
International Journal of scientific research and management (IJSRM)

||Volume||2||Issue||8||Pages||1205-1208||2014||

Website: www.ijsrm.in ISSN (e): 2321-3418

Dr Leelavathi Rajamanickam, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1205

Testing Tool for Object Oriented Software
Dr.Leelavathi Rajamanickam

Senior Lecturer, SEGI University, School of Information Technology,

Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Malaysia

leelavathiraj@segi.edu.my

Abstract: This paper deals with design and development of an automated testing tool for Object Oriented Software. By an automated

testing tool, we mean a tool that automates a part of the testing process. It can include one or more of the following processes: test strategy

generation, test case generation, test case execution, test data generation, reporting and logging results. By object-oriented software we

mean a software designed using OO approach and implemented using an OO language.

Testing of OO software is different from testing software created using procedural languages. Several new challenges are posed. In the

past most of the methods for testing OO software was just a simple extension of existing methods for conventional software. However, they

have been shown to be not very appropriate.

Hence, new techniques have been developed. This thesis work has mainly focused on testing design specifications for OO software. As

described later, there is a lack of specification-based testing tools for OO software. An advantage of testing software specifications as

compared to program code is that specifications are generally correct whereas code is flawed. Moreover, with software engineering

principles firmly established in the industry, most of the software developed nowadays follows all the steps of Software Development Life

Cycle (SDLC). For this work, UML specifications created in Rational Rose are taken. UML has become the de-factor standard for analysis

and design of OO software.

Testing is conducted at 3 levels: Unit, Integration and System.

At the system level there is no difference between the testing techniques used for OO software and other software created using a

procedural language, and hence, conventional techniques can be used. This tool provides features for testing at Unit (Class) level as well

as Integration level. Further a maintenance-level component has also been incorporated. Results of applying this tool to sample Rational

Rose files have been incorporated, and have been found to be satisfactory.

Keywords: Class, Object, SDLC, Object-oriented, Testing, Unit, Integration, System, UML, Control flow graph, State transition diagram,

Design, Testing, Analysis, Implementation, Black-Box, White-box..

1. Introduction

Software testing is a phase of SDLC that entails much effort,

time and cost. Often, testing phase is the single largest

contributor towards the whole development time. Testing can

not only uncover bugs in the program, but also flaws in

design of the software. To make the testing phase quicker,

easier and more efficient, automated testing tools are being

used. These tools help in test case generation, reporting

results and variance from expected ones (if any), bugs in

code and other flaws. Usage of these tools speeds up the

testing process and also ensures reduction in the probability

of a bug/error being uncovered later. However application of

these automated testing tools in software testing has its own

disadvantages, namely, learning the tool to use it, adapting it

to your purpose, and also the tool may not provide specific

functionality which you may desire.

Object-oriented testing essentially means testing software

developed using object-oriented methodology. The target

users for the Testing Tool are mainly software testers and

maintainers. As the tools would provide valuable insight into

the program's structure and behavior plus automate the

testing process to certain extent, it would be highly useful for

testers. Also the tool would be beneficial to maintainers who

would like to study change impact (here they will be aided by

the program's analysis done by the tool), and perform

regression testing. The objectives of developing the Testing

Tool for software testers and maintainers are:

(1) To help them understand the structures of, and relations

between, the components of an OO program.

(2) To give them a systematic method and guidance to

perform OO testing and maintenance.

(3) To assist them to find better test strategies to reduce

their efforts

(4) To facilitate them to prepare test cases and test

scenarios.

(5) To generate test data and to aid them in setting up test

harnesses to test specific components.

2. Objective

The objective of this paper is: design and development of

an automated testing tool for object-oriented software. The

aim of this paper is to study various established as well as

emerging testing techniques, with special focus on those

for object-oriented software; and develop a tool which is

based upon the techniques which are most suitable due to

their effective applicability to OO programs.

3. Methodology Adopted

For carrying out this paper, following methodology has

been adopted:

Dr Leelavathi Rajamanickam, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1206

1. Literature Survey: This involves study of existing

testing techniques and strategies, with special emphasis on

object-oriented testing.

2. Analysis of Problem: This incorporates analyzing the

problem. Out of the literature survey emerged, the right

techniques and tactics for object-oriented software testing.

Also existing methods have been modified upon where

ever necessary.

3. Software tool development: Since the ultimate objective

of this paper is to develop an automated testing tool, all the

steps of software development have been followed.

(i) Analysis

(ii) Design

(iii) Implementation

(iv) Testing

(v) Iterative process

4. Existing Testing Techniques Surveyed

4.1 Black Box Testing

(i) Random Testing

(ii) Equivalence Partitioning

(iii) Boundary Value Analysis

(iv) State Transition-based Testing

 4.2 White Box Testing

(i) Basis Path Testing

(ii) Loop Testing

(iii) Mutation Testing

5. Testing Techniques for Object Oriented

Software

Certain subset of the testing techniques covered in the

study can be favorably applied to object-oriented

programs. At various levels of testing of object oriented

software, techniques which can be applied are

1. Unit Testing

2. Method Testing

3. Class Testing

4. Integration Testing

5. System Testing

5.1 Testing Techniques for Object-Oriented Software:

A main problem with testing object-oriented systems is that

standard testing methodologies may not be useful. Smith and

Robson [7] say that current IEEE testing definitions and

guidelines cannot be applied blindly to OO testing, because

they follow the Von Neumann model of processing. This

model describes a passive store with an active processor

acting upon the store. It requires that there be an oracle to

determine whether or not the program has functioned as

required, with comparison of performance against a defined

specification." They also present the following definition of

the testing process: "The process of exercising the routines

provided by an object with the goal of uncovering errors in

the implementation of the routines or the state of the object

or both." Smith and Robson say that the process of testing

OO software is more difficult than the traditional approach,

since programs are not executed in a sequential manner. OO

components can be combined in an arbitrary order; thus

defining test cases becomes a search for the order of routines

that will cause an error Siemen and Newton [8] agree that the

state-based nature of OO systems can have a negative effect

on testing. Siepmann and Newton state that the iterative

nature of developing OO systems requires regression testing

between iterations. Smith and Robson state that inheritance is

problematic; since the only way to test a subclass is to flatten

it by collapsing the inheritance structure until it appears to be

a single class. When this is done, the testing effort for the

super class is not utilized; therefore, duplicated testing takes

place.

5.2 A Survey of Testing Techniques for Object-

Oriented Systems:

Most research on object-oriented (OO) paradigms has been

focused on analysis, design, and programming fundamentals.

Testing the systems that are created with these paradigms has

been considered an afterthought. Traditional testing

techniques must be evaluated to determine if they are still

useful with respect to object-oriented systems and new

techniques must be developed.

5.3 Latest Research:

The latest research in the field of object-oriented software

testing. Tonella [20] proposes a method for evolutionary

testing of classes. In this paper, a genetic algorithm is

exploited to automatically produce test cases for the unit

testing of classes in a generic usage scenario. As, object

oriented programming promotes reuse of classes in multiple

contexts, the unit testing of classes cannot make too strict

assumptions on the actual method invocation sequences,

since these vary from application to application. Traore [21]

discusses a test model for object-oriented programs, based on

formal specifications like UML, built from user

requirements. Pezze & Young [22] have highlighted some

important issues to be considered while testing object-

oriented programs. Object oriented software requires

reconsidering and adapting approaches to software test and

analysis.

6. The Test Model and its Capabilities.

The tools for automated testing are based upon certain

models of software/programs and algorithms. This

mathematically defined test model consists of following types

of diagrams:

1. The class diagram (object relation diagram)

2. The control flow graph (of a method), and

3. The state transition diagram (of a class

6.1 Class Diagram:

A class diagram or an object relation diagram (ORD)

represents the relationships between the various classes and

its type. Types of relationships are mainly: inheritance,

aggregation, and association. In object oriented programs

there are three different relationships between classes. They

are inheritance, aggregation and association.

6.2 Control Flow Graph:

Dr Leelavathi Rajamanickam, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1207

A control flow graph represents the control structure of a

member function and its interface to other member functions

so that a tester will know which data is used and/or updated

and which other functions are invoked by the member

function.

6.3 Sate Transition Diagram:

A STD or an Object State Diagram (OSD) represents the

state behavior of an object class. Now the state of a class is

embodied in its member variables which are shared among its

methods. The OSD shows the various states of a class

(various member variable values), and transitions between

them (method invocations)

6.4 Based on Software Design/Specification:

These diagrams are taken from the design models prepared as

part of Software Development process. UML (Unified

Modeling Language) has become the defactor standard for

object-oriented analysis and design (OOAD). UML provides

features for specifying all the above types of diagrams.

Rational Rose Suite is the most widely used.

7. Components of the OO Testing Tool:

The tool for automated testing of OO programs has the

following components/features:

1. GUI

2. Import File Feature

3. Change Impact Identifier for classes

4. Maintenance Tools

5. Logging results

6. Diagram Displayer

7. Class Diagram

8. State Transition Diagram

9. Control Flow Graph

10. Test Tools:

(i) Test Order generator for testing of classes at

integration level

(ii) Test Case generator for testing classes

11. Basis Path generator for member functions/methods.

8. CONCLUSION:

This paper dealt with Design and Development of an

Automated Testing Tool for OO software. The tool mainly

focuses on testing design specifications for OO software. An

advantage of testing software specifications as compared to

program code is that specifications are generally correct

whereas code is flawed. Moreover, with software engineering

principles firmly established in the industry, nowadays, while

developing software all the steps of Software Development

Life Cycle (SDLC) are adhered to. For this work, UML

specifications are considered. UML has become the defacto

standard for analysis and design of OO software. UML

designs created in Rational Rose are used by the tool as

input. The main components of this tool are:

1. Test Order Generator for classes

2. Test Case Generator for State-based class testing

3. Change Impact Identification for Classes.

REFERENCES

[1] Jorgensen, Erikson ”Object-oriented Integration

Testing” Communications of the ACM, Vol. 37, No. 9,

1994

[2] Kung, GAO, Hsia ”Developing an OO Testing and

Maintenance Environment” Communications of the

ACM, Vol. 38,

[3] No. 10, 1995.

[4] Doong, Frankl ”ASTOOT approach to testing OO

Programs” ACM Transactions on Software Engineering

and Methodology, Vol. 3, No.2, 1994

[5] Doong, Frankl ”Case Studies on testing

OOprograms” Communications of the ACM, Vol. 25,

No. 5, 1991.

[6] M. Smith and D. Robson” A Framework for Testing

Object-Oriented programs” Journal of Object-Oriented

Programming, June 1994, pp.45 - 53.

[7] Frankl, Elaine Weyuker ” An applicable family of

data flow testing criteria” IEEE Transactions on

Software Engineering, Vol. 14, No. 10, 1988.

[8] Mary Jean Harrold, Gregg Rothermel “Performing

data flow testing on classes” December 1994 ACM

SIGSOFT Software Engineering Notes, Proceedings of

the 2nd ACM SIGSOFT symposium on Foundations of

software engineering, Volume 19 Issue 5

[9] Ugo Buy, Alessandro Orso, Mauro Pezze

“Automated Testing of Classes” August 2000 ACM

SIGSOFT Software Engineering Notes , Proceedings of

the 2000 ACM SIGSOFT international symposium on

Software testing and analysis, Volume 25 Issue 5

[10] Gao, J.Z.; Kung, D.; Hsia, P.; Toyoshima, Y.;

Chen, C. ”Object state testing for object-oriented

programs” ComputerSoftware and Applications

Conference, 1995. COMPSAC 95. Proceedings.

Nineteenth Annual International, 9-11 Aug. 1995 Pages:

232 – 238

Dr Leelavathi Rajamanickam, IJSRM volume 2 issue 8 August 2014 [www.ijsrm.in] Page 1208

Author Profile

 Dr.Leelavathi Rajamanickam, working as Senior Lecturer, School of Information Technology, SEGI

University, Malaysia. She has 10 years 4 months (6 years India and 4 years 4 months in Malaysia) of

professional teaching experience in Computer Science and Information Technology.

She had finished my M.C.A in 2000. She started working in aided college as Lecturer and Head of the

Department in Lal Bahadur College, Warangal, India during 2001 to 2007. Later she had done her Ph.D. in

Computer Science and Engineering from University of Allahabad 2007-2011 and worked as Lecturer in Rima

College, Malaysia. She worked as a Senior Lecturer in Help College of Arts and Technology from 2012- 2013.

She is currently working with SEGI University in June 2014

	PointTmp

