
International Journal of scientific research and management (IJSRM)

||Volume||2||Issue||8||Pages||1201-1204||2014||

Website: www.ijsrm.in ISSN (e): 2321-3418

Pooja Rani
1, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1201

Buffer Overflow: Proof Of Concept Implementation
Pooja Rani

1
, Dr.Sushma Jain

2

1Computer Science Department

Thapar University

Patiala, India

pooja015.is@gmail.com

2Computer Science and Engineering,

Thapar University

Patiala, India

sjain@gmail.com

Abstract: The Information security vulnerabilities have become a significant concern for the computer users. Buffer Overflows are

responsible for many vulnerabilities in the operating system and the application programs. These are mainly results of the programming

errors done by the programmers during the coding phase. They can cause serious problems in various categories of software systems. In

this work the Proof of concept for the Buffer Overflow attacks has been implemented and analyzed for different types of the application

using the Windows XP and Linux Operating System and after that the results are described.

Keywords: BufferOverflow, Minishare, Ability Ftp Server, DEP

1. Introduction

When A buffer overflow occurs exists when any program

attempts to keep more data in any buffer than it can actually

hold or when the program tries to put the data in any

memory area past of the buffer. The buffer can be any

section of the memory which is allocated to keep anything

from any character string to any array of the integers. The

writing outside the limit of the block of allocated memory may

corrupt the data or crash the program and can cause the

execution of any type of the malicious code. The buffer

overflow can be of many types like stack based, heap based,

return to lab etc. These types of attacks are basically caused

due to programming error. An overflow happens when anything

is filled beyond its capacity. You can imagine a box filled with

water which is more than its capacity, and then the water will

come outside and can create a mess. The same thing can

happen with the computer program when a certain amount of

the space has been allocated to store the data of the program

during its execution. If too much of the data is being inputted in

the fixed amount of the space, then this space which is known

as of buffer can overflow. This type of situation is known as the

buffer overflow. Buffer overflow occurs when the program

gives permission to the input to be written beyond the allocated

buffer. When the memory has been allocated to store the data,

only data up to the limiter can be stored and if the more data is

stored then the unwanted type of results will be produced.

These unwanted results will overwrite the critical areas present

in the memory which will provide a chance to the attacker to

change the execution flow of the given program. After having

control of the program's execution flow the attacker is now able

to execute anything if he wants. These types of the attacks

simply arises from the programming errors which happened

due to the poor programming done by the developers by not

setting the boundary on the input, that can be handled by the

program. C and C++ are among the most common

programming languages that can produce the buffer overflow.

This language allows the direct access to the application

memory so that their performance is higher for the applications.

The buffer overflow is because of the memory and if the

memory is protected then the buffer overflows will not happen.

Bufferoverflow can be of these types-

1.1 Stack based buffer overflow

In the highest level of the programming languages the code is

being broken down in the code of the smaller types so that the

same can be called again and again whenever there is a need

for that. . Like take the example of the code which is given

below in Figure 1, the main function calls the stacks () to do a

task and when the given task is completed then the program

return back to the main () function. In these types, the function

calls the information which is stored on the stack, which is an

area of the memory used by the program. In the given code in

the Figure. 1, there are two flaws which are present, first is that

there is no checking present on the inputted argument of the

string and second is the strcpy() function. In the given code the

local variable has been declared as the buffer which declared as

of the 40 bytes in the size. The function strcpy() is used to copy

the string which is inputted by the user into the buffer.

Figure1 :Example for Stack BufferOverflow

Pooja Rani
1, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1202

If in this case the inputted string by the user is more than the 40

bytes, then in that case then when the string will be copied into

the buffer , the buffer will overflow and will overwrite areas of

the stack such as the frame pointer and the return pointer . If we

have entered the value of all A 's as our input string then the

return pointer will have 0x41414141 where 0x41 is the

hexadecimal value of A. Since this is a bogus addr address,

which points to the area of the memory that the program do not

have permission to access, a type of exception will be thrown

which will crash the program. Since the return address is

present in the EIP has been overwritten by the user input. This

tells that the attacker can take the control of the execution of

the program and can now overwrite the address location which

is present at the jump, to the location of its own wish.

1.2 Heap based buffer overflow

The second type of the buffer overflow vulnerability takes

place in the heap. The heap is the region present in the memory

which is used to store the dynamic variables and the variable

type of data structure of the program. The memory of the heap

works on the basis of the FIFO (First in First Out) and it grows

upwards so that goes to the higher address (0xFFFFFFFF). The

heap has at least a large page and the heap manager can

dynamically allocate the memory to the smaller pieces of the

processes from this page. The heap manager consists of the

large number of the functions for the managing of the memory

such as the allocation and the freeing up of the memory which

is located into the types of the files known as the ntdll.dll and

ntoskrnl.exe. Each process has a default heap of size 1 MB by

the default and whenever required, can grow automatically.

Many of the windows functions use the default heap space for

the processing of the functions. In addition to this, a process

can create the dynamic heaps as many as needed by that

process. These heaps, which are dynamically made by the

process, are available globally and are created with the heap

related type of the functions. The heap allocates the memory

block in the form of chunks while the chunks consist of a chunk

header and the chunk data. The chunk header contains the

information about the size of the chunk location of the chunk

and other type of the information. The memory in the heap can

be allocated with the help of the malloc() function which are

found normally in a structured type of the programming

languages. The HeapAlloc () in the Windows and the new () in

the C++ and the malloc () in the ANSI C while the memory can

be freed by the help of the HeapFree (), free () and the delete

(). The heap manager contains the information of the memory

block which is in the use by the help of the information present

in the chunk header. The header keeps the information about

the size of the allocated block and contains the pair of the

pointers which points towards pointer having the next address

of the next available block. Once a process has finished the use

of the block then it can be freed and become available for the

further use. This type of the tracking information is kept stored

in the in an array which is known as doubly-linked free list.

When the allocation occurs then this type of the information is

updated according to the requirement. When more allocation

and the frees occurs then these pointers are updated

continuously. When heap based buffer overflow happens then

this type of the information is overwritten so that when the

allocated buffer is freed or a new block is updated then it come

to update the pointers in the array an access violation will

happen and the attacker will have an opportunity to modify the

program control data as like function pointers which gives

control to the flow of the execution.

1.3 Off-by-one buffer overflow

The off-by-one Error is also a type of buffer overflow which

happens due to an error in the programming language when the

buffer exceeds by only one byte. Normally it happens in those

loops that try to process all the elements of its buffer so these

buffer overflow happens rarely. Now you can consider a

example in which the first local variable present in the stack

frame will be a buffer , that will be considered to be off- by-

one, during the processing .

1.4 Return_into_libc buffer overflow

A return -into- lab attack is the attack in which return address

present on the call stack is changed by the address of the

function which is already present in the binary or by the shared

library. Due to this , the attacker become able to detect the non

executable type of the stack protection like now the page

cannot be marked as both write and executable at the same

time. In this type, the attacker only calls the preexisting type of

the functions and there is no need to inject the malicious code

in the given program. The shared library which is known as the

"lab” will provide the C runtime for the UNIX systems.

Although the attacker can make the code to return anywhere

but the lab is the most required area as a target because it is

always linked with the program and can provide the useful

calls (like the system calls for executing any arbitrary

program) to the attacker when needed .

2. Types of BufferOverflow Attacks

2.1 NOEXEC- NOEXEC prevention technique prevents the

execution and also prevents the injecting of the arbitrary code

in the exiting type of the memory environment. NONEXEC

contains of the three types of the features which it uses for its

functioning. In the first type of the feature the executable

semantics can be applied to the existing memory spaces. The

executable semantics application can be similar to as the

application of the least privileges concept to MMU. The main

application of these executables is to create the non executable

types of the pages to the IA-32 architecture in the two forms

which are based on the paging (PAGEXEC) and the

segmentation (SEGEXEC) in the IA-32 architecture. After the

creation of the non executable has been merged into the kernel

then next comes the new feature which includes the making of

the memory that can hold the stack, heap, memory mapping

and the any other type of the feature which has not been

specified in the ELF file. After this the modification of the

functioning of the map () and protect () is done to prevent the

convention of the memory states into an unsecured type of the

state during the execution.

2.2 ASLR- Address Space Layout Randomization is a

technique to prevent the exploits by introducing some type of

randomness in the layout of virtual memory space . This

technique creates the randomization of the location of the heap,

stacks, loaded type of the libraries and the binaries of the

executables. The ASLR reduces the probability of those types

of the attacks which are mainly dependent on the hardcoded

types of the addresses. ASLR use the four components for its

functioning. These components are RANDUSTACK,

RANDKSTACK, RANDEXEC and the RANDMMAP.

RANDUSTACK component is responsible for the

randomization of user land of the stack areas. The kernel makes

a program stack when the exec (0) system call is triggered. The

kernel does this in the two steps firstly the required pages for

processing allocated and after this the mapping of the pages is

done with the virtual address space. RANDUSTACK will

modify the address used in the both technique of the user level

stack because both the address that was given by the kernel at

Pooja Rani
1, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1203

the creation of the pages and the virtual address mapping are

modified by the using of the random values. If the fork ()

system call is triggered within the RANDUSTACK, the process

created within a thread are handled by RANDMMAP

component of the ALSR. RANDKSTACK component is

responsible to make randomness into the kernel stack of the

process. Each process is given two pages of the kernel memory

which is used to handle the kernel operation during the

execution of the process. RANDKSTACK randomizes every

system call and the amount of the randomization is about 128

bytes which is enough for the prevention of the kernel exploits.

2.3 DEP- Data Execution Prevention is a prevention schema

that can prevent the damage to the computer from the security

threats. DEP provides the protection to the computer system by

monitoring the programs and making sure that they are using

the memory safely. If DEP notices that any programming has

been using the memory in an incorrect way then it closes the

program and gives notification about this to the user.

 DEP prevents the execution of the code which is present in the

memory page and marked as the non executable. By default in

windows only those pages are marked as executables which

keeps the text sections of the executables and the dell files,

which are loaded. By enabling of the DEP schema provides the

prevention from the shell code execution in the stack, heap or

the data sections. When the DEP is enabled and any program

tries to execute the code in the unexcitable type of the page

then the access violation will happen

2.4 Stack Shield- Stack Shield is also based on the compiler

based prevention technique and is same as other techniques

based on compiler but it also has some other types of the

additional features that includes the Global Return Stack

which will behave like specialized stack for the return

addresses. Each time , the faction is called then the return

address is stored in the Global Return Stack and every time

when the function has to return to the address then the return

address will copied into the application type of stack from the

Global Return Stack, by overwriting any type of the possible

compromise. Now because this feature is unable to detect the

attacks so that Ret Range Check feature is used for this work of

detection. The Ret Range Check feature copies the return

address to an area which is unprintable instead of pushing the

canary on the stack during the functioning of the function

prologue. During the function epilogue the stored address is

checked by the Stack Shield. If any type of inconsistency is

detected then the Stack Shield will exit the program and after

this gives permission for the detection and the logging of the

buffer overflow attacks.

3. Related Work

Licker et al. proposed a prevention mechanism for the buffer

overflow in the java smart cards [1]. The java smart cards used

a sandbox based protection schema. Giannetsos and Dimitrio

proposed Spy-Sense which was a spyware tool for the

execution of the stealthy exploits in the sensor networks [2].

Spy-Sense allowed the injection of the stealthy exploits in the

sensor nodes of the sensor network. Alone et al. proposed a

protection technique for the stack buffer overflow which was

based on the duplication and randomization [3]. . Gilbert and

Ripoll proposed prevention technique for brute force type

attack for canary protection in the networking server [4].

Islander et al. proposed a Runtime Intrusion Prevention

Evaluator (RIPE) for the prevention of the buffer overflow

attacks [5]. Wang et al. proposed a Signature-Free Buffer

Overflow Attack Blocker known as Segre [6]. Day et al.

proposed a technology to detect the return to lab buffer

overflow attacks by using the Network Intrusion detain system

[7]. Gadaleta et al. proposed a protection technique for the

stack based buffer overflow attacks which were based on the

instruction level [8]. Wu and Yongdong proposed protection

for buffer overflow in visual studio [9]. Yunnan et al. proposed

a technology for prevention of global and static type variables

from the buffer overflow attack [10]. Francolin and

Castelluccia analyzed buffer overflow attacks in the Harvard

type of architecture devices [11]. Stojanovski et al. proposed

technique of buffer overflow attacks by passing the Data

Execution Prevention present in the Windows XP [12]. Kong

et al. proposed protection from buffer overflow by using the

taint checking at the instruction level [13]. They proposed an

architecture that was based on the instruction level taint

checking. Gupta et al. proposed dynamic coding

instrumentation for detection and protection from the

corruption of the return address [14]. Heywood and Kayaked

proposed the prevention of the buffer overflow by using the

genetic algorithm [15]. Corlis et al. proposed dynamic

instruction stream editing (DISE) for the protection of the

return addresses from the attacks [16]. Inoue proposed an

energy security tradeoff for cache architecture to prevent the

buffer overflow attacks [17].

4. Implementation

 A. In the following work it has been demostrated that how

can be bufferoverflow will be performed for the Ability Ftp

Server and Minishare-

The buffer overflow in Ability Ftp Server requires

1. Window XP used as a victim machine

2. Ability ftp server installed on victim machine

3. Backtrack machine or any linux used as an attacker machine

The Ability ftp server has the vulnerability with using the

STOR command. The given script will send STOR command

along with data, which is more than that buffer can handle at

the port number 21. Since, Ability Server works on port

number 21 so that along with this given script shell code can

also placed. This script can also work as proof of concept for

buffer overflow attacks on Ability Server.

Figure 2: Script for Ability Ftp Server

B. BufferOverflow attacks in Minishare requires

1. Attacker machine i.e. Backtrack or Linux machine

2. Victim machine i.e. Windows

3. Minishare installed on Windows machine

Pooja Rani
1, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1204

The Minishare has the vulnerability with using the GET

command. The given script will send GET command along

with data, which is more than that buffer can handle at the port

number 80. Since, Minishare works on port number 80 so that

along with this given script shell code can also placed. This

script can also work as proof of concept for buffer overflow

attacks on Minishare.

Figure 3: Script For Minishare

References

[1] M. Lackner, R. Berlach, R. Weiss and C. Steger,

"Countering type confusion and buffer overflow attacks on

Java smart cards by data type sensitive obfuscation," In

Proceedings of the First Workshop on Cryptography and

Security in Computing Systems, ACM, pp. 19-24, 2014.J.

Clerk Maxwell, A Treatise on Electricity and Magnetism,

3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] T. Giannetsos and T. Dimitriou, "Spy-Sense: spyware tool

for executing stealthy exploits against sensor networks," In

Proceedings of the 2nd ACM workshop on Hot topics on

wireless network security and privacy, ACM, pp. 7-12 ,

2013.

[3] S. Alouneh, M. Kharbutli and R AlQurem, "Stack Memory

Buffer Overflow Protection based on Duplication and

Randomization," Procedia Computer Science, vol. 21, pp.

250-256, 2013.

[4] H. M. Gisbert and I. Ripoll," Preventing brute force

attacks against stack canary protection on networking

servers," IEEE International Symposium on Network

Computing and Applications, 2013.

[5] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and

W. Joosen, "RIPE: runtime intrusion prevention

evaluator," In Proceedings of the 27th Annual Computer

Security Applications Conference, ACM, pp. 41-50,

2011.

[6] X. Wang, C. Pan, P. Liu and S. Zhu, "Sigfree: A

signature-free buffer overflow attack blocker," Dependable

and Secure Computing, IEEE Transactions on 7, no. 1 pp.

65-79 , 2010.

[7] D. J. Day, Z. Zhao and M. Ma, " Detecting Return-to-libc

Buffer Overflow Attacks Using Network Intrusion

Detection Systems," Fourth International Conference on

Digital Society, 2010.

[8] F. Gadaleta, Y. Younan, B. Jacobs, W. Joosen, E. D.

Neve, and N. Beosier, "Instruction-level countermeasures

against stack-based buffer overflow attacks," In

Proceedings of the 1st EuroSys Workshop on

Virtualization Technology for Dependable Systems, ACM,

pp. 7-12, 2009. Y. Wu, "Enhancing Security Check in

Visual Studio C/C++ Compiler," In WRI World Congress

on Software Engineering, IEEE , vol. 4 , pp. 109-113,

2009.

[9] Y. Younan, F. Piessens, and W. Joosen, "Protecting

global and static variables from buffer overflow attacks,"

International Conference on. Availability, Reliability and

Security, ARES'09 ,IEEE , pp. 798-803, 2009.

[10] A. Francillon, and C. Castelluccia, "Code injection attacks

on harvard-architecture devices," In Proceedings of the

15th ACM conference on Computer and communications

security, ACM , pp. 15-26, 2008.

[11] N. Stojanovski, M. Gusev, D. Gligoroski and S.

Knapskog, "Bypassing Data Execution Prevention on

MicrosoftWindows XP SP2," The Second International

Conference Availability, Reliability and Security,

ARES'07, IEEE, pp. 1222-1226, 2007.

[12] J. Kong, C. C. Zou, and H. Zhou, "Improving software

security via runtime instruction-level taint checking," In

Proceedings of the 1st workshop on Architectural and

system support for improving software dependability,

ACM, pp. 18-24., 2006.

[13] S. Gupta, P. Pratap, H. Saran and S. A. Kumar, "Dynamic

code instrumentation to detect and recover from return

address corruption," In international workshop on

Dynamic systems analysis, ACM, pp. 65-72, 2006.

[14] H. G. Kayacik, M. Heywood and N. Z. Heywood, "On

evolving buffer overflow attacks using genetic

programming," In Proceedings of the 8th annual

conference on Genetic and evolutionary computation,

ACM, pp. 1667-1674, 2006.

[15] M. L. Corliss, E. Christopher Lewis and A. Roth, "Using

DISE to protect return addresses from attack," ACM

SIGARCH Computer Architecture News 33, no. 1 pp.65-

72, 2005.

[16] K. Inoue, "Energy-security tradeoff in a secure cache

architecture against buffer overflow attacks," ACM

SIGARCH Computer Architecture News 33, no. 1 .pp. 81-

89, 2005.

[17] K. Inoue, "Energy-security tradeoff in a secure cache

architecture against buffer overflow attacks," ACM

SIGARCH Computer Architecture News 33, no. 1 .pp. 81-

89, 2005.

Author Profile

1. Pooja Rani is currently pursuing her Mtech under Computer

Science Department in Thapar University, Patiala under the

supervision of Dr. Sushma Jain . Her specialization is in information

and Network Security

	PointTmp

