A Strong form of Cl- Cl-Connectedness

Sumit¹, Harsh V. S. Chauhan², Manoj³

 ¹Department of Mathematics, University of Delhi, New Delhi-110007, India sumitkumar405@gmail.com
²Department of Mathematics, University of Delhi, New Delhi-110007, India
³Department of Mathematics, University of Delhi, New Delhi-110007, India

Abstract: S. Modak and T. Noiri introduced a weak form of connectedness[1] in topological space called *Cl-Cl*-connectedness. In this paper, we introduce the notion of $\theta sCl - \theta sCl$ -separated sets and $\theta sCl - \theta sCl$ -connectedness spaces which is strong form of *Cl-Cl*-connectedness. We obtain several properties of this notion.

Keywords: Cl- Cl-separated, Cl- Cl-connected, θ -semi-open, θ -semi-closed, θ sCl- θ sCl-separated, θ sCl- θ sCl-connected.

1. Introduction

In 2016, S. Modak and T. Noiri introduced a weak form of connectedness[1] in topological space. In this paper, we introduce a further strong form of Cl-Cl-connectedness, this form is said to be $\theta sCl - \theta sCl$ -connectedness. We investigate several properties of $\theta sCl - \theta sCl$ -connectedness spaces analogous to connected spaces and also, we show that every connected space is θsCl - θsCl -connected. We show that θsCl - θ sCl-connectedness is preserved under continuous functions. Let (X, τ) or X be a topological space or space and $A \subseteq X$. We denote the interior and the closure of a set A by Int(A) and Cl(A). A subset A of X is said to be semi-open[2] if $A \subseteq Cl(Int(A))$. A subset B of X is semi-closed if its compliment is semi-open. Intersection of all semi-closed sets containing A is called the semi-closure[3,4] of A and it is denoted by sCl(A). The collection of all semi-open subsets of X denoted by $SO(X,\tau)$. We set $SO(X,x) = \{U: x \in U \in U\}$ $SO(X,\tau)$.

2. $\theta s Cl - \theta s Cl - SEPARATED SETS$

DEFINITION.2.1. [5] A point $x \in X$ is said to be a θ -semicluster point of a subset *S* of *X* if $Cl(U) \cap A \neq \phi$ for every $U \in SO(X, x)$. The set of all θ -semi-cluster points of A is called the θ -semi-closure of A and denoted by $\theta sCl(A)$. A subset A is called θ -semi-closed if $A = \theta sCl(A)$. The compliment of a θ -semi-closed set is called θ -semi-open.

LEMMA.2.2. [5] For the θ -semi-closure of a subset *A* of a topological space (X, τ) , the following properties are hold:

 $1.A \subset sCl(A) \subset \theta sCl(A)$ and $sCl(A) = \theta sCl(A)$ if $A \in SO(X)$.

 $2.A \subset B$, then $\theta sCl(A) \subset \theta sCl(B)$.

 $3.\theta sCl(\theta sCl(A)) = \theta sCl(A)$ and $\theta sCl(A)$ is θ -semiclosed set. **DEFINITION.2.3.** [1] Let be a topological space, nonempty subsets A, B of X are called *Cl-Cl*-separated sets if $Cl(A) \cap Cl(B) = \phi$.

DEFINITION.2.4. Let be a topological space, nonempty subsets A, B of X are called $\theta sCl \cdot \theta sCl$ -separated sets if $\theta sCl(A) \cap \theta sCl(B) = \phi$.

From above definitions, we have following implications:

Cl-Cl- separated $\Rightarrow \theta s Cl$ - $\theta s Cl$ -separated

But the converse need not hold in general:-

EXAMPLE.2.5. In \mathbb{R} be the real line with the usual topology on \mathbb{R} the sets A = (0,1) and B = (1,2) are $\theta sCl - \theta sCl$ -separated but not *Cl*-*Cl*- separated.

THEOREM.2.6. Let *A* and *B* be $\theta sCl - \theta sCl$ -separated in a space X, if $C \subset A$ and $D \subset B$, then C and D are also θsCl - θsCl -separated.

Proof: Obvious.

3. $\theta s Cl - \theta s Cl - CONNECTED SETS$

DEFINITION.3.1. [1] A subset A of a space X is said to be *Cl*-*Cl*-connected if A is not the union of two *Cl*-*Cl*-separated sets in X.

DEFINITION.3.2. A subset A of a space X is said to be $\theta sCl - \theta sCl$ -connected if A is not the union of two $\theta sCl - \theta sCl$ -separated sets in X.

From above definitions we have following implications:

 $\theta sCl - \theta sCl$ -connected $\Rightarrow Cl - Cl$ - connected

However the converse need not hold in general:-

EXAMPLE.3.3. Let \mathbb{R} be the real line with the usual topology on \mathbb{R} . Let $X = (3,4) \cup (4,5)$. Consider the sets $A = (3,4) \cap$ *X* and $B = (4,5) \cap X$ are $\theta sCl \cdot \theta sCl$ -separated but not *Cl*-*Cl*separated, since $X = A \cup B$. Hence X is *Cl*-*Cl*- connected but not $\theta sCl \cdot \theta sCl$ -connected.

DEFINITION.3.4. A subset *A* of X is s-V- θ -connected if it cannot be expressed as the union of nonempty subsets with disjoint θ –semi-closed neighbourhood in X, that is if there are no disjoint nonempty sets *C* and *D* and no open sets *U* and *V* such that $A = C \cup D$, $C \subset U, D \subset V$ and $\theta s Cl(U) \cap \theta s Cl(V) = \phi$.

THEOREM.3.5. Every s-V- θ -connected space is a θ sCl- θ sCl-connected space.

Proof: The proof is obvious from Definition 3.3.

Following examples show that T_0 -space and $\theta sCl-\theta sCl$ -connected space are independent concept.

EXAMPLE.3.6. Let $X = \{a, b\}, \tau = \{\phi, \{a\}, \{b\}, X\}$. Then $X = \{a\} \cup \{b\}$ and $\theta sCl\{a\} \cap \theta sCl\{b\} = \phi$. The space is a T_0 -space but X is not a θsCl - θsCl -connected space.

EXAMPLE.3.7. Let X be a set containing more than one points, and τ be the indiscrete topology on X. Then (X, τ) is not a T_0 -space but it is a $\theta sCl - \theta sCl$ -connected space.

THEOREM.3.8. A space X is $\theta sCl - \theta sCl$ -connected if and only if it cannot be expressed as the disjoint union of two nonempty clopen sets.

Proof: Let *X* be a $\theta sCl - \theta sCl$ -connected space, if possible suppose that $X = W_1 \cup W_2$, where $W_1 \cap W_2 = \phi$, W_1 and W_2 are nonempty clopen sets in *X*. Since W_1 and W_2 are clopen sets in *X*, then $\theta sCl(W_1) \cap \theta sCl(W_2) = \phi$. Therefore *X* is not a $\theta sCl - \theta sCl$ -connected space. This is a contradiction.

Conversely, suppose that $X \neq W_1 \cup W_2$ and $W_1 \cap W_2 = \phi$, where W_1 and W_2 are nonempty clopen sets in X. We shall prove that X is a $\theta sCl - \theta sCl$ -connected space, if possible suppose that X is not a X is a $\theta sCl - \theta sCl$ -connected space then there exist $\theta sCl - \theta sCl$ -separated sets A and B such that $X = A \cup B$. Then $X = \theta sCl(A) \cup \theta sCl(B)$ and $\theta sCl(A) \cap \theta sCl(B) = \phi$, set $W_1 = \theta sCl(A)$ and $W_2 =$ $\theta sCl(B)$. Then W_1 and W_2 are nonempty clopen sets. Moreover, we have $X = W_1 \cup W_2$ and $W_1 \cap W_2 = \phi$. This is a contradiction, so X is a $\theta sCl - \theta sCl$ -connected space.

THEOREM.3.9. Let X be a space, if A is a $\theta sCl - \theta sCl$ connected subset of X and H, G are $\theta sCl - \theta sCl$ -separated subsets of X with $A \subset H \cup G$ then either $A \subset H$ or $A \subset G$.

Proof: Let A be a $\theta sCl - \theta sCl$ -connected set. Let $A \subset H \cup G$, since $A = (A \cap H) \cup (A \cap G)$, then $\theta sCl(A \cap H) \cup \theta sCl(A \cap G) \subset \theta sCl(H) \cap \theta sCl(G) = \phi$. Suppose $A \cap H$ and $A \cap G$ are nonempty. Then A is not $\theta sCl - \theta sCl$ -connected. This is a contradiction. Thus, either $A \cap H = \phi$ or $A \cap G = \phi$. This implies that $A \subset H$ or $A \subset G$.

THEOREM.3.10. If *A* and *B* are $\theta sCl \cdot \theta sCl$ -connected sets of a space *X* and if *A* and *B* are not $\theta sCl \cdot \theta sCl$ -separated, then $A \cup B$ is a $\theta sCl \cdot \theta sCl$ -connected.

Proof: Let A and B be $\theta sCl \cdot \theta sCl$ -connected sets in X. Suppose $A \cup B$ is not $\theta sCl \cdot \theta sCl$ -connected. Then, there exist two nonempty disjoint $\theta sCl \cdot \theta sCl$ -separated sets *G* and *H* such that $A \cup B = G \cup H$. Suppose that $\theta sCl(G) \cap \theta sCl(H) = \phi$. Since *A* and *B* are $\theta sCl \cdot \theta sCl$ -connected, by Theorem.3.8, either $A \subset G$ and $B \subset H$ or $B \subset G$ and $A \subset H$.

Case(i) If $A \subset G$ and $B \subset H$, then $A \cap H = B \cap G = \phi$. Therefore, $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = (A \cap G) \cup \phi = A \cap G = A$. Also, $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = (B \cap H) \cup \phi = B \cap H = B$. Now, $\theta sCl(A) \cap \theta sCl(B) = \theta sCl$ $((A \cup B) \cap G) \cap \theta sCl$ $((A \cup B) \cap H) \subset \theta sCl(H) \cap \theta sCl(G) = \phi$. Thus, *A* and *B* are $\theta sCl - \theta sCl$ -separated, which is a contradiction. Hence, $A \cup B$ is θsCl - θsCl -connected.

Case(ii) If $B \subset G$ and $A \subset H$, then $B \cap H = A \cap G = \phi$. Therefore, $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = (A \cap H) \cup \phi = A \cap H = A$. Also, $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = (B \cap G) \cup \phi = B \cap G = B$. Now, $\theta sCl(A) \cap \theta sCl(B) = \theta sCl$ $((A \cup B) \cap H) \cap \theta sCl$ $((A \cup B) \cap G) \subset \theta sCl(H) \cap \theta sCl(G) = \phi$. Thus, *A* and *B* are θsCl - θsCl -connected.

THEOREM.3.11. If $\{M_i : i \in I\}$ is a nonempty family of θsCl - θsCl -connected sets of a space X, with $\bigcap_{i \in I} M_i \neq \phi$, then $\bigcup_{i \in I} M_i$ is θsCl - θsCl -connected.

Proof: Suppose $\bigcup_{i \in I} M_i$ is not $\theta sCl - \theta sCl$ -connected. Then we have $\bigcup_{i \in I} M_i = G \bigcup H$, *G* and *H* are $\theta sCl - \theta sCl$ -separated sets in *X*. Since $\bigcap_{i \in I} M_i \neq \phi$, we have a point $x \in \bigcap_{i \in I} M_i$. Since $x \in \bigcup_{i \in I} M_i$, either $x \in G$ or $x \in H$. Suppose that $x \in G$, since $x \in M_i$ for each $i \in I$, then M_i and *G* intersect for each $i \in I$. By Theorem.3.8, $M_i \subset G$ or $M_i \subset H$. Since *G* and *H* are disjoint, $M_i \subset G$ for all $i \in I$ and hence $\bigcup_{i \in I} M_i \subset G$. This implies that *H* is empty. This is a contradiction. Suppose that $x \in H$. By Similar way, we have that *G* is empty. This is a contradiction. Thus, $\bigcup_{i \in I} M_i$ is $\theta sCl - \theta sCl$ -connected.

THEOREM.3.12. Let *X* be a space, $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of $\theta sCl - \theta sCl$ -connected sets and *A* be a $\theta sCl - \theta sCl$ -connected set, if $A \cap A_{\alpha} \neq \phi$ for every $\alpha \in \Delta$, then $A \cup (\bigcup_{\alpha \in \Delta} A_{\alpha})$ is θsCl -vsCl-connected.

Proof: Since $A \cap A_{\alpha} \neq \phi$ for each $\alpha \in \Delta$, by Theorem.3.10, $A \cup A_{\alpha}$ is $\theta sCl \cdot \theta sCl \cdot c$ onnected for each $\alpha \in \Delta$. Moreover, $A \cup (\cup A_{\alpha}) = \cup (A \cup A_{\alpha})$ and $\phi \neq A \subset \cap (A \cup A_{\alpha})$. Thus by Theorem.3.10, $A \cup (\bigcup_{\alpha \in \Delta} A_{\alpha})$ is $\theta sCl \cdot \theta sCl \cdot c$ onnected.

4. *θsCl-θsCl-***CONNECTEDNESS AND MAPPINGS**

THEOREM.4.1. The continuous image of a $\theta sCl - \theta sCl$ -connected space is a $\theta sCl - \theta sCl$ -connected space.

Proof: Let $f : X \to Y$ be a continuous map and X be a θsCl - θsCl -connected space. If possible suppose that f(X) is not a θsCl - θsCl -connected subset of Y. Then, there exist nonempty θsCl - θsCl -separated sets A and B such that $f(X) = A \cup B$. Since f is continuous and $\theta sCl(A) \cap \theta sCl(B) = \phi$, $\theta sCl(f^{-1}(A)) \cap \theta sCl(f^{-1}(B)) \subset$

 $f^{-1}((\theta s Cl(A)) \cap f^{-1}(\theta s Cl(B)) = f^{-1}(\theta s Cl(A) \cap \theta s Cl(B)) = \phi$. Since *A* and *B* are nonempty, thus $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Therefore, $f^{-1}(A)$ and $f^{-1}(B)$ are $\theta s Cl$ - $\theta s Cl$ -separated and $X = f^{-1}(A) \cup f^{-1}(B)$. This contradicts that *X* is $\theta s Cl$ - $\theta s Cl$ -connected. Therefore, f(X) is a $\theta s Cl$ - $\theta s Cl$ -connected.

THEOREM.4.2. Let X be a space then following are equivalent conditions:

1.*X* is not $\theta sCl - \theta sCl$ -connected.

2. $X = W_1 \cup W_2$, where $W_1 \cap W_2 = \phi$, W_1 and W_2 are nonempty clopen sets in X.

3. There is a continuous map $f : X \to (Y, \sigma)$ such that f(x) = 0 if $x \in W_1$ and f(x) = 1 if $x \in W_2$, where $Y = \{0,1\}$ and σ is the discrete topology on Y.

Proof: (1) \Leftrightarrow (2) Obvious from Theorem.3.7.

 $(2)\Rightarrow (3)$ Let $Y = \{0,1\}$ and σ is the discrete topology on Y, then (Y, σ) is the topological space. Let $f: X \to (Y, \sigma)$ be a function defined by $f(W_1) = 0$ and $f(W_2) = 1$. Then f is a continuous surjection such that f(x) = 0 for each $x \in W_1$ and f(x) = 1 for each $x \in W_2$.

(3) \Rightarrow (2) Here $W_1 = f^{-1}(0)$ is a clopen set of X and $W_2 = f^{-1}(1)$ is a clopen set of X, and also X is a disjoint union of nonempty sets W_1 and W_2 .

References

[1] S. Modak and T. Noiri., A weak form of connectedness, Commun. Fac. Sci. Univ. Ank. Ser.; 65(1), 49-52 (2016)

[2] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Mat. Monthly; 70 (1963), 36-41

[3] S. G. Crossley and S. K. Hilderbrand, semi-closure, Texas J. Sci. ; 22(1971); 99-112

[4] S. G. Crossley and S. K. Hilderbrand, semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. ; 22(1971); 123-126

[5]	J.E. Joseph,	M.H.	Kwack,	On s-clos	ed spaces	, Proc.
Amer.	Math.	Soc	e. 80) (19	80);	341-34