problem of 
joint layout and pipe size optimization of 
branched networks, by considering pipe sizes of 
maximum layout (a predefined layout that 
includes all possible links) as decision variables. 
The pipe sizes can be selected from a set of 
available pipe sizes. Adding a zero pipe diameter 
to the list of available pipe diameters would 
enable the optimization algorithm to remove if 
required, pipes from the network in its search 
towards an optimal tree layout. The search space 
of the optimization model in this formulation 
consists of all sub-networks of maximum layout. 
The search space rapidly grows with increasing 
network size and the number of available pipe 
sizes. For example the total number of possible 
combinations for a 3node ∗ 3node base graph of 
12 links with 13 possible pipe sizes is 1412. A 
Large number of these possible combinations are, 
however, infeasible solutions which, if identified, 
could be excluded, thus leading to a much smaller 
search space. In another research Afshar (2005) 
applied Ant Algorithm (ACO) for simultaneous 
layout and size optimization of tree-like pipe 
networks. In this approach ants have to search for 
the optimal solution in the region which contains 
networks with feasible layout. The decision points 

of the problem are associated with the nodes of 
the maximum layout, and the solution components 
considered as the list of allowable pipe sizes of 
links in maximum layout. 
In this study a new approach is introduced for 
simultaneous layout and pipe size optimization of 
branched pipe networks as a cost minimization 
problem. This new approach is based on 
combination of a pipe size optimizer (LIDM) with 
a layout optimizer. Adapting such hybrid 
approach to tackle the problem of joint layout and 
pipe size optimization of branched networks leads 
to much smaller search space in comparison with 
ACO application as reported by Afshar (2006). 
Labye (1981) proposed LIDM for optimizing pipe 
sizes in a branched irrigation network with a 
predetermined layout. Using LIDM enables the 
optimization process to allocate mixed pipe 
diameters to some links and therefore reduces the 
costs even more. 
In this paper, two different approaches are used 
for layout optimization. At the First approach by 
using the loop model each branched layout is 
encoded as a string of eliminating links and a 
Discrete Particle Swarm Optimization for 
combinatorial optimization, called JPSO is 
applied to select the best sting of eliminating 
links. To avoid the problems associated with the 
Loop Model, at the second approach instead of 
coding the solutions into strings, an especial form 
of Genetic Algorithm which includes a tree 
growing algorithm within its “reproduction” phase 
is used as the layout optimizer. 
 
1-1- Discrete Particle Swarm Optimization 
The standard PSO considers a swarm S containing 
s particles (S = 1, 2… s) in a d-dimensional 
continuous solution space (Kennedy and Eberhart, 
2001). Each i-th particle of the swarm has a 
position Xi = (xi1, xi2, … , xid ) and a velocity 
Vi = (vi1, vi2, … , vid ). The position Xi represents a 
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solution to the problem, while the velocity Vi 
gives the rate of change for the position of particle 
i at the next iteration. The position of particle i in 
each iteration is adjusted according to:  
Xi

′ = Xi + Vi
′ (1) 

in which, (′) indicates new values. 
Each particle i of the swarm communicates with a 
social environment or neighborhood, 𝑁𝑁(𝑖𝑖) ⊆ 𝑆𝑆, 
representing the group of particles with which it 
communicates, and which could change 
dynamically. In nature, a bird adjusts its position 
in order to find a better position, according to its 
own experience and the experience of its 
companions. In the same manner, in each 
iteration, each particle i updates its velocity 
reflecting the attractiveness of its best position so 
far Bi = (bi1, bi2, … , bid ) and the best position 
G∗ = (g1, g2, … , gd) of its social neighborhood 
N(i), according to the equation: 
Vi

′ = ωVi + c1rand( )(Bi − Xi) + c2rand( )(G∗ −
Xi) (2) 
The parameters ω, c1 and c2 are positive constant 
weights representing the degrees of confidence of 
particle i in the different positions that influence 
its dynamics, while rand( ) refers to a random 
number with uniform distribution [0, 1] that is 
independently generated at each iteration. 
The original PSO algorithm can only optimize 
problems in which the elements of the solution are 
continuous real numbers. Therefore several 
Discrete Particle Swarm Optimization (DPSO) 
methods have been proposed. In the DPSO 
proposed by Kennedy and Eberhart (1997) for 
problems with binary variables, the position of 
each particle is a vector Xi = (xi1, xi2, … , xid ) of 
the d-dimensional binary solution space, Xi ∈
{0,1}d , but the velocity is still a vector ,Vi of the 
d-dimensional continuous space, Vi ∈ ℛd . A 
different way to update the velocity was 
considered by Yang et al. (2004). 

A DPSO whose particles at each iteration are 
affected alternatively by its best position and the 
best position among its neighbors was proposed 
by Al-kazemi and Mohan (2002). The multi-
valued PSO (MVPSO) proposed by Pugh and 
Martinoli (2006) deals with variables with 
multiple discrete values. The position of each 
particle is a mono dimensional array in the case of 
a continuous PSO, a 2 dimensional array in the 
case of a DPSO, and a 3-dimensional array for a 
MVPSO. Indeed, the position of particle i in the 
MVPSO is expressed by the term x, representing 
the probability that the ijk i-th particle, in the j-th 
iteration, takes the k-th value. 
A new DPSO proposed in (Moreno-Perez et al., 
2007) and (Martinez-Garcia and Moreno-Perez, 
2008) does not consider any velocity since, from 
the lack of continuity of the movement in a 
discrete space, the notion of velocity loses sense; 
however they kept the attraction of the best 
positions. They interpret the weights of the 
updating equation as probabilities that, at each 
iteration, each particle has a random behavior, or 
acts in away guided by the effect of an attraction. 
The moves in a discrete or combinatorial space 
are jumps from one solution to another. The 
attraction causes the given particle to move 
towards this attractor if it results in an improved 
solution. An inspiration from the nature for this 
process is found in frogs, which jump from a lily 
pad to a pad in a pool. Thus, this new discrete 
PSO is called Jumping Particle Swarm 
Optimization (JPSO). Consoli et al. tested 
capabilities of JPSO by solving minimum labeling 
Steiner tree problem, an NP-hard graph problem. 
Based on their computational analysis, JPSO 
clearly outperformed all the other procedures, 
obtaining high-quality solutions in short 
computational running times. This confirms the 
ability of JPSO method to deal with NP-hard 
combinatorial problems.  
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2. Labye’s Iterative Discontinuous Method 

(LIDM) 
The approach proposed by Labye (1981), called 
Labye's Iterative Discontinuous Method (LIDM), 
for optimizing pipe sizes in an irrigation network 
is described in this section. This method is 
developed in two stages. 
In the first stage, an initial solution is constructed 
giving, for each section k of the network, the 
minimum commercial diameter (Dmin) according 
to the maximum allowable flow velocity (vmax) in 
a pipe, when the pipe conveys the calculated 
discharge (Ql). After knowing the initial 
diameters, it is possible to calculate the 
piezometric elevation Z 0,in at the upstream end of 
the network, which satisfies the minimum head 
(Hj, min) required at the most unfavorable hydrant 
j: 
Z0,in = Hmin + zi + hj  (3) 
Here hj is the total head losses along the pathway 
connecting the hydrant j to the upstream end of 
the network. Head losses are computed with 
Darcy-Weisbach equation. The diameters Dl, min 

and the initial piezometric elevation Z 0,in 
constitute the initial set of parameters for the 
optimization of the pipe diameters. This is 
performed by an iterative procedure. 
At each iteration, only two pipes (p and p+1) are 
considered for each branch.  Their diameters, are 
Dp and Dp+1 where Dp+1 > Dp. Afterward it is 
possible to compute the coefficient β as follows: 
βp = (Cp+1 − Cp)/(Jp + Jp+1) (4) 

where C and J are the cost and the friction loss per 
unit length of pipe, respectively.. Considering any 
branching sub-network (SN) at the end of the 
section l, it is possible to minimize the variation of 
costs ∆C of the network SN* (Figure 1) using 
linear programming of equations 5 and 6: 
∆C = −βp,SN∆Z − βp,1∆h1 (5) 

Subject to: 
∆Z + ∆h1 = ∆Z′  
where ∆Z is the variation of the head in the 
upstream head of (SN), and ∆hl is the variation in 
the head losses at section l due to the changes of 
pipe diameters. The optimal solution of equations 
(5) and (6) produces ∆Z=∆Z′ and ∆hl=0 when βp, 

SN<βp, l, and ∆Z=0 and ∆hl=∆Z′ when βp, SN>βp, l. 
As a result the minimum value for ∆C is 
∆C = −β × ∆Z  
where β* = min ( βp,SN, βp,l ). The slope of βp,SN  is 
βp,SN = βp,l + βp,2  

when SN is constituted by two sections (1 and 2) 
in derivation (Figure 1), and  
βp,SN = min(βp,l , βp,2)  

when sections 1 and 2 are in series; βp,1 and βp,2 
are the coefficients defined in equation (4) for the 
branch 1 and 2 (Figure. 1), with βp,l = 0 at the 
terminal sections having excess of head (at the 
downstream end node). 
The procedure is performed starting the 
optimization from the downstream sections. The 
magnitude of ∆Ziter  for each iteration is: 
∆Ziter = min[EZiter ,∆hiter , �Z0,iter − Z0�]  
where EZiter is the minimum observed for the 
excess of charge [m] in the nodes where the head 
changes at each iteration, ∆hiter is the minimum 
value of the head losses variation [m] in those 
sections where diameters change during the same 
iteration, and (Z0,iter – Z0) is the difference 
between computed and actual piezometric heads 
[m] at the upstream end. The iterative procedure 
continues until Z0 is satisfied. 

 
Figure. 1.  Elementary network scheme [2]. 

3- Hybrid Approach 
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Hybrid approach is based on combination of a 
pipe size optimizer (LIDM) with a layout 
optimizer for joint layout and pipe size 
optimization. In this approach, in each iteration, 
the layout optimizer algorithm acts as an outer 
loop and LIDM acts as an inner loop. Once all the 
solutions are developed (each solution is a 
specific layout), Labye's Iterative Discontinuous 
Method can be used to optimize pipe sizes of each 
developed branched layout (solution). Then 
solutions costs can be calculated and according to 
them, layout optimizer rearranges the solutions 
and the process continues. The basic algorithm of 
this approach is outlined below: 

1- Form an Initial population of a random 
Tree layouts 

2- Optimize the pipe sizes in each layout 
(pipe size optimization algorithm) 

3- Evaluate cost of each layout 
4- Generate a new set of tree layouts (using 

layout optimization algorithm) 
5- Repeat from (2), until some termination 

criterion is reached. 
Using LIDM as a pipe size optimizer enables the 
optimization process to allocate mixed pipe 
diameters to some links. LIDM chooses optimum 
diameters for network pipes in such a way 
following constrains hold satisfied: Hydraulic 
constrains; Nodal head and pipe flow velocity 
constrains a Pipe size availability constrains. On 
the other hand layout optimization algorithm 
(layout optimizer) selects the least cost spanning 
tree through a maximum layout, which includes 
all possible links. 
 
4- Loop Model 
Cembrowicz (1992) encoded the problem of 
branched layout optimization with Loop Model 
and applied GA for solving it. Cembrowicz (1992) 
uses graph theory in describing his evolutionary 
design approach to the problem of branched 

layout optimization. First he identifies loops 
within the base graph, and then points out that a 
tree network can be formed if one link is removed 
from each loop. The links to be removed (referred 
to as chords) then become the design variables of 
the layout problem, which is now one of selecting 
the set of chords (the co-tree) that, when removed 
from the base graph, results in the minimum cost 
spanning tree. He called this approach Loop 
Model. 
The main draw-back of Loop Model is that the 
removal of an arbitrary link from each loop does 
not necessarily result in a tree, as illustrated in 
Figure 3, so a check is necessary on the resulting 
graph to ensure feasibility. As the network size 
increases, so does the chance of forming an 
infeasible network. Moreover water distribution 
networks with two or more recourses cannot be 
encoded by Loop Model. Cembrowicz has used 
the model with success one base graph with 34 
nodes, 48 links and 15 loops. Figure 2 shows 
coding a spanning tree through maximum layout 
with Loop Model.  

6

 1

5
3

 2  4

b c

a

6

 1

5
3

 2  4

b c

a

a     b    c
5      2      4 Removed chord

loop a     b    c
6     2      1 Removed chord

loop

 
Figure 2 coding a spanning tree through 

maximum layout with Loop Model   
 
5- Using JPSO for branched layout 
optimization encoded with Loop Model 
The JPSO used for branched layout optimization 
encoded with Loop Model, considers a swarm S 
containing s particles (S = 1, 2 … s) whose 
positions 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖 ) evolve in the 
solution space, jumping from one solution to 
another. The position of each particle is encoded 
as a feasible solution to the branched layout 
optimization problem. At each iteration, there are 
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four different forms of selectable jumps for each 
particle, from which one should be selected. First 
one is a random jump (Type one). This kind of 
jump consists of selecting at random a feature of 
the solution and changing its value. Second is a 
jump toward particle`s best position so far 
Bi = (bi1, bi2, … , bid ) (Type one). Third is a jump 
toward the best position of particle`s local 
neighborhood Gi = (gi1, gi2, … , gid ) (Type there) 
and forth is a jump toward the best particle in the 
current iteration, which is called global best 
G∗ = (g1, g2, … , gd) (Type four). Bi, Gi and G* 
are so called attractors. A jump approaching an 
attractor consists of changing a feature of the 
current solution by a feature of the attractor. The 
process of position updating can be described with 
eq. 11. 
Xi =  c1Xi ⊕ c2Bi ⊕ c3Gi ⊕ c4G∗ (11) 
Equation 11 shows that random jump take place 
with the probability c1 and jumps toward 
attractors Bi, Gi and G* take place with 
probabilities c2, c3 and  c4 = 1 − (c1 + c2 + c3), 
respectively. At each iteration in order to update 
the position with this operation, the unit interval 
[0, 1] is divided into four intervals [0, cR1R), [cR1R, 
cR1R+cR2R), [cR1R+cR2R, cR1R+cR2+R cR3R) and [cR1R+cR2+R cR3R, 1], 
which are representatives of jumps type one, two, 
there and four, respectively. Then a random 
number is generated with uniform distribution in 
[0, 1] and based on the interval to which the 
generated random number belongs, the 
corresponding type of jump would be selected. As 
the factors cR1R, cR2R,R RcR3R and cR4R control the balance 
between global and local search, we suggest to 
have cR1R decrease and cR2R,R RcR3R and cR4R increase 
linearly with time, in a way to first emphasize 
global search and then, with each cycle of the 
iteration, to prioritize local search. 
After selecting jump type i with the probability ci, 
we choose one of the decision variables randomly 
with uniform probability. If the selected jump was 

type one then we change the value of chosen 
decision variable randomly, else, substitute value 
of chosen decision variable with corresponding 
one in the attractor. At the second step we choose 
a random number ζ with uniform distribution [0, 
1]. If ζ < ci then we choose another decision 
variable randomly and change its value again and 
repeat this step; otherwise the jump stops. Figure 
3 illustrates Jump toward an attractor for particles 
encoded with Loop Model. 

jump

attractor

particle
a     b    c
4     3     6Eliminated link 

loop

a     b    c
4     3     5Eliminated link 

loop

a     b    c
1     2     6Eliminated link 

loop

 
Figure 3 Jump toward an attractor 

(Particles encoded with Loop Model)  
 
JPSO algorithm is described below:  
Note: Each branched layout is encoded as a string 
of eliminating links. 
1. Initial generation of a random population of m 

particles 
2. Objective function evaluation 

2.1. Set  i =1 
2.2. If i>m then go to 3 
2.3. If the i-th particle was infeasible then set 

its cost equal to P (penalty cost) and go to 
2.5 else go to 2.4 

2.4. Using LIDM determine optimal diameters 
for links of i-th particle and calculate its 
cost 

2.5. Set i=i+1 and go to 2-2 
3. Update Bi , Gi and G* 
4. Update c1, c2 , c3 and c4 (equation 11) (Note: 

during the iterations c1 linearly decreases  and  
5. Update particle positions 

5.1. Set i=1 
5.2. If i>m then go to 6 
5.3. Select an attractor for i-th particle 

 Generate random number R (0<R<1) 
 If 0<R<c1 then jumps take place 

randomly and (ci←c1) 
 If c1<R<c1+c2 then (attractor←Bi) and 

(ci←c2) 
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 If c1+c2<R<c1+c2 +c3 then 

(attractor←Gi) and (ci←c3) 
 If c1+c2 +c3 <R<1 then (attractor←G*) 

and (ci←c4) 
5.4. Perform  jumps in i-th particle 

 5.4.1.  Generate random number ζ (0 ≤ ζ 
≤ 1)    

 5.4.2.   If ζ<ci then perform jump and 
return to 5.4.1, else go to 5.5 

5.5. Set i=i+1 and go to 5.2 
6. If termination criteria was met, then algorithm 

stops else  return to 2 
 
JPSO Parameters 
Swarm size (s), factors c1, c2, c3 and c4, 
maximum number of iterations (m) and 
neighborhood status should be determined as 
input parameters. Neighborhood status considered 
to be circular with radius one. So that each 
particle has one right neighbor and one left 
neighbor. Factors c1, c2, c3 and c4 considered to 
vary linearly during the iterations. The value of c1 
starts from an initial value, c1

i and decreases 
constantly so that at the last iteration (m-th 
iteration) reaches to its final value c1

f. The rate of 

decrease in c1, ∆𝑐𝑐, is equal to (𝑐𝑐1
𝑖𝑖 − 𝑐𝑐1

𝑓𝑓) 𝑚𝑚⁄ . The 
initial values of Factors c2, c3 and c4 (c2

i, c3
i and 

c4
i ) increase with a constant rate of ∆𝑐𝑐 3⁄  during 

the iterations.  
 
7- Model application 
The proposed methods are applied for 
simultaneous layout and pipe size optimization of 
two benchmark examples in the literature. 
The example to be considered is that of a simple 
network shown if Figure 4(a). The network 
consists of nine nodes, twelve links, and a source 
located at node number 9. This example has been 
considered as a test network by Geem et al. (2000) 
to test the performance of the harmony search 
method proposed for layout optimization. Afshar 
(2005, 2006 and 2007) used this example to 
emphasize the necessity of joint layout pipe size 

optimization. The water demand at each node of 
the network is shown in Table 1. Table 2 shows 
costs of different pipe sizes. The Hazen-Williams 
coefficient is assumed equal to 130 for all the 
pipes. The elevation of all the demand nodes is set 
equal to zero and that of the source node is 
assumed to be 50 m. Minimum pressure 
requirement of 30 meter is used at all the demand 
nodes. 
 

Table 1. Nodal Demand for Network 
Node 1 2 3 4 5 5 7 8 9 

Deman
d (l/s) 

1
0 

2
0 

1
0 

2
0 

1
0 

2
0 

1
0 

2
0 

… 

 
TABLE 2. Cost Data for Network  

Dia
met
er(
mm

) 

1 2 3 4 6 8 
1
0 

1
2 

1
4 

1
6 

1
8 

2
0 

2
2 

Cos
t($/
m) 

2 5 8 
1
1 

1
6 

2
3 

3
2 

5
0 

6
0 

9
0 

1
3
0 

1
7
0 

3
0
0 
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8

5

2

6

3

1

11

1210

96

742

1 3

85

9

7

4

8

5

2

6

3

1

11

10

6

742

8

9

7

4

8

5

2

6

3

1

11

1210

9

7

1 3

5

c

12
a

b  
Figure 4 a) Maximum layout of Network1, 
b) Optimal Layout Obtained for Network 1, 
Afshar (2005), c) Optimal Layout Obtained for 
Network 1 with Proposed Methods 
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Figure 4(c) and table 3 show the resulting layout, 
pipe diameters and nodal heads obtained using the 
following values for JPSO parameters: s= 10, 
m=30, c1

i =0.55, c1
f=0.2, c2

i= 0.15, c3
i =0.15 and 

c4
i=0.15. It should be remarked that the method 

was able to find the solution of  $37,764 within 
160 network evaluations. On the other hand, the 
Genetic Algorithm was able to find a solution 
same as the solution found by JPSO faster and 
within only 30 network evaluations. This solution 
is obtained considering Population Size= 10, Elite 
count=1 and Crossover fraction: 0.8. 
 
 

TABLE 3. Optimal Layout and Pipe Sizes for 
Network  

Lin
k 

D1(c
m) 

L 
1(m

) 

D2(c
m) 

L2(
m) 

Nod
e 

P(m
) 

1 10 100 … … 1 30.0
2 

2 … … … … 2 31.9
3 

3 14 100 … … 3 30.6
2 

4 … … … … 4 34.7
6 

5 8 26.1
3 6 73.8

7 5 32.9 

6 … … … … 6 30.0
2 

7 14 100 … … 7 42.0
5 

8 … … … … 8 39.7
8 

9 10 100 … … 9 … 

10 8 21.3
4 6 78.6

6   

11 14 53.6
2 12 46.3

8   
12 14 100 … …   Cos
t 37764.1   

 
 
8- Discussion and conclusion 

Tables 4 show using hybrid approach leads to 
better solutions in too much smaller numbers of 
function evaluations for both of considered 
example. Here it should be noted that CPU time 
for each function evaluation at non hybrid 
approaches (Afshar, 2005, 2006 and 2007) is 
smaller than corresponding one at hybrid 
approach. Because, function evaluation at non 
hybrid approaches involves network hydraulic 
analysis, but calculating objective function at 
hybrid approach consists of applying LIDM to 
optimize pipe sizes which takes more time. In 
example 1, it should be mentioned that greater 
performance of Hybrid approach is not only 
because of LIDM's abilities in pipe sizing but also 
the obtained layout is better. To prove this, we 
optimized pipe sizes of layout shown in figure 
4(b) (Layout of best solution among non hybrid 
methods) by LIDM which resulted in solution of 
$38,301which is still more expensive in compare 
to $37,761 (Cost of solution obtained by all of 
hybrid methods for example). 
According to Trent (1954), the total number of 
spanning trees that can be formed from maximum 
layout of example 1 is 192 which is search space 
size of hybrid approach. As shown in table 5, 
adapting hybrid approach to tackle the problem of 
joint layout and pipe size optimization leads to 
much smaller search space for layout optimizer in 
comparison with other approaches (Afshar, 2005, 
2006 and 2007). Greater performance of hybrid 
methods is mainly due to smaller size of search 
space and strong pipe sizing algorithm. 
 

TABLE 4. Summary of results obtained by 
different researchers for Network  

 

 Method 

Cost 
of 

best 
soluti

No. of 
functi

on 
evalua
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on 
($) 

tions 

1 
Separate Layout-Size 
Optimization (Afshar , 
2007) 

39,80
0 

… 

2 GA (Afshar , 2007) 
39,40

0 
7,500 

3 ACO (Afshar , 2006) 
39,50

0 
8,900 

4 ACO (Afshar , 2005) 
38,60

0 
3,500 

5 
Hybrid ACO/LIDM 
(Kashkooli and Monem, 
2009) 

37,76
1 

20 

6 JPSO  
37,76

1 
160 

7 Genetic Algorithm 
37,76

1 
30 

 
 
 
TABLE 5. Search space dimensions 
considered at different approaches for 
simultaneous layout and pipe size 
optimization of example  

Method 
Search space 
dimensions 

Relativ
e 

dimens
ions   

GA (Afshar , 2007) 
and ACO (Afshar , 
2006) 

(13+1)12 2.95*1
011 

ACO (Afshar , 
2005) 

192*138 138 

Hybrid methods 192 1 
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